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Abstract. We describe the problem of recognition under changing illumination conditions and changing viewing
positions from a computational and human vision perspective. On the computational side we focus on the math-
ematical problems of creating an equivalence class for images of the same 3D object undergoing certain groups
of transformations—mostly those due to changing illumination, and briefly discuss those due to changing viewing
positions. The computational treatment culminates in proposing a simple scheme for recognizing, via alignment,
an image of a familiar object taken from a novel viewing position and a novel illumination condition. On the human
vision aspect, the paper is motivated by empirical evidence inspired by Mooney images of faces that suggest a
relatively high level of visual processing is involved in compensating for photometric sources of variability, and
furthermore, that certain limitations on the admissible representations of image information may exist. The psy-
chophysical observations and the computational results that follow agree in several important respects, such as the
same (apparent) limitations on image representations.

1. Introduction

The problem of visual recognition is one of the well
known challenges to researchers in human and ma-
chine vision. The task seems very easy and natural for
biological systems, yet has proven to be very difficult
to place within a comprehensive analytic framework.
Some of the difficulties arise due to a lack of a widely
accepted definition of what the problem is. For exam-
ple, one can easily recognize scenes (such as a highway
scene, city scene, restaurant scene, and so forth) (Potter,
1975) without an apparent need to recognize individual
objects in the scene, nor to have a detailed recollection
of the spatial layout of “things” in the scene. In this
case it seems that some form of statistical regularity of
scenes of a specific type is exploited, rather than what
we normally associate with the task of “recognizing
an object”. Other difficulties arise due to hard mathe-
matical problems in understanding the relationship be-
tween 3D objects and their images. For example, as we
move our eyes, change position relative to the object,
or move the object relative to ourselves, the image of
the object undergoes change. Some of these changes
are intuitive and include displacement and/or rotation

in the image plane, but in general the changes are far
from obvious. If the illumination conditions change,
that is, the level of illumination, as well as the positions
and distributions of light sources, then the image of the
object changes as well. The light intensity distribution
changes, and shadows and highlights may change their
position.

In this paper we focus on the mathematical problems
of creating an equivalence class for images of the same
3D object undergoing a certain group of changes. Be-
fore narrowing further the scope of discussion it may
be worthwhile to consider further the types of “sources
of variability” that are of general interest in recognition
of individual objects. Following the seminal work of
(Ullman, 1986), we distinguish four general sources of
variability:

• Photometric: Changes in the light intensity dis-
tribution as a result of changing the illumination
conditions.
• Geometric: Changes in the spatial location of image

information as a result of a relative change of viewing
position.
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• Varying Context: Objects rarely appear in isolation
and a typical image contains multiple objects that are
next to each other or partially occluding each other.
Changes in the image can, therefore, occur by chang-
ing the context without applying any transformation
to the object itself.
• Non-rigid Object Characteristics: These include ob-

jects changing shape (such as facial expressions),
objects having movable parts (like scissors), and so
forth.

The photometric source of variability has to do with
the relation between objects and the images they pro-
duce under changing conditions of illumination, i.e.,
changing the level of illumination, direction and num-
ber of light sources. This has the effect of changing the
light intensity distribution in the image and the location
of shadows and highlights. We will examine this issue
later in the paper.

The geometric source of variability has to do with
the geometric relation between rigid objects and their
perspective images produced under changing viewing
positions (relative motion between the viewer and the
object). This is probably the most emphasized source
of variability in computer vision circles and has re-
ceived much attention in the context of recognition,
structure from motion, visual navigation, and recently
in the body of research on geometric invariants (e.g.,
(Mundy and Zisserman, 1992; Mundy et al., 1994)).
We note that even relatively small changes in viewing
position between two images of the same object often
create a real problem in matching the two against each
other. Figure 1 illustrates this point by superimposing
two edge images of a face separated by a relatively
small rotation around the vertical axis. We will discuss

Figure 1. Demonstrating the effects of changing viewing position
on the matching process. The difficulty of matching two different
views can be illustrated by superimposing the two. One can see
that, even for relatively small changes in viewing position, it could
be very difficult to determine whether the two views come from
the same face without first compensating for the effects of viewing
transformation.

geometric issues of recognition later in Section 6, but
for the most part of this paper we will focus only on
the photometric source of variability.

The third source of variability has to do with the
effect of varying context. A typical image often con-
tains multiple objects that are next to each other, or
partially occluding each other. If we attempt to com-
pare the entire image (containing a familiar object) to
the model representation of an object in question, then
we are unlikely to have a match between the two. The
problem of varying context is, therefore, a question
of how the image representation of an object (say its
contours) can be separated from the rest of the im-
age before we have identified the object. The prob-
lem is difficult and is often referred to as the problem
of “segmentation”, “grouping” or “selection”. In the
context of achieving recognition the crucial question
is whether the problem of context can be approached
in a bottom-up manner, i.e., irrespective of the object
to be recognized, or whether it requires top-down pro-
cesses as well. It appears that in some cases in hu-
man vision the processes for performing grouping and
segmentation cannot be isolated from the recognition
process. In some well known examples, such as R.C.
James’ image of a Dalmation dog (see, (Marr, 1982)),
it appears unlikely that the image of the object can
be separated from the rest of the image based on im-
age properties alone and, therefore, some knowledge
about the specific class of objects is required to interpret
the image.

Human vision, however, appears also to contain re-
latively elaborate processes that perform grouping and
segmentation solely on a data-driven basis independent
of subsequent recognition processes. For example,
Kinsbourne and Warrington (1962), cited in (Farah,
1990) report that patients with lessions in the left infe-
rior temporo-occipital region are generally able to rec-
ognize single objects, but do poorly when more than
one object is present in the scene. Another line of
evidence comes from displays containing occlusions.
The occluding stimuli, when made explicit, seem to
stimulate an automatic ‘grouping’ process that groups
together different parts of the same object (Nakayama
et al., 1989). The third line of evidence comes from
‘saliency’ displays in which structures, not necessarily
recognizable ones, are shown against a complex back-
ground. Some examples are shown in Fig. 2. In these
displays, the figure-like structures seem to be detected
immediately despite the lack of any apparent local
distinguishing cues, such as local orientation, contrast
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Figure 2. Structural-saliency displays. The figure like structures seem to ‘pop-up’ from the display, despite the lack of any apparent local
distinguishing cues, such as local orientation, contrast and curvature (Shashua and Ullman, 1988).

and curvature (Shashua and Ullman, 1988, 1991). We
will not consider further the problem of varying con-
text, and assume instead that the region in the image
containing the object has been isolated for purposes of
recognition.

The fourth source of variability has to do with objects
changing their shape. These include objects with mov-
able parts (such as the human body) and flexible objects
(for example, a face where the changes in shape are in-
duced by facial expressions). This source of variability
is geometrical, but unlike changing viewing positions,
the geometric relation between objects and their im-
ages has less to do with issues of projective geometry
and more to do with defining the space of admissible
transformations in object space.

Our primary focus will be on the photometric source
of variability, with some discussion on the geometric
source. We discuss next in more detail the issues related
to changing illumination in visual recognition.

2. The Photometric Source of Variability
and Its Impact on Visual Recognition

The problem of varying illumination conditions, or
the photometric source of variability as we refer to it
here, raises the question of whether the problem can
be isolated and dealt with independently of subsequent
recognition processes, or whether it is coupled with the
recognition process.

It appears that in some cases in human vision the
effects of illumination are factored out at a relatively
early stage of visual processing and independently of
subsequent recognition processes. A well known ex-
ample is the phenomenon of lightness and color con-
stancy. In human vision the color of an object, or its
greyness, is determined primarily by it’s reflectance
curve, not by the actual wavelengths that reach the
observer’s eye. This property of the visual system
is not completely robust as it is known, for exam-
ple, that fluorescent lighting alters our perception of
colors. Nevertheless, this property appears to sug-
gest that illumination is being factored out at an early
stage prior to recognition. Early experiments that were
used to demonstrate this used simple displays such as a
planar ensemble of rectangular color patches, named
after Mondrians’ paintings, or comparisons among
Munsel chips (Land and McCann, 1971). More re-
cent psychophysical experiments demonstrated the ef-
fect of 3D structure on the perception of color and
lightness (Gilchrist, 1979; Knill and Kersten, 1991).
These experiments show that the perception of light-
ness changes with the perceived shape of the object.
The objects that were used for these experiments are
relatively simple, such as cylinders, polyhedrons and so
forth. It is therefore conceivable that the 3D structure
of the object displayed in these kinds of experiments
can be re-constructed on the basis of image proper-
ties alone after which illumination effects can be fac-
tored out.
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Another example of factoring out the illumination at
an early stage, prior to and independently of recogni-
tion, is the use of edge detection. Edge detection is the
most dominant approach to the problem of changing
illumination and is based on recovering features from
the image that are invariant to changes of illumina-
tion. The best known example of such features are
step edges, i.e., contours where the light intensity
changes relatively abruptly from one level to another.
Such edges are often associated with object bound-
aries, changes in surface orientation, or material pro-
perties (Marr, 1976; Marr and Hildreth, 1980). Edge
images contain most of the relevant information in the
original grey-level image in cases where the informa-
tion is mostly contained in changing surface material,
in sharp changes in surface depth and/or orientation,
and in surface texture, color, or greyness. In terms of
3D shape, these are characteristics of relatively simple
objects. Therefore, the edges of simple objects are re-
latively informative (or recognizable) and will change
only slightly when the illumination conditions change.

