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ognitive radio is a technology that can solve the
wireless spectrum under-utilization problem by
allowing secondary users to opportunistically
access the licensed channels without causing inter-

ference to the communications of the primary users. Cognitive
radio can change its transmitter parameters based on interac-
tion with the environment in which it operates [1]. There are
two main characteristics of cognitive radios. The first is cogni-
tive capability, which refers to the ability of the radio technol-
ogy to sense information from its radio environment. Through
this capability, the spectrum resources that are not used by
primary users can be detected. Consequently, the best spec-
trum allocation schemes and transmission parameters can be
selected. The second is reconfigurability, which enables a user
to change the transmitting channel quickly and adaptively
according to the radio environment.

In a cognitive radio network there are mainly two schemes
for secondary users to share the spectrum resources. In one
scheme the secondary users reuse the spectrum that is not
used by the primary users. The other scheme, called spectrum
sharing, allows the secondary users to transmit concurrently
with the primary users as long as they do not harm the trans-
mission of the primary users. While cognitive radio is an effi-
cient technique to relieve the pressure of wireless spectrum
scarcity, at the same time the characteristics of cognitive
radios have introduced entirely new types of security threats
and challenges in networks. Since the primary users and the
secondary users coexist in the same network, both of them
need to be protected, and they are more vulnerable to security
attacks compared to the traditional wireless networks without
using cognitive radios. Therefore, providing strong security
protections is one of the most important requirements for
cognitive radio networks.

In general, wireless networks are deployed in homes, busi-
nesses, production plants, and other private or public environ-
ments where security of communications is important. Many
publications have addressed practical attacks on the availabili-
ty of IEEE 802.11 networks on both the physical layer (PHY)
and the medium access control (MAC) layer. One of the tra-

ditional attacks at the PHY layer is jamming of the radio
band. On the MAC layer, more sophisticated attacks could be
implemented to attack the MAC protocols. The attacks could
be grouped into three categories [2]:
• RF jamming attacks.
• MAC layer attacks.
• Implementation-specific attacks (driver/firmware).
Another way to investigate the security of wireless networks is
from the information theoretic perspective.

In physical layer security for wireless networks, the secrecy
rate is defined as the rate at which information can be trans-
mitted secretly from a source to its intended destination. The
maximum achievable secrecy rate is named the secrecy capac-
ity. For a Gaussian channel, the secrecy capacity is defined as
the difference of the Shannon capacity of the channel
between the source and the destination and the Shannon
capacity of the channel between the source and an eaves-
dropper [3]. Besides secrecy capacity, there are also some
other parameters that depict the security of wireless net-
works. One is the leakage probability, which is the probability
that the eavesdropper decodes its received codeword with an
error probability less than its target bit error rate. Another is
the security gap [4], which is the ratio of two signal-to-noise
ratios (SNRs), the SNR at which a very low-target bit error
rate (BER) is achieved at the intended receiver, and that at
which a high BER is achieved at the eavesdropper. The
smaller the security gap, the more likely that the transmitter
can transmit over a time-varying wireless channel successful-
ly. In wireless networks, physical layer security can provide
the theoretical analysis about how much information a user
can transmit safely with the existence of eavesdroppers. How-
ever, the analysis in cognitive radio networks is more difficult
since we need to consider both the primary users and the sec-
ondary users.

Although security in classic wireless networks has been
studied for many years, security in the physical layer of cogni-
tive radio networks has not been well investigated until
recently. In [5] and [6] the authors studied two major classes
of attacks on the physical layer in cognitive radio networks:
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Abstract
In this article we explore the security issues on physical layer for cognitive radio
networks. First we give an overview on several existing security attacks to the phys-
ical layer in cognitive radio networks. We then discuss the related countermeasures
on how to defend against these attacks. We further investigate one of the most
important physical layer security parameters, the secrecy capacity of a cognitive
radio network, and study the outage probability of secrecy capacity of a primary
user from a theoretical point of view. Furthermore, we present performance results
for secrecy capacity and outage probability between a node and its neighbors.
Our work summarizes the current advances of the physical layer security and
brings insights on physical layer security analysis in cognitive radio networks.
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primary user emulation attack and objective function attack.
There are also several other types of attacks and the corre-
sponding countermeasures on the physical layer in cognitive
radio networks. In this article we first systematically survey
different types of attacks on the physical layer and their corre-
sponding countermeasures in cognitive radio networks. Specif-
ically, we summarize six major types of attacks: primary user
emulation; objective function attack; learning attack; spectrum
sensing data falsification; jamming attack; and eavesdropping.
To emphasize the importance of physical layer security issues
in cognitive radio networks, we present an analysis method of
secrecy capacity in a cognitive radio network model, to char-
acterize how much information a user can transmit safely with
the existence of eavesdroppers in cognitive radio networks.

