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Abstract. This paper is concerned with the stability and bifurcation behaviour of a
nonlinear autonomous system in the vicinity of a compound critical point character-
ized by two pairs of pure imaginary eigenvalues of the Jacobian. Attention is focused
on the local dynamics of the system near-to-resonance. The methodology developed
earlier for the bifurcation analysis into periodip and quasi-periodic motions (unifica-
tion technique coupled with the intrinsic harmonic balancing) is extended to consider
the stability and bifurcations of resonant cases. A set of simplified rate equations
characterizing the local dynamics of the system is derived. These equations differ
from those associated with nonresonant cases in that they are phase-coupled. Fur-
thermore, the stability conditions of the phase-locked periodic bifurcation solutions
are presented. All the results are expressed in explicit forms.

1. Introduction. It is well known that a nonautonomous system may quite often
exhibit periodic as well as quasi-periodic bifurcation solutions. Nonlinear systems
with periodic driving forces have been considered in detail by, for example, Nayfeh
and Mook [1], Iooss and Joseph [2], who used perturbation techniques and operator
function theory to obtain the first-order approximations of bifurcation solutions and
stability conditions. In a nonlinear autonomous system, interactions of static and
dynamic bifurcation modes in the vicinity of a compound critical point may lead to
invariant tori, which has been investigated by many authors (e.g., see [3-7]). Recently,
such phenomena are studied by using the unification technique [7-11] coupled with
the intrinsic harmonic balancing [12] and its generalization, multiple-scale intrinsic
harmonic balancing [11]. The approach enables one to obtain systematically a set
of simplified rate equations which govern the local dynamics of the system. The
solutions for static bifurcations, Hopf bifurcations, and quasi-periodic motions lying
on two- and higher-dimensional invariant tori, as well as the associated stability
conditions, are expressed in terms of the system coefficients.
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An interesting problem associated with nonlinear autonomous systems is con-
cerned with a Jacobian that has two pairs of pure imaginary eigenvalues. Mainly,
two cases may arise. The case without resonance (i.e., when the ratio of the two fre-
quencies at the critical point is irrational) has been studied by a number of authors
[5, 11, 13, 14].

The second case is concerned with resonance which can occur in several ways: the
ratio of frequencies cojco-, can be equal to 1:1, 1:2, 1:3, etc. and also has been
studied by some authors (e.g., see [15-18]). In this paper, the unification technique
(coupled with the intrinsic harmonic balancing) is extended to the analysis of such
resonance problems, with particular attention to the case of toj/oj-, = 5. Based
on the assumption of near-to-resonance (that is, the ratio of the two frequencies of
the bifurcation solutions is near ^), a set of rate equations is derived by using the
techniques which are then used to explore phase-locked periodic bifurcation solu-
tions. Furthermore, the bifurcation critical lines and associated stability conditions
are presented. All the results are expressed in terms of the system coefficients. The
methods used in this paper can be applied to investigate other special and even more
degenerate resonant cases.

2. Formulation of the problem. Consider an ^-dimensional nonlinear autonomous
system described by a set of first-order differential equations. Suppose that the Ja-
cobian matrix of the linearized system evaluated at a critical point c has two pairs
of pure imaginary eigenvalues, while the rest of the eigenvalues have negative real
parts. With the aid of the Center Manifold Theory, one may reduce the system to a
new system in terms of four critical state variables as follows:

i /
~ Zi(zi; //) (i,j= 1,2,3,4; 0=1,2), (1)

where the z' denote the state variables and the y/ are two certain independent
parameters. It is assumed that the functions Z( are analytic, at least in the region of
interest, and an equilibrium path z' = in this region exhibits a critical point
c with two pairs of pure imaginary eigenvalues. Introduce a nonsingular transfor-
mation,

z =£{/) +Tuwj, (2)
into Eq. (1) to obtain the system

7 /

-jjL = 1Vi(wj-,/) (/,;= 1,2, 3,4; fi = 1,2) (3)

such that its Jacobian matrix evaluated at the critical point c is in the canonical
form

Wu

0 coic 0 0
~(Olc 0 0 0

0 0 0 oj2c
0 0 -oj, 0

uj. >0, to, > 0), (4)

'2c

where the ratio oiXcju>lc is assumed to be rational, and will be assigned the value of
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2 . It follows from the transformation (2) that system (3) has the property

Wi(0;tJi) = Wi/l(0, ve) = Wifiy(0; rf) = --- = 0, (5)

where the subscripts on Wi denote differentiations with respect to the corresponding
parameters.