Many natural objects have a more complex struc-
ture, however: surface patches do not change orien-
tation abruptly but rather smoothly. In this case, step
edges may not be an ideal representation for two rea-
sons: the edge image may not necessarily contain most
of the relevant information in the grey-level image, and
not all edges are stable with respect to changing illumi-
nation. For example, edges that correspond to surface
inflections in depth are actually “phantom” edges and
depend on the direction of light source (Moses, 1993).

Alternative edge detectors prompted by the need
for more recognizable or more stable contour images
search instead for extremal points of the light inten-
sity distribution, known as valleys and ridges, or build
up a “composite” edge representation made out of the
union of step edges, valleys, and ridges (Freeman and
Adelson, 1991; Morrone and Burr, 1988; Pearson et al.,
1986; Perona and Malik, 1990). The composite edge
images do not necessarily contain the subset of edges
that are stable against changing illumination; they gen-
erally look better than step edges alone, but that varies
considerably depending on the specific object.

The process of edge detection, producing step edges,
ridges, valleys, and composite edge images, is illus-
trated in Figs. 3 and 4. In Fig. 3 three ‘Ken’ doll images
are shown, each taken under a distinct illumination con-
dition, with their corresponding step edges. In Fig. 4
the ridges, valleys, and the composite edge images
of the three original images are shown (produced by

Figure 3. Grey-scale images of ‘Ken’ taken from three different
illumination conditions. The bottom row shows the step edges de-
tected by local energy measures followed by hysteresis (Freeman
and Adelson, 1991). The step edges look very similar to the ones
produced by Canny’s edge detection scheme.

Figure 4. Valleys, ridges, and composite contour images produced
by Freeman’s contour detection method applied to the three images
of the previous figure.

Freeman and Adelson’s (1991) edge and line detec-
tor). These results show the invariance of edges are
not complete; some edges appear or disappear, some
change location, and spurious edges result from shad-
ows (especially attached shadows), specularities, and
so forth.

The ‘Ken’ images and their edge representations also
demonstrate the practical side of the problem of recog-
nition under changing illumination conditions. The
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Figure 5. Images of ‘Ken’ taken from different illumination con-
ditions followed by a thresholding operation. The recognizability of
the thresholded images suggests that some knowledge about objects
is required in order to factor out the illumination, and specifically
that the image we are looking at is an image of a face.

images appear different to the degree that a tem-
plate match between any two of them is not likely to
succeed without first compensating for the changing
illumination.

Human vision appears also to contain processes that
factor out the effect of illumination during the recogni-
tion process. In other words, the image and the model
are coupled together early on in the stages of visual pro-
cessing. Consider, for example, the images displayed
in Fig. 5. The images are of ‘Ken’ lit by two different
illumination conditions, and thresholded by an arbi-
trary value. The thresholded images appear to be re-
cognizable, at least in the sense that one can clearly
identify the image as containing a face. Because the
appearance of the thresholded images critically rely
on the illumination conditions, it appears unlikely that
recognition in this case is based on the input properties
alone. Some knowledge about objects (specifically that
we are looking at the image of a face) may be required
in order to factor out the illumination.

Thresholded images are familiar in psychological
circles, but less so in computational. A well-known ex-
ample is the set of thresholded face images produced
by Mooney (1960) for clinical recognizability tests,
known as the closure faces test, in which patients had to
sort the pictures into general classes that include: boy,
girl, grown-up man or woman, old man or woman, and
so forth. An example of Mooney’s pictures are shown

Figure 6. Mooney faces and their level-crossings.

Figure 7. A less interpretable Mooney picture and its level-
crossings.

in Fig. 6. Most of the control subjects could easily la-
bel most of the pictures correctly. Some of Mooney’s
pictures are less interpretable (for example, Fig. 7), but
as a general phenomenon it seems remarkable that a
vivid visual interpretation is possible from what seems
an ambiguous collection of binary patches that do not
bear a particularly strong relationship to surface struc-
ture or other surface properties.

Mooney images are sometimes referred to as re-
presenting the phenomenon of “shape from shadows”
(Cavanagh, 1990). Although some Mooney images do
contain cast shadows, the phenomenon is not limited to
the difficulty of separating shadow borders from object
contours. The thresholded image shown in Fig. 8, for
example, is not less difficult to account for in compu-
tational terms, yet the original image was not lit in a
way to create cast or attached shadows.

These kind of images appear also to indicate that in
some cases in human vision the interpretation process
involves more than just contours. It is evident that the
contours (level-crossings) alone are not interpretable,
as can be seen with the original Mooney pictures and



       
P1: BPS/KLK P2: BPS/SCM P3: RBA/BS QC: P1: BPS/KLK P2: BPS/BS P3: RBA/BS QC:

International Journal of Computer Vision 05-Shashua January 16, 1997 12:12

104 Shashua

Figure 8. Top row: a ‘Ken’ image represented by grey-levels, the
same image followed by a threshold, the level-crossings of the thresh-
olded image. The thresholded image shown in the center display is
difficult to account for in computational terms, yet the original image
was not lit in a way to create cast or attached shadows.Bottom row:
the sign-bits of the Laplacian of Gaussian operator applied to the
original image, and its zero-crossings (step edges). Interpretability
of the sign-bit image is considerably better than the interpretability
of the zero-crossings.

with the level-crossing image in Fig. 8. It seems that
only when the distinction of what regions are above
the threshold and what are below the threshold is made
clear (we refer to that as adding “sign-bits”) does the
resulting image become interpretable. This appears to
be true not only for thresholded images but also for step
edges and their sign-bits (see Fig. 8, bottom row).

It appears, therefore, that in some cases in human
vision the illumination is factored out within the recog-
nition process using top-down information and that the
process responsible apparently requires more than just
contours—but not much more. We refer from here on to
the Mooney-kind of images as reduced images. From
a computational standpoint we will be interested not
only in factoring out the illumination, in a model-based
approach, but also in doing so from reduced images.

3. Problem Scope

The recognition problem we consider is that of identi-
fying an image of an arbitrary individual 3D object. We
allow the object to be viewed from arbitrary viewing
positions and to be illuminated by an arbitrary setting
of light sources. We assume that the image of the ob-
ject is already separated from the rest of the image,
but may have missing parts (for example, as caused by
occlusion).

We adopt the alignment methodology, which de-
fines “success” as the ability to exactly re-construct

the input image representation of the object (possi-
bly viewed under novel viewing and illumination con-
ditions) from the model representation of the object
stored in memory. Alignment has been studied in the
past for compensating for changes of viewing positions
and the method is typically realized by storing a few
number of “model” views (two, for example), or a 3D
model of the object, and with the help of correspond-
ing points between the model and any novel input view,
the object is “re-projected” onto the novel viewing po-
sition. Recognition is achieved if the re-projected im-
age is successfully matched against the input image
(Fischler and Bolles, 1981; Huttenlocher and Ullman,
1990; Lowe, 1985; Ullman, 1986; Ullman and Basri,
1989). Our approach is to apply the basic concept
of alignment onto the photometric domain, and then
combine both sources of variability into a single align-
ment framework that can deal with both changes due to
geometry and photometry occurring simultaneously.

The basic method, we callphotometric alignment,
for compensating for the effects of illumination during
recognition is introduced next. The method is based
on a result that three images of the surface provide
a basis that spans all other images of the surface
(same viewing position, but changing illumination con-
ditions). The photometric problem of recognition is,
therefore, reduced to the problem of determining the
linear coefficients—which is conceptually similar to
the idea of Ullman and Basri (1989) in the geomet-
ric context. We then extend the basic method to deal
with situations of recognition from reduced image re-
presentations with results that appear to agree with the
empirical observation made earlier that sign-bits ap-
pear to be sufficient for visual interpretation, whereas
edges alone do not.

4. Photometric Alignment

The basic approach is based on finding an algebraic
connection between all images of an object taken under
varying illumination conditions. We start by defining
the family of surface reflectance functions for which
our results will hold:

Definition. An orderk Linear Reflectance Model is
defined as the scalar productx · a, wherex is a vec-
tor in k-dimensional Euclidean space of invariant sur-
face properties (such as surface normal, surface albedo,
and so forth), anda is an arbitrary vector (of the same
dimension).
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The Lambertian model of reflection is an obvious
case of an order 3 linear reflectance model. The grey-
value, I (p), at location p in the image can be re-
presented by the scalar product of the surface normal
vector and the light source vector,

I (p) = np · s.

Here the length of the surface normalnp represents
the surface albedo (a scalar ranging from zero to one).
The length of the light source vectorsrepresents a mix-
ture of the spectral response of the image filters, and the
spectral composition of light sources—both of which
are assumed to be fixed for all images of the surface
(we assume for now that light sources can change direc-
tion and level of intensity but not spectral composition).

Another example of a linear reflectance model is the
image irradiance of a tilted Lambertian surface under
a hemispherical sky. Horn (1986, p. 234) shows that
the image irradiance equation isEδp cos2 α

2 , whereα
is the angle between the surface normal and the zenith,
E is the intensity of light source, andδp is the surface
albedo. The equation is an order 4 linear reflectance
function:

I (p) = 1

2
Eδp(1+ cosα) = np · s+ |np| · |s|

= (np, |np|)t (s, |s|),

wheresrepresents the direction of zenith, whose length
is E

2 .

Proposition 1. An image of an object with an order
k linear reflection model I(p) = x(p) ·a can be repre-
sented as a linear combination of a fixed set of k images
of the object.