The characteristics of cognitive radio networks have
brought new challenges to physical layer security issues. First,
there are both primary users and secondary users in the net-
work. The secondary users should have the ability to tell the
difference between primary users and malicious nodes. Sec-
ond, the accuracy of sensing information gathered by sec-
ondary users is important. However, malicious users may
attack and interfere with the correct sensing information.
Third, much fundamental theoretic analysis has not been
done yet to reveal the physical layer security of cognitive radio
networks with the existence of primary users, secondary users,
and other malicious nodes. 

In the rest of this article we first briefly overview the physi-
cal layer security issues in cognitive radio networks. We dis-
cuss several known security attacks existing in cognitive radio
networks and survey the related countermeasures on how to
defend against these attacks. Then we investigate one of the
most important physical layer security parameters, the secrecy
capacity of a cognitive radio network, by studying the proba-
bility density function of the secrecy capacity and obtaining
the outage probability of secrecy capacity. At the end, we pro-
vide performance results and summarize the study of physical
layer security in cognitive radio networks.

Current State-of-the-Art on PHY Security in
Cognitive Radio Networks
In recent years there have been several major types of threats
and attacks on the physical layer of cognitive radio networks,
which we summarize in Table 1.

Primary User Emulation Attack
The first is the primary user emulation (PUE) attack [5]. A
PUE attacker may masquerade as a primary user by transmit-
ting special signals in the licensed band, thus preventing other

secondary users from accessing that band. In PUE attacks, the
attacker only transmits on the channels that are not used by
primary users. Therefore, the secondary users regard the
attackers as primary users and do not try to access the chan-
nels that are not used by primary users. As pointed out in [6],
there are several types of PUE attacks. In a selfish PUE
attack, an attacker tries to make use of the unused spectrum.
When a selfish PUE attacker detects an unused spectrum
band, it transmits signals that emulate the signal characteris-
tics of a primary user and prevent the secondary users from
using it. Thus, the attacker can make use of the vacant chan-
nels that are not used by primary users. However, for a mali-
cious PUE attack, the malicious attacker just tries to prevent
the transmission of the secondary users without using it.
There exist some more complicated PUE attacks. Some
attackers can even attack only when the primary user is off,
which means that attackers can save energy.

To defend against this threat, a transmitter verification
scheme called localization-based defense (LocDef) was pro-
posed in [7], which verifies whether a given signal is that of
an incumbent transmitter by estimating its location and
observing its signal characteristics. In a practical case of
cognitive radio networks, the primary users can mainly be
composed of TV signal transmitters (i.e. TV broadcast tow-
ers) and receivers. Their locations are typically determined.
If a malicious user wants to emulate the primary user and
its location is almost the same as the primary user, sec-
ondary users would not receive the signal of the malicious
user since the transmit power of the malicious node is much
smaller than a TV tower. If the secondary users receive a
high power signal from the malicious user, it means that the
malicious user must be very close to the secondary user.
Thus, the secondary user can determine whether a transmit-
ter is a primary user or malicious user just by estimating the
location of the transmitter. The transmitter verification
scheme includes three steps: verification of signal character-
istics, measurement of received signal energy level, and
localization of the signal source. The first two steps have
been investigated thoroughly. For the third step, there are
many techniques that can be used to estimate the location
of the transmitter, such as Time of Arrival (TOA), Time
Difference Of Arrival (TDOA), Angle of Arrival (AOA),
and Received Signal Strength (RSS). Take RSS as an exam-
ple: there is a strong correlation between the distance of a
wireless link and RSS. Therefore, if multiple secondary
users take RSS measurements from a transmitter, the trans-
mitter location can be estimated using the relationship
between distance and RSS. Thus, the key to counter against
PUE attack is to determine whether the transmitter is a pri-
mary user or a malicious user. 
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Table 1. The attacks and the countermeasures of physical layer security in cognitive radio networks.