Suppose that the eigenvalues of the Jacobian matrix Wt.(if) , where if = rf -

rjf! , consist of two distinct complex conjugate pairs given by a,(//) ± a>l(^)i and
a2([i^) ± co2(n^)i. Then

a,(0) = a2(0) = 0, col{0) = colc, and a>2(0) = a>2c. (6)

It is further assumed that a transversality condition, given by

det
da{/d/ul dajdn2
daJd[i da2/dn2 /0, (7)

is satisfied, which implies that both pairs of the eigenvalues cross the imaginary axis
in the complex plane with nonzero velocity. It can be shown (see [11, Appendix A])
that

^=°' = \(Wnt+Wnl,), ^=4 =j(W,w + W44,) (/f=1.2) (8)

and

In order to apply the multiple-scale intrinsic harmonic balancing procedure and
the unification technique here, suppose that the steady-state solutions of Eq. (3) in
the vinicity of c are in the parametric form

w' - w\xk ; a"), rf = t}\oa), wk = ojk(oa)
(i = 1,2,3,4; Ic, a, 0 = 1,2), (10)

where xk = a>kt and oa are certain unidentified small perturbation parameters [12].
Assume further that these solutions can be expressed as a multiple time scale Fourier
series [11]

M

WJ{Tk\0a)= Y. \Pj,m,mS°a)C0^m\X\+miZ2) (U)
m=0

m.+m->=m

+ V - (a") sin(m,T, + m2z2)] .

This expression can be introduced for both resonance and nonresonance cases. In
the latter situation, the governing equations can be constructed readily from the
perturbation equations, which will be generated next. This paper is concerned with
resonant cases and attention will be focused on phase-locked periodic bifurcations
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near-to-resonance. Here, only the case of co{/co7 = \ is considered in detail. Setting
r, = 21, = 2r and co = 2a), = 2co, Eq. (10) takes the form

w' - w'(x\ a"), r/ = t/(a"), co = co(a") (/= 1,2,3,4; a,fi = 1,2),
(12)

and Eq. (11) therefore, is in the form of an ordinary Fourier series
M

wJ(x\ a") = Y(pjm COSWT + rjm sin mx). (13)
m=0

Next, a sequence of perturbation equations is generated by substituting Eq. (12)
into Eq. (13) and differentiating the resulting identity with respect to the oa succes-
sively,

' . /,a rjr j,a 1ir B ,a /Aco wT + coz = \\-\w + fVipH , (14)

, ab ; , a i ,b ,b i ,a i,ab
CO Wr + CO WT + CO Wx + cowx

jjr j. a k,b , ,lr , j ,a /j ,b j,b P ,a,
= Wijkw w +Wijp(wJ ji + wJ fi )

, Tjr j ,ab -j, B,a y,b TI, B, ab /ic\
+ WuwJ +Wtj}y /u' +Wifin" , (15)

etc., where i, j, k — 1,2,3,4; a, b = 1,2; /?, 7 = 1 , 2, the subscripts on the
functions Wi denote differentiations with respect to the corresponding variables,
and summation convention applies. For clarity, differentiations of the variables with
respect to the oa are indicated by the superscripts after a comma.

Now, evaluating the first-order perturbation equation (14) at the critical point c
with the aid of Eqs. (5) and (13) yields

M M

E m(rim COS mT ~~ P\m S'n "JT) = ^ij £ (■Pjm cos mT + rjm sin mr), (16)
m=1 m—0

where Wjj is given by Eq. (4). Comparing the coefficients of cos mx and sin mx
for each m gives the nontrivial solutions

,a ,a ,a

a and 32 ia (a =1.2). (17)
P2\=ru , P42 ~ r

,a and
r21 ~~ P\\ r42 — P 32

Next, evaluating the second-order perturbation equation (15) at the critical point c,
introducing Eqs. (5), (13), and (17), and then comparing the coefficients of cos mi
and sin mx results in

JW.. + »i«>WX'+'h's '>+ = 0,(18)
for m — 0;
, ,a ,b , ,b ,a. ,ab
K ril +WI ''/I ) + Wl/,l

1 r/TJ/ u r •. / , a , b , b , a , a , b , b 1 @ \
= j /13 /24)11 P12 +PnPn +'"n/,32 +'11'32)