Proof: Let a1, . . . ,ak be some arbitrary set of ba-
sis vectors that spank-dimensional Euclidean space.
The image intensityI (p) = x(p) · a is therefore repre-
sented by

I (p) = x(p)[α1a1+ · · · + αkak]

= α1I1(p)+ · · · + αk Ik(p),

whereα1, . . . , αk are the linear coefficients that repre-
senta with respect to the basis vectors, andI1, . . . , Ik

are thek imagesIk(p) = x(p) · ak. 2

To see the relevance of this proposition to visual
recognition, consider the case of a Lambertian surface

under a point light source (or multiple point light
sources). Assume we take three pictures of the object
I1, I2, I3 from light source directionss1, s2, s3, respec-
tively. The linear combination result is that any other
imageI of the object, taken from a novel setting of light
sources, is simply a linear combination of the three
pictures,

I (p) = α1I1(p)+ α2I2(p)+ α3I3(p),

for some coefficientsα1, α2, α3. The coefficients can
be solved by observing the grey-values of three points
providing three equations. Using more than three points
will provide a least squares solution. The solution is
unique provided thats1, s2, s3 are linearly independent,
and that the normal directions of the three sampled
points span all other surface normals (for a general
3D surface, for example, the three normals should be
linearly independent).

Alignment-based recognition under changing illu-
mination can proceed in the following way. The images
I1, . . . , Ik are the model images of the object (three for
Lambertian under point light sources). For any new
input imageI , rather than matching it directly to previ-
ously seen images (the model images), we first select a
number of points (at leastk) to solve for the coefficients,
and then synthesize an imageI ′ = α1I1 + · · · + αk Ik.
If the imageI is of the same object, and the only change
is in illumination, thenI andI ′ should perfectly match
(the matching is not necessarily done at the image in-
tensity level, one can match the edges ofI against the
edges ofI ′, for example). This procedure has factored
out the effects of changing illumination from the recog-
nition process without recovering scene information,
i.e., surface albedo or surface normal, and without as-
suming knowledge of direction of light sources. An-
other property of this method is that one can easily
find a least squares solution for the reconstruction of
the synthesized image, thereby being less sensitive to
errors in the model, or in the input.

We address below the problems that arise when some
of the objects points are occluded from some of the light
sources, and when the surface reflects light specularly.
We then extend the results to deal with cases of chang-
ing spectral composition of light sources.

4.1. Attached and Cast Shadows

We have practically assumed that surfaces are con-
vex because the linear combination result requires that
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points be visible to the light sources. In a general non-
convex surface, object points may be occluded from
some, or from all, the light sources. This situation gen-
erally leads to two types of shadows known as attached
and cast shadows. A pointP is in an attached shadow
if the angle between the surface normal and the direc-
tion of light source is obtuse (np · s < 0). An object
point P is in a cast shadow if it is obstructed from the
light source by another object or by part of the same
object. An attached shadow, therefore, lies directly on
the object, whereas cast shadows are thrown from one
object onto another, or from one part onto another of
the same object (such as when the nose casts a shadow
on the cheek under oblique illumination).

In the case of attached-shadows, a correct recon-
struction of the image grey-value atp does not re-
quire that the object pointP be visible to the light
sources, but only that it be visible to the light sources
s1, s2, s3. If P is not visible tos, then the linear com-
bination will produce a negative grey-value (because
np · s < 0), which can be set to 0 for purposes of
display or recognition.

If P is not visible to one of the model light sources,
says1, then the linear combination of the three model
images will produceI ′(p) under a light sources′ which
is the projection ofs onto the sub-space spanned by
s2, s3. This implies that photometric alignment would
perform best in the case where the novel direction of
light sources is within the cone of directionss1, s2, s3.

The remaining case is when the object pointP is
in a cast shadow region with respect to the novel light
directions. In this case there is no way to predict a
low, or zero, grey-value forI ′(p) and the reconstruc-
tion will not matchI (p) in that region. Therefore, cast
shadow regions in the novel image are not modeled in
this framework, and hence, the performance degrades
with increasing number and extent of cast-shadows in
the novel image.

With regard to human vision, there appears to be
a marked increase in difficulty in interpreting cast
shadows compared to attached shadows. Arnheim
(1954) discusses the effect of cast shadows on visual
perception, its relation to chiaroscuro in Renaissance
art, and its symbolism in various cultures. He points
out that cast shadows often interfere with the object’s
integrity, whereas attached shadows are often perceived
as an integral part of the object. The general observa-
tion is that the more the cast-shadow extends from the
part that throws it, the less meaningful is the connec-
tion made with the object. The interpretability of cast

shadows can be illustrated by ‘Ken’ images displayed
in Fig. 3. The three model images have extensive at-
tached shadows that appear naturally integrated with
the object. The cast shadow region thrown from the
nose in the image on the right appears less integrated
with the overall composition of the image.

In conclusion, attached shadows in the novel im-
age, or shadows in general in the model images, do
not have significant adverse effects on the photomet-
ric alignment scheme. Cast shadows in the novel im-
age, cannot be reconstructed or even approximated, and
therefore are not modeled in this framework. It may be
noted that apparently there is a perceptual difference
between attached and cast shadows, whereby the latter
may appear to be disconnected from the object upon
which they are cast.

4.2. Detecting and Removing Specular Reflections

The linear combination result and the photometric
alignment scheme that followed assume that objects
are matte. In general, inhomogeneous surfaces are
dominantly Lambertian, except for isolated regions that
are specularly reflecting light. In practice, if the spec-
ular component is ignored, the reconstructed image
contains the specular regions of all three model im-
ages combined together, and the specular regions of
the novel image are not reconstructed. For purposes
of recognition, as long as the specular regions are rel-
atively small, they do not seem to have a significant
adverse effect on the overall photometric alignment
scheme. Nevertheless, the alignment method can be
used to detect the specular regions and replace them
with the Lambertian reflectance provided that four
images are used.

The detection of specular points is based on the ob-
servation that if a point is in the specular lobe, then it is
likely to be so only in one of the images at most. This is
because the specular lobe occupies a region that falls off
exponentially from the specular direction. In general
we cannot detect the specular points by simply com-
paring grey-values in one image with the grey-values
of the same points in the other images because the in-
tensity of the light source may arbitrarily change from
one image to another.

By using Proposition 1, that is, the result that three
images uniquely determine the Lambertian component
of the fourth image, we can, thereby, compare the
reconstructed intensity of the fourth image with the
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observed intensity, and check for significant deviations.
For every pointp, we select the image with the highest
intensity, call itIs, and reconstructI ′s(p) from the other
three images (we recover the coefficients once, based
on points that are not likely to be specular or shadowed,
i.e., do not have an especially high or low intensity). If
Is(p) is in the specular lobe, thenI ′s(p) ¿ Is(p). To
avoid deviations that are a result of shadowed points,
we apply this procedure to points for which none of the
images has an especially low grey-value.

In practice we observe that the deviations that
occur at specular points are of an order of mag-
nitude higher than deviations anywhere else, which
makes it relatively easy to select a threshold for de-
ciding what is specular and what is not. A similar ap-
proach for detecting specular points was suggested by
(Coleman and Jain, 1982) based on photometric stereo
(Woodham, 1980). The idea is to have four images
and to reconstruct the normal at each point from every
subset of three images. If the point in question is not
significantly specular, then the reconstructed normals
should have the same direction and length, otherwise
the point is likely to be specular. Their method, how-
ever, requires knowledge of direction and intensity of
light sources, whereas in our method we do not.

4.3. Some Experiments

We used the three ‘Ken’ images displayed in Fig. 3 as
model images for the photometric alignment scheme.
The surface of the doll is non-convex and not purely
matte which gives rise to specular reflections and shad-
ows. The novel image (shown in Fig. 9) was taken us-
ing light source directions that were within the cone of
directions used to create the model images. In princi-
ple, one can use novel light source directions that are
outside the cone of directions, but that will increase the
likelihood of creating new cast shadow regions. The
reconstruction was based on a least squares solution
using eight points. The points were chosen automati-
cally by searching for smooth regions of image inten-
sity. The search was restricted to the area of the face,
not including the background. To minimize the chance
of selecting shadowed or specular points, a point was
considered as an admissible candidate if it was con-
tained in an 8× 8 sized smooth area, and its intensity
was not at the low or high end of the spectrum. We then
selected eight points that were widely separated from
each other. The reconstructed image (linear combina-
tion of the three model images) is displayed in Fig. 9

Figure 9. Reconstructing a novel image.Row1 (left to right): a
novel image taken from two point light sources, and the reconstructed
image (linear combination of the three model images).Row2: step
edges of the novel and reconstructed images.Row3: overlaying
both edge maps, and subtracting (xor operation) the edge maps from
each other. The difference between the images both at the grey-scale
and edge level is hardly noticeable.

together with its step edges. The novel and recon-
structed image are visually very similar at the grey-
value level, and even more so at the edge-map level.
The difference between the two edge maps is neg-
ligible and is mostly due to quantization of pixel
locations.

In conclusion, this result shows that for the pur-
poses of recognition, the existence of shadows and
(small) specular regions in the model images do not
have a significantly adverse effect on the reconstruc-
tion. Moreover, we did not use a matte surface for the
experiment, illustrating the point that plastic surfaces
are dominantly Lambertian, and therefore sufficiently
applicable to this method.