Attacks Countermeasures Characteristics

PUE [5] LocDef [7] based on localization of the
primary user

Verifies whether a given signal is that of an incumbent transmitter
by estimating its location and observing its signal characteristics

OFA [8] Define threshold values whenever the radio
parameters need to be updated [5] A good intrusion detection system can be used

LA [8] Effective and long-term learning [8] The learning results must always be reevaluated over time

SSDF [6] Powerful schemes at data fusion center [9] Sequential Probability Ratio Test or reputation-based schemes

Jamming [10] Frequency hopping or spatial retreat [6, 11] Frequency hopping is good for cognitive radios

Eavesdropping [12] Power control or beamforming [12] Theoretical results to provide some general bounds
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Objective Function Attack
Another attack on cognitive radio networks is the objective
function attack (OFA) [8]. This attack mainly targets the
learning engine of cognitive radios. In cognitive radios, a cog-
nitive engine has the ability to tune many parameters to maxi-
mize its objective function. These objective functions take as
variables high transmission data rate, low power consumption,
low delay, and high security level. Such parameters might
include bandwidth, power, modulation type, coding methods,
MAC protocol, routing schemes, and encryption mechanisms
[6]. Among those variables of the objective function, high
transmission rate and low delay are related to the channel,
while low power consumption and high security level are
directly determined by the inputs of the users. So for an objec-
tive function attack, whenever the user wants to raise the secu-
rity level, the malicious nodes may use some ways to increase
the delay of the user. Thus, the user may connect high delay
with high security level and not want to use high security level
at all. Thus, it will become more susceptible to security attacks.
It is necessary to remark that the OFA performance is related
to which optimization method is used in the cognitive radio
network [8]. Some cognitive radios perform optimization
instantly after getting the input of the environment. On the
other hand, other cognitive radios observe the environment
just once, then search for an optimized result, and the decision
will not be changed by the input of the environment. In this
case, the type of cognitive radio is not affected by OFAs. How-
ever, cognitive radio devices generally have high sensing ability
and perform optimization frequently. Therefore, a cognitive
radio network is susceptible to OFA attacks.

In order to combat an objective function attack, a simple
suggestion has been made in [5]. It is to define threshold val-
ues whenever the radio parameters need to be updated. If the
detected parameters do not meet the predefined thresholds,
the secondary user will not collect that information. Moreover,
a good intrusion detection system can be used to strengthen
the countermeasure. However, using an intrusion detection
system is a general countermeasure that may not perform well
in defending against objective function attacks [6].

Learning Attack
In a learning attack (LA) [8] the adversary provides false senso-
ry input for the learning radio in cognitive radios. If a learning
radio learns some wrong ideas about the transmission schemes,
it will be used all the way until it can learn the correct ideas.
Generally, a learning attack is combined with other types of
attacks. For example, an attacker can conduct a PUE attack or
an OFA attack whenever a cognitive radio tries to use the best
transmission scheme. Thus, the learning radio might decide
that the best transmission scheme will not be optimal and it will
take sub-optimal transmission schemes as the optimal transmis-
sion schemes, which leads to lower performance.

Several methods have been proposed to combat learning
attacks [8]. First, the learning results must always be reevalu-
ated over time. For example, the activities of the primary
users in a cognitive radio network should be constantly recom-
puted so that the previously learned statistical process of
activities of the primary users that may be incorrect will be
abandoned. Second, there should be a truly controlled envi-
ronment during the learning phases, which means no mali-
cious signals are present during the learning phase. Third, if
the learned action breaks some basic theoretic results, then
this action should not be used. Fourth, cognitive radios can
make use of group learning instead of individual learning.
Several secondary users can form a group to learn the envi-
ronment, and thus the attacker cannot conduct a learning
attack so easily.

