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Phase-space distribution functions for a non-relativistic quantum particle are defined as 
the mean value of certain operators, whose most general forms are determined by the require
ments of Galilean, parity and time-reversal invariances. The rule of associating phase-space 
functions to quantum mechanical operators, induced by the general distribution function, is 
considered. The resulting scheme unifies previous work on this subject. 

§ 1. Introduction 

In the last years, the phase-space description of quantum mechanical systems, 
initiated by the well-known works of Wigner,l) MoyaP) and others3)~G) has been 
substantially developed,7)~1l) mainly in connection with two different kinds of 
problems: a) the study of the statistical properties of coherent optical fields14)~ls) 
and b) the search and analysis of the essential features common to the existing 
statistical and dynamical theories, i.e., classical mechanics and classical statistical 
mechanics from one side and quantum theory from the other.7), 9

)'
17

),ls) 

The main aspects of the phase-space description of a quantum system are 
dictated by the desire of treating the ordinary quantum theory in a framework 
similar to that of the classical statistical mechanics. We can briefly summarize 
them as follows : 
a) The states of the system are described by means of the so-called distribution 
function F SJ (x, p; t) which is defined on the (classical) phase space and depends 
parametrically on time. This function is expected to be parallel, as much as 
possible, to a true probability distribution. 
b) A c-number function A 9 (x,p), defined on the phase space is associated to 
the quantum operator A, in such a way that the usual quantum expectation value 
c.ould be computed in the classically-looking manner: 

(1·1) 

Two general works on this subject have been recently published: that of 
Cahill and Glauber,11

) who have determined a set of common features which must 
be shared by all solutions of the above sketched program and that of Agarwal 
and W ol£10

) who have developed a general technique to give a unified treatment 
to the different mapping rules A-7A9 associated to thf different ways in which 
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1704 G. J. Ruggeri 

the basic operators of the theory can be ordered in the expansion of A. 
Due to the wide class of phase-space description schemes which are compatible 

with the general requisites found in the work of Cahill and Glauber, the question 

of how to select a definite one in a physically meaningful way immediately arises. 

The purpose of this work is to show how this can be achieved by demanding 

that the phase-space description conforms to Galilean, parity and time-reversal 

invariances. As it usually happens these symmetry requirements are strong 

enough to limit severely the formal aspects of the theory, keeping at the same 

time a convenient degree of generality. The scheme so generated will be shown 

to be in formal correspondence with the work of Agarwal and Wolf, the main 

properties of which are then a natural consequence of the invariance of the theory 

under the improper Galilei group of transformations. 

After stating notations and conventions, our plan will proceed as follows: 

In § 2 the phase-space distribution function is constructed. In § 3 we consider 

the phase-space representation of quantum operators, as induced by the general 

F 0 • Dynamical equations are written in § 4. 

Notations and Conventions. We only consider the non-relativistic system 

of one particle, of mass m, in three dimensions. Extension of the main results 

to N-particles ·systems is straightforward. Operators are denoted by a caret; so, 

for example, x is the vector position of a space point, but x is the vector position 

operator. 

§ 2. Distribution functions 

As mentioned above, we are interested in describing the quantum states of 

our system by means of a real phase-space distribution function Fn (x, p; t) whose 

most general form we proceed now to determine. First of all, we want to recover 

the well-known classical expression in the limit h~o; accordingly the usual cor

respondence principle suggests to construct Fn as the mean value of certain 

hermitian operator !J(x, p) which depends parametrically on the phase-space co

ordinates, I.e., 

Fn(x,p; t) =<?F, tilJ(x,p) I?F, t). (2·1) 

Here l?ff, t) is a general state vector. Note that this form limits us ab initio to 

F's bilinear in the wave function. 
Let us now search for the restrictions on the form of fJ (x, p) imposed by 

the requirement of invariance of the phase-space description under Galilean, parity 

and time-reversal transformations. Consider first the Galilean transformation*) 

x~x'=9:tx+a+ Vt, 

p~p' = 9:tp + m V, 

t~t'=t, 

*> We adhere to the active point of view. 