Figure 10 demonstrates the specular detection
scheme. The method appears to be successful in iden-
tifying small specular regions. Other schemes for
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Figure 10. Detecting and removing specular regions.Row1: the
image on the left is a novel image, and the one on the right is the
same image following the procedure for detecting and removing
the specular regions. The specular regions are replaced with the re-
constructed grey-value from the model images.Row2: the specular
regions that were detected from the image.

detecting specular regions using the dichromatic model
of reflection often require a relatively large region of
analysis and, therefore, would have difficulties in de-
tecting small specular regions (Klinker et al., 1990;
Shafer, 1985).

4.4. The Linear Combination of Color Bands

The photometric problem considered so far involved
only changes in direction and intensity of light sources,
but not changes in their spectral compositions. Light
sources that change their spectral composition are com-
mon as, for example, sunlight changes its spectral com-
position depending on the time of day (because of
scattering). The implication for recognition, however,
is not entirely clear because there may be an adap-
tation factor involved rather than an explicit process
of eliminating the effects of illumination. Adaptation
is not a possibility when it comes to changing direc-
tion of light source, because objects are free to move
in space and hence change their positions with re-
spect to the light sources. Nevertheless, it is of interest
to explore the possibility of compensating for chang-
ing spectral composition as well as direction of light
sources.

We assume, for reasons that will be detailed below,
that our surface is eitherneutral, or is of the same
color, but may change in luminosity. A neutral sur-
face is a grey-scale surface only affecting the scale of
light falling on the surface, but not its spectral com-
position. For example, the shades of grey from white
to black are all neutral. Note that the assumption is
weaker than the uniform albedo assumption because
we allow change in luminosity, but is less general
than what we had previously because we do not al-
low changes in hue or saturation to occur across the
surface. We also assume that our model of the object
consists of a single color image obtained by overlaying
three color images of the object each taken from a dis-
tinct direction of light source having a distinct spectral
composition.

Let Ir , Ig, Ib be the three color bands that together
define the color picture. Letδpρ(λ) be the surface
reflectance function, whereδp is the surface albedo
andρ(λ) is the spectral reflectance function of wave-
length λ. Note that the neutral surface assumption
means that across the surfaceρ(λ) is fixed, butδp

may change arbitrarily. LetS1(λ), S2(λ), S3(λ) be the
spectral composition of the three light sources, and
s1, s2, s3 be their directions. As before, we require
that the directions be non-coplanar, and that the spec-
tral compositions be different from each other. This,
however, does not mean that the three spectral func-
tions should form a basis (such as required in some
color constancy models (Maloney and Wandell, 1986)).
Finally, let Rr (λ), Rg(λ), Rb(λ) be the spectral sen-
sitivity functions of the three CCD filters (or retinal
cones). The composite color picture (taking the picture
separately under each light source, and then combining
the results) is, therefore, determined by the following
equation:

 Ir (p)

Ig(p)

Ib(p)

 =

∫
S1(λ)ρ(λ)Rr (λ)dλ∫
S1(λ)ρ(λ)Rg(λ)dλ∫
S1(λ)ρ(λ)Rb(λ)dλ

 np · s1

+


∫
S2(λ)ρ(λ)Rr (λ)dλ∫
S2(λ)ρ(λ)Rg(λ)dλ∫
S2(λ)ρ(λ)Rb(λ)dλ

 np · s2

+


∫
S3(λ)ρ(λ)Rr (λ)dλ∫
S3(λ)ρ(λ)Rg(λ)dλ∫
S3(λ)ρ(λ)Rb(λ)dλ

 np · s3,
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where the length ofnp is δp. This can re-written in
matrix form, as follows: Ir (p)

Ig(p)
Ib(p)

 =
 v1

v2

v3

 np · s1+
u1

u2

u3

 np · s2

+
w1

w2

w3

 np · s3

= [v, u,w]

s1

s2

s3

 np = Anp.

The 3× 3 matrix [v, u,w] is assumed to be non-
singular (for that reason we required that the spectral
composition of light sources be different from one an-
other), and therefore the matrixA is also non-singular.
Note that because of the assumption that the surface is
neutral, the matrixA is independent of position. Con-
sider any novel image of the same surface, taken under
a new direction of light source with a possible dif-
ferent spectral composition. Let the novel picture be
Jr , Jg, Jb. The red color band, for instance, can be
represented as a linear combination of the three color
bandsIr , Ig, Ib, as follows:

Jr (p) =
[∫

S(λ)ρ(λ)Rr (λ)dλ

]
np · s

= np · (α1A1+ α2A2+ α3A3)

= α1Ir (p)+ α2Ig(p)+ α3Ib(p)

where A1, A2, A3 are the rows of the matrixA. Be-
causeA is non-singular, the row vectors form a basis
that spans the vector [

∫
S(λ)ρ(λ)Rr (λ)dλ]swith some

coefficientsα1, α2, α3. These coefficients are fixed for
all points in the red color band because the scale∫
S(λ)ρ(λ)Rr (λ)dλ is independent of position (the neu-

tral surface albedoδp is associated with the length of
np). Similarly the remaining color bandsJg, Jb are also
represented as a linear combination ofIr , Ig, Ib, but
with different coefficients. We have, therefore, arrived
at the following result:

Proposition 2. An image of a Lambertian object with
a neutral surface reflectance(grey-scale surface) taken
under an arbitrary point light source condition(in-
tensity, direction and spectral composition of light
source) can be represented as a linear combination
of the three color bands of a model picture of the same
object taken under three point light sources having

different (non-coplanar) directions and different
spectral composition.

For a neutral surface, the linear combination of color
bands can span only images of the same surface with
the same hue and saturation under varying illumina-
tion conditions. The combination of color bands of a
non-neutral surface spans the space of illuminationand
color (hue and saturation). That is, two surfaces with
the same structure but with different hue and saturation
levels, are considered the same under the photometric
alignment scheme.

5. Photometric Alignment with Reduced Images

We have seen in Section 2 empirical evidence to
suggest that in some cases the process responsible for
factoring out the illumination during the recognition
process appears to require more than just contour in-
formation, but just slightly more. So far we proposed a
scheme which can directly factor out the illumination
during the model-to-image matching stage by using the
information contained in the grey-values of the model
and novel images.

In this section we explore the possibilities of us-
ing less than grey-values for purposes of factoring out
the illumination. In other words, since the photomet-
ric alignment method is essentially about recovering
the linear coefficients that represent the novel image as
a linear combination of the three model images, then
the question is whether those coefficients can be re-
covered by observing more reduced representations of
the novel image, such as edges, edges and gradients,
sign-bits, and so forth. Specifically, we are most inter-
ested in making a computational connection with the
empirical observation that sign-bits appear to be suf-
ficient for visual interpretation, whereas edges alone
are not.

The proposition below shows that in principle the
level-crossing or zero-crossing contours of the novel
image are theoretically sufficient for recovering the lin-
ear coefficients for combining the model images.

Proposition 3. The coefficients that span an image I
from three model images, as described in Proposition1
can be solved, up to a common scale factor, from just
the contours of I, zero-crossings or level-crossings.

Proof: Let α j be the coefficients that spanI by the
basis imagesI j , j = 1, 2, 3, i.e., I = ∑

j α j I j . Let
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f, f j be the result of applying a Laplacian of Gaus-
sian (LOG) operator, with the same scale, on im-
agesI , I j , j = 1, 2, 3. Since LOG is a linear op-
erator we havef = ∑

j α j f j . Since f (p) = 0
along zero-crossing pointsp of I , then by taking three
zero-crossing points, which are not on a cast shadow
border and whose corresponding surface normals are
non-coplanar, we get a homogeneous set of equations
from which α j can be solved up to a common scale
factor.

Similarly, let k be an unknown threshold applied
to I . Therefore, along level crossings ofI we have
k =∑ j α j I j ; hence four level-crossing points that are
visible to all four light sources are sufficient for solving
α j andk. 2

The result is that in principle we could cancel the
effects of illumination directly from the zero-crossings
(or level-crossings) of the novel image instead of from
the raw grey-values of the novel image. Note that the
model images are represented as before by grey-values.
Because the model images are taken only once, it is
not unreasonable to assume more strict requirements
on the quality of those images. We therefore make a
distinction between the model acquisition, or learning,
phase for which grey-values are used and the recog-
nition phase for which a reduced representation of the
novel image is being used.

The result that contours may be used instead of
grey-values is not surprising at a theoretical level, con-
sidering the literature of image compression. Under
certain restrictions on the class of signals, it is known
that the zero-crossings form a complete representa-
tion of an arbitrary signal of that class. The case of
one-dimensional bandpass signals, with certain condi-
tions on the signals’ Hilbert transform, is provided by
(Logan, 1977). The more general case is approached
by assuming the signal can be represented as a finite
complex polynomial (Curtis et al., 1985; Sanz and
Huang, 1989). Complex polynomials have the well
known property that they are fully determined by their
analytic varieties (curves in the one-dimensional case)
using analytic continuation methods (see for example,
(Saff and Snider, 1976)). It is well known that ana-
lytic continuation is an unstable process (Hille, 1962)
and therefore, the reconstruction of the image from its
zero-crossings is likely to be unstable. Curtis et al.
(1985) report, for instance, that zero-crossings must be
recorded with great precision, at sub-pixel accuracy of
14 digits.

The result of Proposition 3 can be viewed as a model-
based reconstruction theorem, that applies to a much
less restricted class of signals (images do not have to
be bandpass, for instance). The process is much sim-
pler, but on the other hand it is restricted to a specific
model undergoing a restricted group of transformations
(changing illumination). The simplicity of the model-
based reconstruction, however, is not of great help in
circumventing the problem of instability. Stability de-
pends on whether contours are recorded accurately and
whether those contours are invariant across the model
images.