1 / t j /" i j / \ / i@ib , b , a , a , b , b , <3 \
(14 ~~ (23)^11 r32 + P\ 1 r32 ~ r 11 P32 ~ >"1 j P32 )

II7 , ,a ,b ,b )S,a. ... , ,a B ,b ,b B,a> ,ab , , „ ,
w„p(Px ifi +PUM ) + wi2p(r 1, A ) + W,/,, , (19a)
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/ ,a ,b , ,b ,cis , ,ab
(CO, Pn + to, pn ) + 0)lepn

+

(^•14 - ^23)^i'>32 +^1^32 + <4 + r\\r. £) (19b)

- (wi\3 + wnMa\r£ +Pn'r32 ~ ru P'i ~ ru P32)

wl2P(Pu/'b+Pn/'a) - - W r ab
ij'jl ■

for m = 1 (where the first two terms on the left-hand side vanish for i = 3,4);
/ ,a,b ,b ,a. , afc
(co2 ra + co2 r2) + co2cra

1: 2

+

)wm " "mXPuV ~ 'n'u) + ^,n(Pnrn +>>n'u)

fjiifi'/ ''+Pj2V'°) + wHn(r£/'t' + ̂ 2/'°)} + w,jP'jf • (20a)

/ ,a,b ,b,a. , , ab
(<u2 Pi2 + C02 Pi2) + C02cpi2

1: 2

+
-'»'«) - w.. -

i,VpmV'' + p,,V'"> - * + riV-)l - f, (20b)
for m — 2 (where the first two terms on the left-hand side vanish for i = 1, 2);

, ai 1
Kc + W2CK3"" = § [(^13 " ^'24)^1.^32 + ^32 - ^32 " ruri^

] +
(21a)

+ (^■14 + ^ + />M >32 + ri " P32 + '"l I P 32 )] + =

(C0,c + lO^pf = ^ [(^.,4 + ^23)(pn>32" +Pi">32" - rU r32 + rn'V32")

- (*/14 - r32 P\ \ r32 + rl\P£ + rl \ P32 >] - Wurjf '
(21b)

for m = 3 ; and

2C°2cri4 = 2 [(^/33 ~ ^(44)(^32^32 _ r32r32) + ^^34^32r32 + ^32 r32 )] + ^ijPj4 '

^OJ2cPi4 = 2 [^^134^32^32 ~~ r32r32) ~ (^/33 ~~ ̂ 44) (^32 r32 + ^32 ^32 )] ~ '*//r/4 '
(22)

for m = 4.
A close inspection of these equations suggests that Eqs. (19) and (20) may yield

important relationships, and are rewritten more explicitly
,a ,b ,b ,a ,a ,b yb ,a ,a ,b ,b ,ax

CO, r, +co, rn = A(pupn + pup32 + rupi2 + ruri2)
„, ,a ,b ,b ,a ,a ,b ,b ,a,

+ £(/?,, r32 +P,, ^32 ~rnp32 ~rnp32)
Pi -C P ,b ,b P,a. /?, ,a p,b ,b p.a> .

+ a,(p,,/i +pn/i ) + co,(r,,^ ), (23a)

,« ,6. ,a ,a,b ,b,a,
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,a ,b , ,b ,a ,a ,b ,b ,a ,a ,b ,b ,a.
G>1 /?a + a>, />„ = B(pupn +pupn +rnpn +rur32)

,a ,b ,b ,a ,a ,b ,b ,a>
-^nr32 +^lir32 - ri 1 ̂ 32 - ri 1 ̂ 32 )

P, ,a p.b ,b P,b> p, ,a p.b ,b P ,a.
+ (ol(pufi +pufi )-a[(rufi +run ) (23b)

and
,0 ,b , ,b ,a ^/ ,a ,b ,a ,b>. ,a ,b ,b ,a,

(02 Pj2 +0)2 Pi2 = C(PUPU -r,,r„)- D{pnrn + purn)
P, ,a p,b ,b P .as p, ,a p,b ,b p,a. ,

+ a2(p32iu +Pi2P- ) + ft>2(ri2fiH +r32pT ), (24a)

,a ,b ,b ,a ,a ,b ,b ,6, .a ,b ,b ,a.
0)2 ri2 +co2 ri2 = -D(pnpu - r„ r„) - C(pu ru +Puru)

p, ,a P ,b ,b p .a. p, ,a P,b ,b p,a. /^..in
+ (o2(pnn +pi2/u )-a2(rnp. + r32/T ), (24b)

where a% and co^ (k = 1,2) are given by Eqs. (8) and (9), respectively, and

^ = 4 [(^113 ~ ^223) + (^124 + ^214)] '

B= 7 [(^.14- ^224) -(^,23 + ^2.3)]'

1 (25)
C= 4 [(^311 -^322) + (^412 + ^42.)] >

D= ^ [(^4,1 -^422) -(^312+ ^32.)]"