(2·2) 
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9:t is a rotation, a a translation and V an arbitrary velocity. The state vector 

changes according to 

IP", t)~IP"', t)= U(a, v, 9:t) IP", t). (2·3) 

Here U(a, V, 9:t) is the unitary projective representation of the Galilei group.19
) 

It is given explicitly by 

U(a, V, 9:t) = D(a+ Vt, mV)R 

= {exp(i/h) [mV·x- (a+ Vt) · p]}R. 

Now, the physical equivalence of inertial frames of reference reqmres 

F'g(x',p'; t') =Fg(x,p; t) 

which, due to the arbitraryness of I P", t), leads to 

Q(x',p') = D(a+ Vt, mV)RQ(x, p)RtiJt(a+ Vt, mV). 

(2·4) 

(2·5) 

As a first conclusion we see that fi=f2 (0, 0) must be rotationally invariant: 

f2 = RQRt. This, of course, means that F!J (0, O) must be independent of the co

ordinates axis orientation. 

In addition, take x = p = t = 0 and note that varying a and V the set (a, m V) 

can be made to cover the whole phase space. We arrive then at*) 

Q(x,p) = D(x,p)!JiJt(x,p). (2·6) 

We see then that the effect of Galilean invariance is to extract the parametric 

dependence of the "density in phase-space operator" fJ (x, p). This turns out 

to be the result of displacing in phase space an operator f2 associated to the 

origin of coordinates. 

Further restrictions on Q are obtained by the other symmetry requirements. 

By a procedure analogous to that followed above, it is easy to show that by (2 · 6) 

a) Parity invariance requires 

(2·7) 

b) Time-reversal mvanance reqUires 

K.tf2tK.=f2. (2·8) 

P and K are the usual parity and time-reversal operators. Other desired proper

ties of !2, e.g., its positive-definiteness, will be considered later. For the sake 

of mathematical flexibility, however, we may suppose in what follows that Q is 

a sufficiently well behaved operator. 

To proceed, let us quote some known simple formulas that will be used 

repeatedly in the following 

*> Cahill and Glauber11> have noted that the class of phase-space distribution functions they 

considered could be written in the form (2 · 6). 
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1706 G. J. Ruggeri 

D(x,p) lx')= {exp(i/h)p· [(x/2) +x']} lx' +x), 

D(x,p) lp')= {exp( -i/h)x· [(p/2) + p']} lp' + p), 

D(x, p) D(x', p') = {exp(i/2h) (p·x' -p' · x)} D(x+ x',p+ p'). 

(2 ·9a) 

(2. 9b) 

(2·9c) 

Consider now the operators 

f(x) =h-3 S d 3pQ(x,p), (2·10) 

J(p) = h-3 J d 3xQ (x, p). (2 ·11) 

They are respectively diagonal in position and momentum basis. In fact, using 
(2·9a) and (2·9b) we find 

Then 

<x' IF(x) lx") = <x'- xi!Jix'- x)a<a> (x'- x"), (2 ·12) 

<p'IJ(p) lp") = <P'-pi!Jip'- p)a<a> (p'- p"). (2·13) 

F(x) = J d 3x'lx')<x' -xi!Jix'-x)<x'l, 

J(p) = sd3P'Ip')<p' -piQip'-p)<p'l, 

h-3 J d 3xd3pQ(x,p) = (Tr Q)l. 

(2·14a) 

(2·14b) 

(2·14c) 

Upon taking mean values, the first two of these relations are easily recognized 
as generalized versions of the marginal probability distributions along the position 
and momentum basis. The last one expresses normalization if, as we do from 
now on, !J is chosen of unit trace. 

At this stage it is worthwhile to point out some remarks concermng the 
interpretation of Fn: 

a) The usual quantum probability densities are obtained if !J is such that 

<xi!Jix) = o<3
> (x), 

<PI!Jip > = o<3
> Cp). 