Spectrum Sensing Data Falsification
Spectrum Sensing Data Falsification (SSDF) is discussed in
[6]. Also known as the Byzantine Attack, it is a popular attack
in cognitive radio networks. An attacker sends false local
spectrum sensing results to its neighbors or to the fusion cen-
ter, causing the receiver to receive the wrong sensing informa-
tion and make a wrong spectrum access decision. This attack
can target the fusion center or just one secondary user. If it
attacks the secondary user and sends wrong sensing informa-
tion to just one secondary user, the secondary user may not
have the ability to tell the real sensing information from the
wrong sensing information and then make wrong decisions.
While the attack targets the fusion center, the fusion center
can collect sensing information from many other users, either
legitimate secondary users or malicious users. If most of the
sensing information is from legitimate users, the fusion center
will have a high probability to make a right decision to deter-
mine which information would be real.

A two-level defense is required to counter SSDF attacks
effectively [9]. At the first level, the data fusion center needs
to authenticate all local spectrum sensing results since there
might be malicious users who will eavesdrop the spectrum
sensing results and then launch replay attacks or inject false
data. The second level of defense is to implement an effective
data fusion scheme that can determine which sensing informa-
tion is real. There are several ways to improve existing data
fusion schemes to counter SSDF attacks. One way is the
Sequential Probability Ratio Test (SPRT). SPRT can support
a large number of spectrum sensing results and combine them
together. In this way, SPRT can have a higher probability to
guarantee the spectrum sensing correctness. Another way is to
use a reputation-based scheme in the Distributed Spectrum
Sensing (DSS) process. This scheme can make a long time
record of the sensing results and rate the users according to
the correctness of their sensing results. Those who are always
right can get a high reputation, and their results would be
adopted. However, the malicious nodes would be low rated
and would not be believed.

Jamming Attack
Another attack on cognitive radio networks is the jamming
attack, which can be classified as a single-channel jamming
attack or a multi-channel jamming attack [10]. In a single-
channel jamming attack the malicious node continuously
transmits high-power signals on one channel. Therefore, all
transmissions on this channel will be jammed. However, this
type of jamming is not so effective, since the malicious node
should transmit continuously, which consumes much energy.
Moreover, the high power interfering signal can be easily
detected. Another more effective way of jamming is to jam
multiple channels simultaneously. The traditional way is to
transmit interfering signals on all the channels at the same
time. However, this still consumes too much energy, especially
when the number of channels is large. An improved way is to
use cognitive radio technology so that the attacker can switch
from one channel to another according to the activities of the
primary users. Since cognitive radios can significantly reduce
channel switching delay, attackers can jam the channel more
effectively in this way.

To counter jamming attacks, secondary users first need to
detect that a jamming attack really exists. One way to detect a
jamming attack is to collect enough data of the noise in the net-
work and build a statistical model [11]. Thus, when an attacker
tries to jam the secondary user and transmits large power inter-
ference, the secondary user can have the ability to differentiate
the interference of an attacker from normal noise. The second
step to counter a jamming attack is to defend against it, mainly
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in two ways [6]. One is to use frequency hopping. Whenever
the secondary users find the jamming attack, they will use their
high switching ability to switch to other channels that are not
jammed. Another way is to do spatial retreat. The secondary
users may escape from the location where jamming happens to
where there is no jammer. Thus, the interfering signals trans-
mitted by the jammer will not be received by the secondary
users. The disadvantage of this method is that spatial retreat
may make the secondary user lose communication with the
users it is now communicating with.