These equations, which are in terms of the derivatives of pu , pi2, &>, and // ,
can be combined through the unification technique to yield the governing bifurcation
equations. Consider, for example, the first equation (23) which involves three equa-
tions (for a, b = 1,2). Multiplying the first equation for a = b = 1 by {a )~/2,
the equation for a = 1 , b = 2 by cr'cr2, and the equation for a = b - 2 by (c2)2/2
and adding them together yields

°1 r\ 1 = ^11^32 + ril r32) + B(P 11 r32 ~ ''l 1P32) + ^1 laf ^ + r\1 ^ '

*Vn = 5(PiiP32 + riir3l) ~ A(Plir32 " ri 1^32) ~ rilQlV + />nw{V-
Similarly, the first equation of (24) gives

n2r)2 = C(pf, -r2n)- D{2puru) + p32afi2/ + rn(oP2/,

Q2^32 = ~D(Pn - rl\\) - c<y2P\Xrn) - ri2a2^ + Pnw2/ ,
where Q, = co- w, (A: = 1,2). Similarly, after some algebra one obtains

(26)

(27)

k ~ k wkc
2 . 2̂ 2 2

{Pu + + A [(/>,, - rx, )p32 + 2/7,, r,, r32

+ 5[(pfi -rn)r32-2/,iiriiP32.

(^32 + r32)a2^"/? + C |(Pll _ ril)P32 + 2^11 ri 1 r32

+ D

= 0,

(P\\ ~ riOr32 ~ ^P\\r\\P-h2 (28)
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2 2 22)9/? "22
(/>,, +r,i)Q, = (pu +rn)(oyn + B (pn - ru)p32 + 2purnr32

- A{(Pn ~ r2u)rn- 2purnpn] ,
22 2 2 3 3 "22

(p32 + r32)n2 = (p32 + r32)(02n -D {pn - rn)r32 + 2purnrn
(29)

+ C (P2n-rn)rn-2PnrnP32

In order to obtain the dynamical equations in the vicinity of c, let pn , r,,, p32,
and r32 be replaced by px cos<px, -px sin</>,, p2 cos<j>2, ~p2 sin cf>2 , respectively. It
can be shown (following the approach described in [11, Appendix B]) that the rate
equations up to second-order terms are given by

dp.CI U ( R R
-jf = P + Pi [A cos(20, - (f>2) + B sin(20, - <

= P2a2^ + p\ [Ccos(20, - 02) + D sin(20, - <f>2)\
(30)

and
d(f)i 3 3 r ~\

Px-jf- = P\( +oj{p ) + pxp2 [5cos(20, -<t>2) -Asm{2(j)l -0,)j ,
dcpi B B 2 r -i

p2—tt = + C02p ) + p{ [-Dcos(201 - (j>2) + Csin(2^j - 02)J.
(31)

(32)

dt
Next it is noted that the first-order approximation of the periodic solutions is ex-
pressed by

px, cos x + rx, sin t = px cos ^ cos r - px sin <f>x sin r

= px COS(t + (f)x) = px cos(i, + </>,),
p32 cos 2t + r32 sin 2t = p2 cos 4>2 cos 2r - p2 sin <f>2 sin 2r

= p., cos(2r + <f>2) = Pi cos(t2 + <j>2).

Let
6X =t1+</>, and 62 = x2 + <t>2, (33)

and define the phase difference

y/ = 20j - (j>2 = 29x - d2. (34)

Thus, Eqs. (30) and (31) can be written as

dp i bp
-jY~pxa\p + pxp2{A cos yy + B sin y/),

d p 3 3 2
—jY = p2a2 fi + px (C cos ij/ + D sin y/)

(35)

and
dO,

px:j±- = px{(0xc + (0pxn") + PXP2{B cosy/ - A siny/),

dd2
dt

dt
p2~T^ = + + /^(-.Dcos y/ + C sin yj).