(2·15a) 

(2·15b) 

In these cases, however, !J cannot be a positive definite operator and consequently, 
Fn may take negative values. A well-known example of this circumstance is 
Wigner's distribution function. 
b) In the opposite cases Q and Fn are positive definite and the uncertainty 
principle precludes the possibility of having o-function peaks like (2 ·15). This 
in turn means by (2 ·14) that the usual marginal distributions will not be obtained 
simply by integrating Fn over the corresponding phase-space axis. Apparently 
this definitively denies the possibility of attaching to a positive definite Fn a 
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probability meaning in any sense. Nevertheless, suppose that the left-hand sides 
of (2 ·15), which in virtue of (2 · 7) and (2 · 8) are real, symmetric and normalized 
functions of its arguments, are chosen to be positive packet functions respectively 
peaked at X= 0 and p = 0. Then r and J are proper extensions of the position 
and momentum probability densities. This is so, not only because by (2 ·14a) 
and (2 ·14b) they give good measures of these probabilities, but because, in ad
dition, the mean values 

<1f!, t If' Cx) llJ!, t), 

<1f!, t I J(p) llJ!, t) 

(2·16a) 

(2 ·16b) 

evolve in time according to the usual coupled hydrodynamic equations. It is to 
be noted that due to the relations 

<x'IQ (x,p) lx')=<x'-xlQix' -x), 

<p'IQ(x,p) lp')=<p'- piQip'-p), 

(2·17a) 

(2·17b) 

the above assumption is equivalent to choice Q so that the localized states of the 
ordinary formulation, i.e.,: I x) and I p ), be also well localized in the phase-space 
description. 
c) Even when Fn is positive definite we cannot give to it the meaning of a 
phase-space localization probability according to the usual quantum-mechanical in
terpretative rules. This, of course, is a manifestation of the uncertainty principle 
which does not permit a simultaneous eigenstate of position and momentum oper
ators. Nevertheless, She and Heffner20> have shown that it is possible to extend 
slightly the usual body of quantum postulates so as to include the simultaneous, 
but imprecise, measurement of position and momentum variables. The distribution 
function constructed from Q8 H (see below) has in that theory the meaning of a 
probability associated to an act of measurement. 

Let us now search for an alternative expression for Fn. For this, use the 
completeness of position and momentum eigenstates together with (2 · 6), (2 · 9a) 
and (2·9b), to put Q(x,p) in the form 

Q(x, p) = s d 3x' d 3P' {<x' -xl12lp'-p)/<x' -xlp'-p)} lx'><x'lp')<P'I. 

(2·18) 

Introduce now the Fourier transformation*> 

Q(u, v)= h-3 exp[(- i/2)hu· v] S d 3x' d 3p' [ <x'IQip')!<x'lp')] exp[ -i(u·x' + v·p')] 

=Tr{Q exp[-i(u·x+v·p)]}. (2·19) 

*> In terms of it the rotationally, parity and time-reversal invariances are respectively equivalent 
to :!.1 (u, v) = .Q (SRu, SRv), .Q (u, v) = .Q (-u, - v) and .Q* (u, v) = .Q (u, v). In addition to this, the Her
miticity and the normalization of fi require: .Q*(u, v)=!.J(-u, -v) and .Q(O, 0)=1. 
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1708 G. J. Ruggeri 

Then 

X lx')(x'jexp(iv·p) (2. 20) 

which, by (2 · 9a) and a simple change of variables, is equivalent to 

Q(x, p) = (h/2rc) 3 f d 3x'd3ud 3v!J(u, v)exp{i[u· (x'-x) -v·p]} 

X lx' -hv/2)(x' + hv/21. (2·21) 

Besides numerical factors and a difference in notation, the mean value of this 
expression is formally identical to the general form for the distribution function 
proposed by Cohen and Margenau.8

),
9

) Note however that our Q(u, v) is always 

independent of the state of the system. This last one is a necessary condition 
in order to avoid undesired consequences of the formalism. 

As an illustration of the formalism developed up to now, consider the class 
of distribution functions which give "Gaussian localization" in phase space, I.e., 
which are such that 

(xilJix)= (2rcr512)-312 exp{ -lxl 2/2rJ12
}, 

<PilJip) = (2rcr522)-312 exp { -lpl 2/2rJ22}. 

(2·22a) 

(2. 22b) 

By inverting (2 ·19), after some algebra it is easy to show that the most general 

corresponding Q(u, v) has the form 

(2 ·23) 

where f is rotationally, parity and time-reversal invariant, and satisfy in addition 
f(u, O) = f(O, v) = 1. The further requirement of positive-definiteness imposes, as 
expected, the uncertainty relation; rJ1rJ2>hj2. The simplest choice f=1 produces 
an operator Q8 H which in the theory of She and Heffner20

) defines. the (mixed) 
state of the system after a simultaneous imprecise measurement of position and 
momentum. The corresponding FsH(x, p) is then the probability density of finding 

the couple (x,p) as a consequence of such measurement. 