The assumption that the value off at a zero-crossing
location p is zero, is true for a subpixel locationp.
In other words, it is unlikely thatf (p) = 0 for some
integral locationp. This introduces, therefore, a source
of error whose magnitude depends on the ‘strength’ of
the edge that gives rise to the zero-crossing in the signal
f , that is, the sharper and stronger the discontinuity in
image intensities along an edge in the imageI is, the
larger the variance aroundf (p). This suggests that
‘weak’ edges should be sampled, with more or less
the same strength, so that by sampling more than the
minimum required number of points, the error could
be canceled by a least squares solution.

The second source of error has to do with the sta-
bility of the particular edge under changing illumina-
tion. Assume, for example, that the zero-crossing at
p (recorded accurately) is a result of a sharp change
in surface reflectance. Although the image intensity
distribution aroundp changes across the model im-
ages, the location of the discontinuity does not, i.e.,
the zero-crossing is stable. In this case we have that
f (p) = f j (p) = 0, j = 1, 2, 3. Therefore, such a
point will not contribute any information if recorded
accurately and will contribute pure noise if recorded
with less than the required degree of accuracy. This
finding suggests, therefore, that zero-crossings should
be sampled along attached shadow contours or along
valleys and ridges of image intensities (a valley or a
ridge gives rise to two unstable zero-crossings (Moses,
1993)).

The situation with reconstruction from level-
crossings is slightly different. The first source of er-
ror, related to the accuracy in recording the location
of level-crossings, still applies, but the second source
does not. In general, the variance in intensity around a
level crossing pointp is not as high as the variance
around an edge point. A random sampling of points for
a least squares solution is not likely to have a zero mean
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error, however, and the mean error would therefore be
absorbed in the unknown thresholdk. The least squares
solution would be biased towards a zero mean error so-
lution that will affect both the recovered threshold and
the linear coefficientsα j . The solution, therefore, does
not necessarily consist of a correct set of coefficients
and a slightly off thresholdk, but a mixture of both in-
accurate coefficients and an inaccurate threshold. This
implies that level-crossings should be sampled at loca-
tions that do not correspond to zero-crossings in order
to minimize the magnitude of errors.

To summarize, the reconstruction of the novel im-
age from three model images and the contours of the
novel image is possible in principle. In the case of both
zero-crossings and level-crossings, the locations of the
contours must be recorded at sub-pixel accuracy. In
the case of zero-crossings, another source of potential
error arises, which is related to the stability of the zero-
crossing location under changing illumination. There-
fore, a stable reconstruction requires a sample of points
along weak edges that correspond to attached shadow
contours or to ridges and valleys of intensity. Alterna-
tively, the locations of contour points must be recorded
at sub-pixel accuracy, given also that the sample is large
enough to contain unstable points with respect to illu-
mination. Experimental results show that a random
sample of ten points (spread evenly all over the object)
with accuracy of two digits for zero-crossings and one
digit for level-crossings is sufficient to produce results
comparable to those produced from sampling image
intensities directly. The performance with integral lo-
cations of points sampled over edgesp that have no
corresponding edges in a 3× 3 window aroundp in
any of the model images was not satisfactory.

These results show that reconstruction from contours
does not appear to be generally useful for the photo-
metric alignment scheme because of its potential insta-
bility. It is also important to note that in these experi-
ments the viewing position is fixed, thereby eliminating
the correspondence problem that would arise otherwise
and would most likely increase the magnitude of errors.

5.1. Photometric Alignment from Contours
and Gradients

When zero-crossings are supplemented with gradient
data, the reconstruction does no longer suffer from the
two sources of errors that were discussed in the previ-
ous section. We can use gradient data to solve for the
coefficients, because the operation of taking derivatives

(continuous and discrete) is linear and therefore leaves
the coefficients unchanged. The accuracy requirement
is relaxed because the gradient data is associated with
the integral location of contour points, not with their
sub-pixel location. Stable zero-crossings do not af-
fect the reconstruction, because the gradient depends
on the distribution of grey-values in the neighborhood
of the zero-crossing, and the distribution changes with
a change in illumination (even though the location of
the zero-crossing may not change).

Errors, however, may be more noticeable once we
allow changes in viewing positions in addition to
changes in illumination. Changes in viewing positions
may introduce errors in matching edge points across
images. Because the change in image intensity dis-
tribution around an edge point is localized and may
change significantly at nearby points, then errors in
matching edge points across the model images may
lead to significant errors in the contribution those points
make to the system of equations.

5.2. Photometric Alignment from Sign-Bits

Reconstruction from contours, general or model-based,
appears to rely on the accurate location of contours.
This reliance, however, seems to be at odds with the
intuitive interpretation of Mooney-type pictures, like
those in Figs. 6. These images suggest that, instead of
contours being the primary vehicle for shape interpreta-
tion, the regions bounded by the contours (the sign-bit
regions) are primarily responsible for the interpreta-
tion process. Thus instead of a contour-based tech-
nique we investigate below an area-based technique
arising from the use of sign-bits. It is worth noting that
the “sign-bit correlation” method for stereo matching
proposed by Nishihara (1984) was advocated on simi-
lar grounds. Nishihara’s conclusion was that the sign-
bits contributed to increased stability (because regions
change less than contours do)—conclusions that are
similar to what we find below. It is also worthwhile
noting that, theoretically speaking, only one bit of in-
formation is added in the sign-bit displays. This is be-
cause zero-crossings and level-crossings form nested
loops (Koenderink and Van Doorn, 1980), and there-
fore the sign-bit function is completely determined up
to a common sign flip. In practice, however, this prop-
erty of contours does not emerge from edge detectors
because weak contours are often thresholded out as they
tend to be the most sensitive to noise (see, for example,
Fig. 3). This may also explain why our visual system
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apparently does not use this property of contours. We
therefore do not make use of the global property of the
sign-bit function; rather, we treat it as a local source of
information, i.e., one bit of information per pixel.

Because the location of contours is an unreliable
source of information, especially when the effects of
changing viewing positions are considered, we propose
to rely instead only on the sign-bit source of informa-
tion. From a computational standpoint, the only in-
formation that a point inside a region can provide is
whether the function to be reconstructed (the filtered
image f , or the thresholded imageI ) is positive or
negative (or above/below threshold). This information
can be incorporated in a scheme for finding a separating
hyperplane, as suggested in the following proposition:

Proposition 4. Solving for the coefficients from the
sign-bit image of I is equivalent to solving for a sep-
arating hyperplane in3D or 4D space in which image
points serve as“examples” .

Proof: Let z(p) = ( f1, f2, f3)
T be a vector function

andω = (α1, α2, α3)
T be the unknown weight vector.

Given the sign-bit filtered imagêf of I , we have that
for every pointp, excluding zero-crossings, the scalar
productωTz(p) is either positive or negative. In this
respect, points in̂f can be considered as “examples” in
3D space and the coefficientsα j as a vector normal to
the separating hyperplane. Similarly, the reconstruc-
tion of the thresholded imagêI can be represented as a
separating hyperplane problem in 4D space, in which
z(p) = (I1, I2, I3,−1)T andω = (α1, α2, α3, k)T .

2

The contours lead to a linear system of equations,
whereas the sign-bits lead to a linear system ofinequal-
ities. The solution of a linear system of inequalities
Aw < b can be approached using Linear Program-
ming techniques or using Linear Discriminant Analysis
techniques (see (Duda and Hart, 1973) for a review).
Geometrically, the unknown weight vectorw can be
considered as the normal direction to a plane, pass-
ing through the origin, in 3D Euclidean space, and a
solution is found in such a way that the plane sepa-
rates the “positive” examples,ωTz(p) > 0, from the
“negative” examples,ωTz(p) < 0. In the general case,
whereb 6= 0, the solution is a point inside a polytope
whose faces are planes in 3D space.

The most straightforward solution is known as the
perceptronalgorithm (Rosenblatt, 1962). The basic
perceptron scheme proceeds by iteratively modifying

the estimate ofw by the following rule:

wn+1 = wn +
∑
i∈M

zi

wherewn is the current estimate ofw, and M is the
set of exampleszi that are incorrectly classified bywn.
The critical feature of this scheme that it is guaran-
teed to converge to a solution, irrespective of the initial
guessw0, provided that a solution exists (examples are
linearly separable). Another well known method is to
reformulate the problem as a least squares optimization
problem of the form

min
w
|Aw− b|2

where thei ’th row of A is zi , and b is a vector of
arbitrarily specified positive constants (oftenb = 1).
The solutionw can be found using the pseudoinverse
of A, i.e.,

w = A+b = (At A)−1Atb,

or iteratively through a gradient descent procedure,
which is known as the Widrow-Hoff procedure. The
least squares formulation is not guaranteed to find a
correct solution but has the advantage of finding a so-
lution even when a correct solution does not exist (a
perceptron algorithm is not guaranteed to converge in
that case).