Eavesdropping
The last security threat we survey here is eavesdropping,
which means that a malicious node would listen to the trans-
mission of the legitimate users. In [12] the authors considered
a network model in which the secondary users use multiple
input multiple output (MIMO) transmission, the primary
users use a single antenna, and the eavesdroppers can use
either multiple antennas or a single antenna. The authors
studied the achievable rates of the MIMO secrecy rate
between secondary users and formed a non-convex max-min
problem to maximize secrecy capacity without interfering with
the primary users. The maximum achievable secrecy rate can
be obtained by optimizing the transmit covariance matrix in
the case of Gaussian input. Algorithms were proposed to
compute the maximum achievable secrecy rate for the case of
single-antenna eavesdroppers, and bounds on the achievable
secrecy rate were obtained for general cases with multi-anten-
na secrecy and eavesdropper receivers. Here we can see that
the key idea behind [12] is using power control algorithms in
order to increase the rate between the legitimate users while
decreasing the rate to the eavesdroppers. Thus, secrecy rate
can be improved.

A Cognitive Radio Network Model for
Secrecy Capacity Analysis
In the rest of this article, we present an analysis method of
secrecy capacity in a cognitive radio network model. We
assume that eavesdroppers are randomly deployed and they
are not colluding. Secrecy capacity is one of the most impor-

tant physical layer security parameters for cognitive radio net-
works [12, 13]. As illustrated in Fig. 1, a set of primary users,
secondary users and eavesdroppers coexist in a cognitive radio
network, where they follow the mutually independent homo-
geneous Poisson process [14] with densities lP, lS and lE,
respectively. From Fig. 1, node 1 is the primary transmitter,
which transmits to other primary receivers in the network.
The secondary users transmit on the same channel as the pri-
mary transmitter using a smaller power in order not to cause
too much interference to primary users. The eavesdropper
tries to listen to the information that the primary transmitter
is transmitting. Since the distance of primary receiver 1 to the
primary transmitter 1 is the closest, we define primary receiv-
er 1 as the closest neighbor of primary transmitter 1 as its dis-
tance to the primary transmitter 1 is the shortest. Similarly,
primary receiver 2 is defined as the second closest neighbor of
primary transmitter 1 since its distance to the primary trans-
mitter 1 is the second shortest, and so on.

Assuming that the entire network is a circular region of
radius R, where we analyze the features of this network in a
large network with R going to infinity. In a quasi-static wire-
less environment, the received power Prx(xi, xj) at the primary
receiver xj should increase as the increase of the transmit
power P of the primary transmitter, and the amplitude Íh(xi,
xj)Í of the complex fading coefficient of the primary link 

—Æ
xixj

between the primary transmitter and primary receiver. More-
over, the received power would decrease if the distance dij
between primary transmitter xi and primary receiver xj increas-
es. Moreover, the wireless propagation is related to the path
loss exponent, which varies from 0.8 to 4 due to different
communication environment [15]. We consider the case a > 2
here in order to calculate the interference from the secondary
users to the primary users and the eavesdroppers.

Assuming that WP is the noise power introduced by the pri-
mary receivers and IP is the interference power at the primary
receiver from the secondary users. We now consider a special
case that there is only path loss h(xi, xj) in the wireless envi-
ronment, and it is normalized to be one for all i not equal to j.
The thermal noise powers at the primary users and eavesdrop-
pers are assumed to be the same because these noise powers
can be assumed to be independent from the location of a sec-
ondary user and they are both W. The received powers at the
primary users and the eavesdroppers can all be calculated by
the propagation laws of wireless transmission. Thus, the secre-
cy capacity can be simplified as [13]:

(1)

We can first derive the probability density function of IP
and IE. Then, the probability density function of the secrecy
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Figure 1. A cognitive radio network model for secrecy capacity
analysis.
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where i is the transmitter of a primary user, and j is the
jth closest neighbor of the transmitter i, and fCP(i, j)(c),
fCE(c), d(c) and Pr0,j denote the probability density func-
tion of the primary user capacity, the probability density
function of the eavesdropper capacity, the Dirac delta
function, and the probability of zero secrecy capacity,
respectively [13].

Secrecy Capacity Performance and
Discussions
In this section, we show the performance results of our analy-
sis above, and discuss the relationship between secrecy capaci-
ty, outage probability, and the densities of the primary users,
the secondary users, and the eavesdroppers for some specific
cognitive radio network scenarios. Here, the outage probabili-
ty of secrecy capacity is defined as the probability that secrecy
capacity is lower than a threshold Rs. For a certain threshold
Rs, if the outage probability of secrecy capacity is high, it
means that the communication link between legitimate users
is not secure enough.