§ 3. Phase-space representation of quantum operators 

In this section we consider the second part of the program sketched in the 
Introduction, i.e., the association of a phase-space function to every well-behaved 
operator A. This mapping is defined in such a way that Eq. (1·1) be satisfied 
irrespective of the state of the system. Then 

(3·1) 

To solve for A SJ note that (3 ·1) has the form of a convolutive product which 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/46/6/1703/1935639 by guest on 21 August 2022



On Phase-Space Description of Quantum Mechanics 1709 

takes a very simple aspect in Fourier space. Define first (cf. Eq. (2 ·19)) 

A(u, v) =Tr{A exp[( -i) (u·x+v·p)]}. (3·2) 

Now, by usmg Eqs. (2 · 9c), (3 ·1) and the cyclic invariance of the trace, we 
find 

(3· 3) 

(3·4) 

with an obvious notation. That (3 · 4) is the only solution of (3 ·1) is proved 
easily by starting from Eq. (3 · 7) below. 

Through Eqs. (3 ·1), (3 · 2) and (3 · 4) it is straightforward to show that the 
mapping A~ A 9 has the following elementary properties: 
a) To Hermitian operators correspond real functions. This obviously follows 
from the Hermiticity of !J. 
b) To the unit operator corresponds the unit function. This follows from the 
normalization of !J. 
c) The Galilean, parity and time-reversal invariances imply 

fjt (x', p') AD(x', p') ~A 9 (x + x', p + p'), 

RtAR~ Aa(SRx, SRp), 

PAP~ Aa( -x, -p), 

f<.tAK.~ {Aa(x, -p)}*. 

(3 · 5a) 

(3. 5b) 

(3 · 5c) 

(3. 5d) 

Other interesting consequences of Eq. (3 ·1) can be drawn by first putting 
it in a different form. For this, let us call for the W eyl representation of A 21

) 

A= (hj2rcY J d 3ud3vA(u, v)exp{i(u·x+ v· p)}. (3·6) 

It gives together with (3 · 4) the connection between A 9 and the development of 
A in terms of. x and p 

(3·7) 

This last relation is a convenient starting point to establish contact with the 
class of mapping rules which come from the different ways we can order the non
commuting operators x and p. In fact, let us suppose we choose a definite arbi
trary order, say w, in the right-hand side of (3 · 7) and Q(u, v) is such that 

w [exp {i(u·x + v· jJ)}] =Q(u, v) exp {i(u· x + v · p)}. (3·8) 

*> In order to avoid convergence problems, we restrict ourselves to iJ's such that !J(u, v) has 
no zeros. 
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1710 G. J. Ruggeri 

Here, the operator in the left-hand side is obtained from the exponential by 

putting .X and p in the order ()) without using the commutation relations. It is 
then obvious from (3 · 7) that A a (x, p) is obtained from the (})-ordered expression 

of A by simply making the formal replacement .x~x and _p~p. Conversely, for 

every suitable restricted Q(u, v) we can define a generalized order, and an as

sociated mapping rule, in such a way that (3 · 4) holds identically. This is es

sentially the procedure followed by Agarwal and W ol£.10) It is then clear that 

the formal structure of the ordering techniques developed in that work follows 

naturally from very general in variance principles.*) 

Furthermore, from Eqs. (2 · 7), (3 · 2), (3 · 3) and (3 · 7) it follows that 

Aa(x,p) = Tr{AD(x,p)Q' .Dt(x, p)} ==Tr{AQ' (x,p)}, (3·9) 

where Q' Is the operator such that Q'(u,v)=Q-1 (u,v). Comparing (2·6) and 

(3·9) with Eqs. (10·4) and (10·8) of Ref. 11b) we conclude that the X and 
Y operators of that work are here ju.st Q' (x, p) and Q (x, p). 