By using the sign-bits instead of the contours, we are
trading a unique, but unstable, solution for an approx-
imate, but stable, solution. The stability of reconstruc-
tion from sign-bits is achieved by sampling points that
are relatively far away from the contours. This sam-
pling process also has the advantage of tolerating a cer-
tain degree of misalignment between the images as a re-
sult of less than perfect correspondence due to changes
in viewing position (this feature is discussed further
in Section 7.4). Experimental results (see Figs. 11
and 12) demonstrate that 10 to 20 points, distributed
over the entire object, are sufficient to produce results
that are comparable to those obtained from an exact
solution. The experiments were done on images of
‘Ken’ and on another set of face images taken from
a plaster bust of Roy Lamson (courtesy of the M.I.T
Media Laboratory). Both the perceptron algorithm and
the least-squares approach were implemented and both
yielded practically the same results. The sample points
were chosen manually, and over several trials we found
that the reconstruction is not sensitive to the particular
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Figure 11. Reconstruction from sign-bits.Top row(left to right):
the input novel image; the same image but with the sample points
marked for display.Bottom row: the reconstructed image; the over-
lay of the original level-crossings and the level-crossings of the re-
constructed thresholded image.

Figure 12. Reconstruction from sign-bits.Row 1: three model
images.Row2: novel image; thresholded input; reconstructed image
(same procedure as described in the previous figure). Note that the
left ear has not been reconstructed; this is mainly because the ear
is occluded in two of the three model images.Row3: the level-
crossings of the novel input; level-crossings of the reconstructed
image; the overlay of both level-crossing images.

choice of sample points, as long as they are not clus-
tered in a local area of the image and are sampled a few
pixels away from the contours. The results show the re-
construction of a novel thresholded images from three
model images. The linear coefficients and the thresh-
old are recovered from the system of inequalities using
a sample of 16 points; the model images are then com-
bined and thresholded with the recovered threshold to
produce a synthesized thresholded image. Recognition
then proceeds by matching the novel thresholded image
given as input against the synthesized image.

6. The Geometric Source of Variability

So far, we have assumed that the object is viewed from
a fixed viewing position, and allowed only photometric
changes to occur. This restriction was convenient be-
cause that allowed us to combine the model images in
a very simple manner. When changes in viewing posi-
tions are allowed to occur, the same image point across
different projections does no longer correspond to the
same object point. The simplest example is translation
and rotation in the image plane which occur when the
object translates, rotates around the line of sight, and
then orthographically projects onto the image. This
transformation can easily be undone if we observe two
corresponding points between the novel input image
and the model images. In general, however, the effects
of changing viewing positions may not be straight-
forward as happens when the object rotates in depth
and when the projection is perspective.

Because of the Lambertian assumption, we can treat
the photometric and geometric sources of variability
independently of each other. In other words, we have
assumed photometric changes occurring in the absence
of any geometric changes, and now we will assume that
the different views are taken under identical illumina-
tion conditions. We can later combine the two sources
of variability into a single framework which will allow
us to compensate for both photometric and geometric
changes occurring simultaneously.

The geometric source of variability raises two related
issues. First, is establishing point-to-point correspon-
dence between the model images. Second, given corre-
spondence between the model images, undo the effects
of viewing transformation based on a small number of
corresponding points between the novel view and the
model views.

The process of “undoing” the effects of changing
viewing transformation between views is known as
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the “alignment” approach in recognition. Given a 3D
model, or at least two model views in full correspon-
dence, one can “re-project” the object onto the novel
viewing position with the help of a small number of
corresponding points. Recognition is achieved if the
re-projected image is successfully matched against the
input image. We refer from hereafter to the problem
of predicting a novel view from a set of model views
using a limited number of corresponding points, as the
problem ofre-projection. The problem of finding a
small number of corresponding points between two
views is often referred to asMinimal Correspondence
(Huttenlocher and Ullman, 1987).

The problem of establishing full correspondence be-
tween the model images requires not only undoing the
effects of viewing transformation, but knowledge of
object structure as well. Given two views, there is no
finite number of corresponding points that would de-
termine uniquely all other correspondences, unless the
object is planar.

We discuss these issues briefly in the next section,
restricting the discussion to the case of orthographic
views. A more detailed treatment of these issues, in-
cluding perspective views, can be found in Shashua
(1991, 1992, 1994, 1995; Shashua and Navab, 1996;
Shashua and Toelg, 1994).

6.1. Re-Projection and Correspondence

Let O, P1, P2, P3 be four non-coplanar object points,
referred to as reference points, and letO′, P′1, P′2, P′3 be
the coordinates of the reference points from the second
camera position. Letb1, b2, b3 be the affine coordinates
of an object point of interestP with respect to the basis
O P1,O P2,O P3, i.e.,

O P =
3∑

j=1

bj (O Pj ),

where the O P denotes the vector fromO to P.
Under parallel projection the viewing transformation
between the two cameras can be represented by an ar-
bitrary affine transformation, i.e.,O′P′ = T(O P) for
some linear transformationT . Therefore, the coordi-
natesb1, b2, b3 of P remain fixed under the viewing
transformation, i.e.,

O′P′ =
3∑

j=1

bj (O
′P′j ).

Since depth is lost under parallel projection, we have a
similar relation in image coordinates:

op=
3∑

j=1

bj (opj ) (1)

o′p′ =
3∑

j=1

bj (o
′p′j ). (2)

Given the corresponding pointsp, p′ (in image co-
ordinates), the two formulas 1, 2 provide four equa-
tions for solving for the three affine coordinates as-
sociated with the object pointP that projects to the
points p, p′. Furthermore, since the affine coordi-
nates are fixed for all viewing transformations, we can
predict the locationp′′ on a novel view by first re-
covering the affine coordinates from the two model
views and then substituting them in the following
formula:

o′′p′′ =
3∑

j=1

bj (o
′′p′′j ).

We have, therefore, a method for recovering affine co-
ordinates from two views and a method for achieving
re-projection given two model views (in full correspon-
dence) and four corresponding points across the three
views.

Assume we would like to find the corresponding
point p′ given we know the correspondences due to
the four reference points. It is clear that this cannot
be done with the available information because a di-
mension is lost due to the projection from 3D to 2D (in
fact, any number of corresponding pointsn would not
be sufficient for determining the correspondence of the
n+ 1 point (Aloimonos and Brown, 1989; Huang and
Lee, 1989)). Since we do not have a sufficient number
of observations to recover the affine coordinates, we
look for an additional source of information.

We assume that both views are taken under similar
illumination conditions:

I (x +1x, y+1y, t +1t) = I (x, y, t),

wherev = (1x,1y) is the displacement vector, i.e.,
p′ = p + v. We assume the convention that the two
views were taken at timest and t + 1t . A first or-
der approximation of a Taylor series expansion leads
to the following equation which describes a linear ap-
proximation to the change of image grey-values atp



          P1: BPS/KLK P2: BPS/SCM P3: RBA/BS QC: P1: BPS/KLK P2: BPS/BS P3: RBA/BS QC:

International Journal of Computer Vision 05-Shashua January 16, 1997 12:12

3D Visual Recognition from a Single 2D Image 115

due to motion:

∇ I · v+ It = 0, (3)

where∇ I is the gradient at pointp, andIt is the tem-
poral derivative atp. Equation (3) is known as the
“constant brightness equation” and was introduced by
Horn and Schunk (1981). In addition to assuming that
the change in grey-values is due entirely to motion, we
have assumed that the motion (or the size of view sepa-
ration) is small, and that the surface patch atP is locally
smooth.

The constant brightness equation provides only one
component of the displacement vectorv, the compo-
nent along the gradient direction, or normal to the
isobrightness contour atp. This “normal flow” infor-
mation is sufficient to uniquely determine the affine
coordinatesbj at p, as shown next. By subtracting
Eq. (1) from Eq. (2) we get the following relation:

v =
3∑

j=1

bj v j +
(

1−
∑

j

bj

)
vo, (4)

wherev j ( j = 0, . . . ,3) are the known displacement
vectors of the pointso, p1, p2, p3. By substituting
Eq. (4) in the constant brightness equation, we get a
new equation in which the affine coordinates are the
only unknowns:∑

j

bj [∇ I · (v j − vo)] + It +∇ I · vo = 0. (5)

Equations (1) and (5) provide a complete set of lin-
ear equations to solve for the affine coordinates at all
locationsp that have a non-vanishing gradient, which
is not perpendicular to the direction of the epipolar
line passing throughp′. Once the affine coordinates
are recovered, the location ofp′ immediately follows.
We have, therefore, derived a scheme for obtaining full
correspondence given a small number of known corre-
spondences, and a scheme for re-projecting the object
onto any third view, given four corresponding points
with the third view (the affine coordinatesb1, b2, b3

are view independent). Both schemes can be consid-
erably simplified by expressing the problems in terms
of one unknown per image point (instead of three) as
follows.

Let A and w be the six affine parameters de-
termined (uniquely) from the three corresponding

vectorsopj ↔ o′p′j j = 1, 2, 3, i.e.,

o′p′j = A(opj )+ w, j = 1, 2, 3. (6)

For an arbitrary pair of corresponding pointsp, p′, we
have the following relation:

o′p′ =
3∑

j=1

bj (o
′p′j ) =

3∑
j=1

bj (A(opj )+ w)

= A(op)+
(∑

j

bj

)
w,

or equivalently:

p′ = [ A(op)+ o′ + w] + γpw. (7)

whereγp =
∑

bj − 1 is view-point invariant and is
unknown. Note thatγp = 0 if the object pointP
is coplanar with the planeP1P2P3 (reference plane),
and thereforeγp represents the relative deviation ofP
from the reference plane (Shashua, 1991; Koenderink
and Van Doorn, 1991). A convenient way to view this
result is that the location of the corresponding pointp′

is determined by a “nominal component”, described by
A(op)+ o′ +w and a “residual parallax component”,
described byγpw. The nominal component is deter-
mined from the four known correspondences, and the
residual component can be determined using the con-
stant brightness Eq. (3) (for more details and discussion
see (Shashua, 1991, 1992)):

γp = −It −∇ I · [ A− I ](op)

∇ I · w .