In the following, we use simulations to examine the perfor-
mance results for secrecy capacity and outage probability
between a node and its neighbors. In the performance results,
the node densities and power parameters are set as the fol-
lowing. The density of primary users l is 1, the densities of
secondary users lS and eavesdroppers lE are both 0.1, the
transmit power P of primary transmitter is 10 Watts, sec-
ondary transmitter Ps is 1 Watt, and noise power W is also 1
Watt. Moreover, in order to calculate the outage probability,
the threshold rate Rs is set to be 1.

Figure 2 shows the relationship between probability den-
sity function fCs(i ,  j)(c) and the secrecy capacity Cs(i ,  j)
between a node i and its jth closest neighbor. It can be seen
that as the distance to the jth closest neighbor increases
with j, it has a higher probability that the secrecy capacity
has a smaller value. Figure 3 shows the relationship between
secrecy outage probability and the eavesdropper density lE
in different cases. It can be seen that the outage probability
of secrecy capacity increases as j increases. Moreover, the
outage probability of secrecy capacity will also increase as
the density of eavesdroppers lE increases. When j = 1, we
can see that two curves have an intersection at about lE
=0.7. When lE is smaller than 0.7, the network with sec-
ondary users has a higher outage probability. However,
when lE exceeds 0.7, the network without secondary users
has a higher outage probability. This means that when the
density of eavesdroppers increases, they have a higher prob-
ability that they are close to the secondary users. Thus, the
interference powers at the eavesdroppers would become
higher and the information leaked to the eavesdroppers will
decrease. Then, there would be lower outage probability

and higher secrecy capacity in this case. The tendency is
similar for the case of other values of j. Figure 4 illustrates
the relationship between secrecy outage probability and the
secondary user density lS. Similar to the case with sec-
ondary users in Fig. 3, the outage probability of secrecy
capacity increases as j and the density of secondary users lS
increase. This means that when the density of the secondary
users is larger, the secrecy capacity will decrease and the
outage probability of secrecy capacity will be larger. This is
because the secondary users will be closer to the primary
user in this case, and the interference powers at the primary
users will be larger.

The performance results have shown how the densities of
primary users and eavesdroppers influence the secrecy capaci-
ty and outage probability between a node and its neighbors.
Secrecy capacity gives us a good upper bound on how much
secure information can be transmitted in cognitive radio net-
works, but it does not indicate how we can achieve this secre-
cy capacity. Many other mechanisms should be used to achieve
it. Moreover, secrecy capacity of a cognitive radio network
can theoretically show how securely the information is trans-
mitted in the network. Therefore, we need to evaluate how
other kinds of security attacks can affect cognitive radio net-
works. For example, if we know that the secrecy capacity
between two nodes is small, then we need to further strength-
en the security mechanisms to defend against the potential
security attacks.

Conclusion
In this article, we investigated the security issues related to
the physical layer in cognitive radio networks. First, we sum-
marized the security attacks on the physical layer for cogni-
tive radio networks and surveyed the existing
countermeasures for those attacks. We further presented a
cognitive radio network model to analyze the secrecy capaci-
ty of the network. The performance results helped to charac-
terize the secrecy capacity and outage probability between a
node and its neighbors, which can give an upper bound on
how much secure information can be transmitted in cogni-
tive radio networks. The secrecy capacity analysis can help
us to determine how secure a cognitive radio network is and
whether we need to further strengthen the security mecha-
nisms to defend against the potential attacks in the cognitive
radio networks.
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Figure 2. Probability density function fCs(i, j)(c) of the secrecy
capacity Cs(i, j)(c) for various j.
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Figure 3. Outage probability of secrecy capacity Cs(i, j) for vari-
ous values of j (l = 1, lS = 0.1 (with secondary users (SUs)), 
Rs = 1).
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Figure 4. Outage probability of secrecy capacity Cs(i, j) for vari-
ous values of j (Rs = 1).
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