(36)
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It may be noted that setting // = 0 in Eqs. (35) and (36) leads to the normal
form, which is equivalent to that given in [5]. Moreover, for the nontrivial solution
(p{ / 0, p~, / 0), one may reduce Eq. (36) to

= (2wf - co^p* + ^2Bp^ + cos V _ [^■Ap1 + C^-^ sin if/. (37)

3. Bifurcation and stability analysis. Based on Eqs. (35) and (37), we shall analyze
the bifurcation and stability properties of the system. The steady-state solutions can
be obtained by setting dpx/dt = dp-^/dt = dy/dt = 0 as follows:

(I) initial equilibrium solution Pi — P2 = 0; and
(II) phase-locked periodic solution

/n P P d P P\2 , ir^ P P a P P\22 _ (Da^n - Bp2la^p ) + (Ca,/r - Ap2ya2pH)

P2~ (AD - BCf
2 2

P1 — ^12^2 '

sin C(af/)^-/)(Q^/)/?22
(AD-BC)p]p2

D{a^p)p]-B{ay)p\
cos y/   —~z  2 

(AD-BC)p;p2

(AD- BC ^ 0).

(38)
where

-P ± \]p2 + Q _ P ± \JP2 + Q

(39)
Pn 2(C2 + JD2)af/' PlX 4(A2 + B2)ay

P = [(AC + BD)(2af - J2) - (AD - BC)(2io* - to*)] n*

Q = 8 (A2 + B2)(C2 + D2)(af/)(Q^/).
Here, it can be proved that pl2 = 1 //>-,, and (pjp2)2 = pn ■

The stability of the initial equilibrium solution is determined by the Jacobian of
Eq. (35). It gives the conditions

aPpP < 0 and a2 //<0, (40)
which are identical to those obtained for the nonresonance case [11], These stability
conditions imply two critical bifurcation lines:

L,:af/ = 0 (a£/ < 0) (41)
and

L2:aP2pP= 0 (af//< 0), (42)
along which a family of phase-locked periodic solutions lying on a 2-D torus bi-
furcates from the initial equilibrium solution. This family of periodic solutions is
represented by solution (38).

Before discussing the stability of solution (38), consider the existence conditions
for the family of phase-locked periodic solution (38). It is clear from Eq. (38) that the
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2 2existence conditions are given by px > 0 and p2 > 0, and so pn > 0 (or p2x > 0).
Therefore, the existence of the periodic solution is equivalent to the existence of the
positive solution pl2 . One may conclude from Eq. (39) that there are three cases:

(i) a^p13 > 0 but a2p^ < 0, which implies Q < 0 ; then if P > 0, there is no
solution; if P < 0, there exist two solutions when P + Q > 0.

(ii) af// < 0 but a2pP > 0, which also implies Q < 0; then if P < 0, there is
no solution; if P > 0, there exist two solutions when P + Q > 0.

(iii) a^pp > 0 and a2p^ > 0, which implies Q> 0; then there exists only one
solution

_ -p + \/p2 + Q
Pn ~ 2{C2 + D2)a1 pp '

Now, the stability of the phase-locked periodic solution (38) can be determined
by evaluating the Jacobian of Eqs. (35) and (37) on Eq. (38), which is in the form

0

J =

- (^) (QiV) P{P2{B cosy/- A sin y/)

-2 {a^pP) a2p^ p2(Dcos y/ - Csin y/)

2(^-\{Dcosyj-Csmy/) 2(B cos yj - A sin yt) {2a^-a2)p^
2

- (Dcos yj - C sin y/)
(43)

The characteristic polynomial of Eq. (43) can be written as

where

G(A) = A3 + a/l2 + M + c (44)

a= -2{apx+ap2)pp ,

b = p\ \pn(C2 + D2) - 4(AC + BD)] + 4(af/)(«?/), (45)

2P]\Jp2 + Q.
Thus the stability conditions for the family of the phase-locked periodic solution are
given by

a> 0, c>0, and ab - c > 0. (46)

a > 0 gives (a^ + a2)p^ < 0, hence, the solutions belonging to (iii) in which
a^p^ >0 and a2p'! > 0 are unstable. Moreover, c > 0 requires that the positive
sign of the square root (P + Q) has to be chosen. So only one possible solution
corresponding to

-p + ^/p2 + q
P12 ~ „2 . n2, p ,R2{C + D )a, pH

in (i) or in (ii) is stable, in particular (i) af/ >0, af/ < 0, P < 0 and P2 + Q >
0; (ii) a^pp < 0, a2p^ > 0, P > 0 and P~ + Q > 0, if, in addition, satisfying
ab - c > 0 .
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