The “affine depth”γp can be also used to simplify the
re-projection scheme onto a third view: sinceγp is
invariant, then it can be computed from the correspon-
dence between the two model views and substituted
in the equation describing the epipolar relation be-
tween the first and third (novel) view. The re-projection
scheme can be further simplified (Shashua, 1992) to
yield the “linear combination of views” of (Ullman and
Basri, 1989) (also (Poggio, 1990)):

x′′ = α1x′ + α2x + α3y+ α4, (8)

y′′ = β1y′ + β2x + β3y+ β4, (9)

where the coefficientsα j , β j are functions of the affine
viewing transformations between the three views. The
coefficients can be recovered from four corresponding
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points across the three views, and then used to generate
p′′ for every corresponding pairp↔ p′.

These techniques extend to the general case of per-
spective views. Instead of affine coordinates one can
recover projective coordinates from two views and
eight corresponding points (Faugeras, 1992; Hartley
et al., 1992; Shashua, 1994). The affine depth invari-
antγp turns into a projective invariant (“relative affine
structure”) (Shashua and Navab, 1996). Finally, the
linear combination of views result of Ullman and Basri
(1989) turns into a trilinear relation requiring seven
matching points in general (instead of four), or bilin-
ear in case only the model views are orthographic—
requiring five matching points (Shashua, 1995).

7. Combining Changes in Illumination
with Changes in Viewing Positions:
Experimental Results

We have described so far three components that are
necessary building blocks for dealing with recogni-
tion via alignment under the geometric and photomet-
ric sources of variability. First, is the component de-
scribing the photometric relation between three model
images and a novel image of the object. Second, is
the component describing the geometric relation be-
tween two model views and a novel view of an object
of interest. Third, is the correspondence component
with which it becomes possible to represent objects by
a small number of model images. The geometric and
photometric components were treated independently
of each other. In other words, the photometric prob-
lem assumed the surface is viewed from a fixed view-
ing position. The geometric problem assumed that the
views are taken under a fixed illumination condition,
i.e., the displacement of feature points across the dif-
ferent views is due entirely to a change of viewing posi-
tion. In practice, the visual system must confront both
sources of variability at the same time. The combined
geometric and photometric problem is defined below:

We assume we are given three model images of a3D
matte object taken under different viewing positions
and illumination conditions. For any input image, de-
termine whether the image can be produced by the ob-
ject from some viewing position and by some illumina-
tion condition.

The combined problem definition suggests that the
problem be solved in two stages: first, changes in view-
ing positions are compensated for, such that the three

model images are aligned with the novel input im-
age. Second, changes of illumination are subsequently
compensated for, by using the photometric alignment
method. In the following sections we describe sev-
eral experiments with ‘Ken’ images starting from the
procedure that was used for creating the model im-
ages, followed by three recognition situations: (i) the
novel input image is represented by its grey-levels,
(ii) the input representation consists of sign-bits, and
(iii) the input representation consists of grey-levels, but
the model images are taken from a fixed viewing posi-
tion (different from the viewing position of the novel
image). In this case we make use of the sign-bits in
order to achieve photometric alignment although the
novel image is taken from a different viewing position.

7.1. Creating a Model of the Object

The combined recognition problem implies that the
model images represent both sources of variability, i.e.,
be taken from at least two distinct viewing positions and
from three distinct illumination conditions. The three
model images displayed in the top row of Fig. 13 were
taken under three distinct illumination conditions, and
from two distinct viewing positions (23◦ apart, mainly
around the vertical axis). In order to apply the corres-
pondence method described in the previous section,
we took an additional image in the following way.
Let the three illumination conditions be denoted by
the symbolsS1, S2, S3, and the two viewing positions
be denoted byV1,V2. The three model images, from
left to right, can be described by〈V1, S1〉, 〈V2, S2〉 and
〈V1, S3〉, respectively. Since the first and third model
images are taken from the same viewing position, the
two images are already aligned. In order to achieve full
correspondence between the first two model images, a
fourth image〈V2, S1〉 was taken. Correspondence be-
tween〈V1, S1〉 and〈V2, S1〉 was achieved via the cor-
respondence method described in the previous section.
Since〈V2, S1〉 and〈V2, S2〉 are from the same viewing
position, then the correspondence achieved previously
holds also between the first and second model images.
The fourth image〈V2, S1〉 was then discarded and did
not participate in subsequent recognition experiments.

7.2. Recognition from Grey-Level Images

The method for achieving recognition under both
sources of variability is divided into two stages: first,
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Figure 13. Recognition from full grey-level novel image (see text
for more detailed description).Row1 (left to right): three model im-
ages (the novel image is shown third row lefthand display).Row2:
view-compensated model images—all three model images are trans-
formed (using four points) as if viewed from the novel viewing po-
sition. Row 3: novel image, edges of novel image, photometric
alignment of the three view-compensated model images (both view
and illumination compensated).Row4: edges of the resulting syn-
thesized image (third row righthand), overlay of edges of novel and
synthesized image.

the three model images are re-projected onto the novel
image. This is achieved by first assuming minimal cor-
respondence between the novel image and one of the
model images. With minimal correspondence of four
points across the images (model and novel) we can
predict the new locations of model points that should
match with the novel image (assuming orthographic
projection). Second, photometric alignment is subse-
quently applied by selecting a number of points (no
correspondence is needed at this stage because all im-
ages are now view-compensated) to solve for the linear
coefficients. The three model images are then linearly
combined to produce a synthetic image that is both
view and illumination compensated, i.e., should match
the novel image.

Figure 13 illustrates the chain of alignment transfor-
mations. The novel image, displayed in the third row
left image, is taken from an in-between viewing po-
sition and illumination condition. Although, in prin-
ciple, the recognition components are not limited to
in-between situations, there are few practical limita-
tions. The more extrapolated the viewing position is,
the more new object points appear and old object points
disappear, and similarly, the more extrapolated the il-
lumination condition is, the more new cast shadows
are created (see Section 4.1). Minimal correspondence
was achieved by manually selecting four points that
corresponded to the far corners of the eyes, one eye-
brow corner, and one mouth corner. The model views
were re-projected onto the novel view, and their origi-
nal grey-values retained. As a result, we have created
three synthesized model images (shown in Fig. 13, sec-
ond row) that are from the same viewing position as the
novel image, but have different image intensity distri-
butions due to changing illumination. The photometric
alignment method was then applied to the three syn-
thesized model images and the novel image, without
having to deal with correspondence because all four
images were already aligned. The sample points for
the photometric alignment method were chosen auto-
matically by searching over smooth regions of image
intensity (as described in Section 4.3). The resulting
synthesized image is displayed in Fig. 13, third row
right image. The similarity between the novel and the
synthesized image is illustrated by superimposing the
step edges of the two images (Fig. 13, bottom row right
image).

7.3. Recognition from Reduced Images

A similar procedure to the one described above can be
applied to recognize a reduced novel image. In this
case the input image is taken from a novel viewing po-
sition and illumination condition, followed by a thresh-
olding operator (unknown to the recognition system).
Figure 14 illustrates the procedure. We applied the lin-
ear combination method of re-projection (Ullman and
Basri, 1989) and used more than the minimum required
four points. In this case it is more difficult to reli-
ably extract corresponding points between the thresh-
olded input and the model images. Therefore, seven
points were manually selected and their corresponding
points were manually estimated in the model images.
The linear combination method was then applied using
a least squares solution for the linear coefficients to
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Figure 14. Recognition from a reduced image.Row1 (left to right):
novel thresholded image; its level-crossings (the original grey-levels
of the novel image are shown in the previous figure, third row on the
left). Row2: the synthesized image produced by the recognition pro-
cedure; its level-crossings.Row3: overlay of both level-crossings
for purposes of verifying the match.

produce three synthesized view-compensated model
images. The photometric alignment method from sign-
bits was then applied (Section 5.2) using a similar dis-
tribution of sample points as shown in Fig. 11.

We consider next another case of recognition from
reduced images, in which we make use of the prop-
erty that exact alignment is not required when using
sign-bits.

7.4. Recognition from a Single Viewing Position

Photometric alignment from sign-bits raises the possi-
bility of compensating for changing illumination with-
out an exact correspondence between the model images

Figure 15. Demonstrating the effect of applying only the nominal
transformation between two distinct views.Row1: edges of two
distinct views. Row 2: overlay of both edge image, and overlay
of the edges of the left image above and the nominally transformed
righthand image.

and the novel image. The reason lies in the way points
are sampled for setting the system of inequalities; that
is, points are sampled relatively far away from the con-
tours (see Section 5.2). In addition, the separation of
image displacements into nominal and residual compo-
nents (Section 6.1) suggests that in an area of interest
bounded by at least three reference points, the nom-
inal component alone may be sufficient to bring the
model images close enough to the novel image so that
we can apply the photometric alignment from sign bits
method.