A problem of interest which is conveniently studied starting from Eq. (3 · 7) 

is the structure of the mapping of quantum operators algebra onto the set of 
phase-space functions.7)' 17

),ls),2.2.) To see the general form of this mapping which 

emerges here, we need an expression for the phase-space representative of a 

product AB. This is obtained directly from (3 · 7) as 

AB = (2n)- 12 S d 8u1d 8v1d8u2d 8v2AFP (uh v1) BFa (u2, v2) Q(uh v1) 

x!J(u2,v2)exp{i[(u1+u2) ·x+ (v1+v2) · p 
+ (1j2)h(u1·v2-u2·v1)]}, 

where (2 · 9c) has been used. Then by (3 · 7) 

(AB) 0 = (2n)-12 J d 8u1d 8u2d 3v1d 8v2A/J (uh v1) BF0 (u2, v2) 

X Q(uh v1) !2(u2, v2) Q-1 (u1 + u2, V1 + v2) 

xexp{i[(u1+u2) ·x+ (v1+v2) ·p 

+ (1/2) h (u1 · V2- u2 · v1)]}. 

(3 ·10) 

(3·11) 

A significant feature of (3 ·11) is that it permits one to define, in the set of 
phase-space functions, a non-commutative algebra isomorphic to the quantum op

erators algebra. In fact, define the *-product by 

A*B =right-hand side of (3 ·11). 

As expected, and as it can be verified by a lengthy but straightforward calcu-

*) In view of this, many of the relations found there are equally valid here. Complete equiv
alence does not exist, however, because the set of restrictions imposed to !J (u, v) by Agarwal and 
Wolf is not the same as ours (see last footnote in § 2). 
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On Phase-Space Description of Quantum Mechanics 1711 

lation, this product is associative. As it is obviously distributive, we see then 
that the bracket A*B- B*A is a Lie product for an ample class of SJ's. In fact, 
a form identical to the right-hand side of (3 ·11) has been recently found by 
Simoni, Sudarshan and Zaccaria22

) who searched for general associative products 
between phase-space functions. Note, however, that the assumptions of that work 

are not identical to ours. 

§ 4. Dynamics 

For completeness sake we now consider very briefly the dynamical aspects 
of the theory.s),lo) Again we shall only quote the results. 

There are two evolution equations to consider: that of the Heisenberg pic
ture of f1 (x, p), which we denote by f1 (x, p; t), and that of the SJ-representative 
A Q (x, p; t) of A, considered also in the Heisenberg picture. These equations 

fall in the forms (cf. Eq. (5 ·1) in Ref. 8)) 

where 

(8 jat) f1 (x, p; t) = LQ (x, p; t), 

L= (2/h)HQ(x, p)Q( -/::Jx, -iV 11)Q(iVx+ iVx, iV 11 + iV 11 ) 

X Q-1 (iV x, t::J 11 ) sin { (h/2) (V x • V 11 - V 11 • V x)}, 

(4 ·1a) 

(4·1b) 

(4 ·2a) 

M= (2/h)HQ(x, p)Q( -iVx, -iV 11)Q- 1
( -iVx-iVx, -iV 11 -{f/ p) 

X Q( -iVx, -iV p) sin{ (h/2) (Vx· V 11 - V 11 • Vx)}. (4·2b) 

The equation of motion for FQ follows from ( 4 · 2a) by taking the mean value 

of ( 4 ·1a). 
Due to the form of Q(u, v) and the fact that Tr (Qx) = Tr (Q p) = 0, from 

parity invariance, it is certain that for any positive-definite f1 

lim Q(u, v) = 1 (4·3) 
h->0 

and then, the operators L and M tend to the classical expression m this limit, 
namely, Poisson-Bracket operator.*) In this limit FQ (x, p; t) ~o<3) (x- Xc (t)) o<3

) (p 
- pc (t)), where Xc (t) = limh_,o(?f, tjxj ?Jl, t) and Pc (t) = limh_,o(?F, tj .PI ?F, t). 

Conclusions. This work has been devoted to studying the general form of 
phasespace distribution function which emerges when one imposes, essentially, 
the requisite of physical equivalence of inertial frames of reference. We can say 
that the whole possible set of phase-space description schemes has been restricted 
in the more physically meaningful way by these symmetry requirements. As 
expected, the resulting scheme is, simultaneously, strongly determined and suf
ficiently broad to permit many particular solutions. 

*) This, of course, is also valid for some non-positive ii's. 
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