Consider, for example, the effect of applying only the
nominal transformation between two different views
(Fig. 15). Superimposing the two views demonstrates
that the displacement is concentrated mostly in the cen-
ter area of the face (most likely the area in which we
would like to select the sample points). By selecting
three corresponding points covering the center area of
the face (two extreme eye corners and one mouth cor-
ner), the 2D affine transformation (nominal transfor-
mation) accounts for most of the displacement in the
area of interest at the expense of large displacements at
the boundaries (Fig. 15, bottom row on the right). This
is expected from the geometric interpretation of affine
depthγp, as it increases as the object gets farther from
the reference plane (Koenderink and Van Doorn, 1991;
Shashua, 1991).
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Taken together, the use of sign-bits and the nominal
transformation suggests that one can compensate for
illumination and for relatively small changes in view-
ing positions from model images taken from the same
viewing position. We apply first the nominal trans-
formation to all three model images and obtain three
synthesized images. We then apply the photometric
alignment from sign-bits to recover the linear coeffi-
cients used for compensating for illumination. The
three synthesized images are then linearly combined
to obtain an illumination-compensated image. The re-
maining displacement between the synthesized image
and the novel image can be recovered by applying the
residual motion transformation (along the epipolar di-
rection using the constant brightness equation).

Figure 16 illustrates the alignment steps. The three
model images are displayed in the top row and are
the same as those used in Section 4.3 for compensat-
ing for illumination alone. The novel image (second
row, left display) is the same as in Fig. 13, i.e., it is
taken from a novel viewing position and novel illumi-
nation condition. The image in the center of the second

Figure 16. Recognition from a single viewing position (see text for
details).

row illustrates the result of attempting to recover the
correspondence (using the full correspondence method
described in the previous section) between the novel
image and one of the model images without first com-
pensating for illumination. The image on the left in
the third row is the result of first applying the nominal
transformation to the three model images followed by
the photometric alignment using the sign-bits (the sam-
ple points used by the photometric alignment method
are displayed in the image on the right in the second
row). The remaining residual displacement between the
latter image and the novel image is recovered using the
full correspondence method and the result is displayed
in the center image in the third row. The similarity be-
tween the final synthesized image and the novel image
is illustrated by superimposing their step edges (fourth
row, right display).

8. Summary and Discussion

In this paper we addressed the connection between
recognition of general 3D objects and the ability to
create an equivalence class of images of the same ob-
ject. Recognizing objects eventually reduces to com-
paring/matching images against each other or against
models of objects. This can be viewed as comparing
measurements (features,x, y positions of points, and
so forth) that ideally must be selected or manipulated
such that they remain invariant if coming from images
of the same object.

We have distinguished two sources of variability
against which invariant measurements are needed.
One, is the well known geometric problem of changing
viewing positions between the camera and the object.
Second, is the photometric problem due to changing
illumination conditions in the scene. Our emphasis in
this paper was on the latter problem which, unlike the
geometric problem of recognition, did not receive much
attention in the past. The traditional assumption con-
cerning the photometric problem is that one can recover
a reasonably complete array of invariants just from a
single image alone, such as the representations pro-
duced by edge detectors. It is interesting to note that
in the earlier days of recognition, the geometric prob-
lem was approached in a similar manner by restricting
the class of objects to polyhedra (the so-called “blocks
world”). We have argued that complete invariance
of edges is achieved when simple block-like objects
are considered, whereas for more natural and complex
objects, like a face, it may be necessary to explore
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model-based approaches, i.e., the photometric invari-
ants are model-dependent.

Motivated by several empirical observations on hu-
man vision, and by computational arguments on the use
of edge detection, we arrived at two observations: first,
there appears to be a need for a model-based approach
to the photometric problem. Second, the process re-
sponsible for factoring out the illumination during the
recognition process appears to require more than con-
tour information, but just slightly more.

We suggested a method, we call photometric align-
ment, that is based on recording multiple images of the
object. We do not use these pre-recorded images to
recover intrinsic properties of the object, as in photo-
metric stereo, but rather to directly compensate for the
change in illumination conditions for any other novel
image of the object. This difference is critical, as we
are no longer bounded by assumptions on the light
source parameters (e.g., we do not need to recover
light source directions) or assumptions on the distri-
bution of surface albedo (e.g., arbitrary distributions
of surface albedo are allowed). We have discussed the
situations of shadows, specular reflections, and chang-
ing spectral compositions of light sources. In the case
of shadows, we have seen that the alignment scheme
degrades with increasing cast shadow regions in the
novel input image. As a result, photometric alignment,
when applied to general non-convex surfaces, is most
suitable for reconstructing novel images whose illumi-
nation conditions are in between those used to create
the model images. We have also seen that specular re-
flections arising from non-homogeneous surfaces can
be detected and removed if necessary. Finally, the the-
ory was extended to deal with color images and the
case of changing spectral composition of light sources:
the of color bands of a single model image of a neutral
surface can form a basis set for reconstructing novel
images.

We next introduced two new results to explore the
possibility of working with reduced representations in-
stead of image grey values—as suggested by empir-
ical evidence from human vision (Section 2). First,
step edges and level-crossings of the novel image are
theoretically sufficient for the photometric alignment
scheme. This result, however, assumes that edges be
given at sub-pixel accuracy—a finding that implies
difficulties in making use of this result in practice.
Second, the sign-bit information can be used instead
of edges. Photometric alignment using sign-bits is a
region-based process by which points inside the binary

regions of the sign-bit image are sampled and each
contributes a partial observation. Taken together, the
partial observations are sufficient to determine the so-
lution for compensating for illumination. The more
points sampled, the more accurate the solution. Exper-
imental results show that a relatively small number of
points (10 to 20) are generally sufficient for obtaining
solutions that are comparable to those obtained by us-
ing the image grey values. This method agrees with
the empirical observations that were made in Section 2
regarding the possibility of having a region-based pro-
cess rather than a contour-based one, the possibility of
preferring sign-bits over edges, and the sufficiency of
sign-bits for factoring out the illumination. The possi-
bility of using sign-bits instead of edges raises also a
potentially practical issue related to changing view-
ing positions. A region-based computation has the
advantage of tolerating a small degree of misalign-
ment between the images due to changing viewing
positions. This finding implies that the illumination
can be factored out even in the presence of small
changes in viewing positions without explicitly ad-
dressing the geometric problem of compensating for
viewing transformations—a property that was demon-
strated experimentally in Section 7.4.

Finally, we have shown how the geometric, pho-
tometric, and the correspondence components can be
put together to address the case when both changes in
illumination and changes in viewing positions occur
simultaneously, i.e., recognition of an image of a fa-
miliar object taken from a novel viewing position and
a novel illumination condition.

8.1. Issues of Future Directions

The ability to interpret Mooney images of faces may
suggest that these images are an extreme case of a wider
phenomenon. Some see it as a tribute to the human
ability to separate shadow borders from object borders
(Cavanagh, 1990); here we have noted that the phe-
nomenon may indicate that in some cases illumination
is factored out in a model-based manner and that the
process responsible apparently requires more than just
contour information, but only slightly more. A possible
topic of future research in this domain would be to draw
a connection, both at the psychophysical and computa-
tional levels, between Mooney images and more natural
kinds of inputs. For example, images seen in newspa-
pers, images taken under poor lighting, and other low
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quality imagery have less shading information to rely
on and their edge information may be highly unreli-
able, yet are interpreted without much difficulty by the
human visual system. Another related example, is the
image information contained in draftsmen’s drawings.
Artists rarely use just contours in their drawings and
rely on techniques such as “double stroking” to create
a sense of relief (surface recedes towards the contours)
and highlights to make the surface protrude. These
pictorial additions that artists introduce are generally
not interpretable at the level of contours alone, yet do
not introduce any direct shading information. In other
words, it would be interesting (and probably important
on practical grounds) to discover a continuous trans-
formation, a spectrum or scale-space of sorts, starting
from high-quality grey-level imagery, producing mid-
way low-quality imagery of the type mentioned above,
and converging upon Mooney-type imagery.

Another related topic of future interest is the level
at which sources of variability are compensated for.
In this paper the geometric and photometric sources
of variability were factored out based on connections
between different images of individual objects. The
empirical observations we used to support the argument
that illumination should be compensated for in a model-
based manner, actually indicate that if indeed such a
process exists, it is likely to take place at the level of
classifying the image as belonging to a general class
of objects, rather than at the level of identifying the
individual object. This is simply because the Mooney
images are of generally unfamiliar faces, and therefore,
the only model-based information available is that we
are looking at an image of a face. A similar situation
may exist in the geometric domain as well, as it is
known that humans can recognize novel views just from
a single view of the object.

There are also questions of narrower scope related
to the photometric domain that may be of general in-
terest. The question of image representation in this
paper was applied only to the novel image. A more
general question should apply to the model acquisi-
tion stage as well. In other words, what information
needs to be extracted from the model images, at the
time of model acquisition, in order to later compensate
for photometric effects? This question applies to both
the psychophysical and computational aspects of the
problem. For example, can we learn to generalize to
novel images just from observing many Mooney-type
images of the object? (changing illumination, view-
ing positions, threshold, and so forth). A more basic

question is whether the Mooney phenomenon is limited
exclusively to faces. And if not, what level of famil-
iarity with the object, or class of objects, is necessary
in order to generalize to other Mooney-type images of
the same object, or class of objects.

At a more technical level, there may be interest in
further pursuing the use of sign-bits. The sign-bits
were used as a source of partial observations that, taken
together, can restrict sufficiently well the space of pos-
sible solutions for the photometric alignment scheme.
In order to make further use of this idea, and perhaps
apply it to other domains, the question of how to select
sample points, and the number and distribution of sam-
ple points, should be addressed in a more systematic
manner.
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