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ON PICARD'S THEOREM FOR ENTIRE QUASIREGULAR MAPPINGS

MATTI VUORINEN

(Communicated by Irwin Kra)

Abstract. Several refinements of Picard's theorem for entire functions in the

complex plane have been proved by many authors in connection with the theory

of Picard sets. We prove a result of this type for entire quasiregular mappings

in euclidean «-space in the case when the "Picard set" consists of a sequence

ak on a ray emanating from 0 with \ak \ = 2k .

1. Introduction

Several results of geometric function theory have their multidimensional ana-

logues for quasiregular mappings in Rn ([V3], [Ri2]). According to recent re-

sults of S. Rickman [Ril], [Ri3], the Picard and Schottky theorems in particular

have their multidimensional counterparts in this context.

Extending the classical Picard theorem, O. Lehto introduced in 1958 [L] the

notion of a Picard set of an entire or meromorphic function of the complex

plane. Some delicate properties of these sets were found by L. Carleson [C] and

K. Matsumoto [Ml], [M2] soon after the publication of [L]. Later contributions

to the theory of Picard sets include works by many authors, most notably S.

Toppila ([T1]-[T5]) and J. Winkler ([Wl], [W2]) (for further information see

the bibliography in [T4]).

The goal of this paper is to prove the following theorem, which can be for-

mulated in terms of Picard sets in the special case of entire functions. (We shall

not need the notion of a Picard set in this paper.) Let ex = ( 1,0, ... , 0) e R"

and let p(n,K) be the integer in the multidimensional analogue of the Picard

theorem ([Ril]).

1.1.    Theorem. Let f:Rn —► Rn   be a  K-quasiregular mapping and  W =

{ax, ... ,a },  ap - oo, a set of distinct points in R."  with p > p(n,K).   If

f~x W c {2kex : k = 1,2,...} then the limit lim;c^oo f(x) exists.

In the plane case, results stronger than Theorem 1.1 are known for entire

functions. However, the previously known methods of studying Picard sets

(such as Cauchy's intergral formula) are not applicable to the present context.
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384 matti vuorinen

Instead our method relies on the uniform continuity properties of quasiregular

mappings with respect to the quasihyperbolic metric. The key idea is contained

in a lemma about removable isolated singularities of uniformly continuous func-

tions, which yields a quantitative upper bound for the modulus of continuity

of the extended mapping. This lemma is apparently new even for n = 2. Its

proof relies essentially on the Harnack inequality, which in the present context

follows from the results of J. Serrín [S] (cf. Yu. G. Reshetnyak [R]) and also

uses S. Rickman's result in [Ri3].

2. Preliminary results

We shall adopt the relatively standard notation and terminology of [VI].

the coordinate unit vectors in Rn are ex, ... ,en. For x, y € Rn , we denote

[x ,y] = {(^-t)x + ty: 0 < t < 1} and similarly for half-open or open segments.

For x G R"\{0} let [x,oo) = {tx: t > 1}. For x e R" and r > 0 let

B"(x,r) = {zeRn: \x - z\ < r}, Sn~x(x,r) = dBn(x,r). Bn(r) = Bn(0,r),

Sn~l(r) = dB"(r), B" = Bn(\), and S"~x = dB" .

For the definition and the basic properties of the modulus M(T) of a curve

family T in Rn - R" u {oo}, the reader is referred to [VI]. The defini-

tions of quasiconformal (qc), iT-quasiconformal (K-qc), quasiregular (qr),

A^-quasiregular, quasimeromorphic (qm), and /C-quasimeromorphic (K-qm)

mappings can be found in [MRV1], [MRV2], [Vu3].

We shall require several metrics. The spherical metric o on R is defined

by the element of length

The spherical chordal metric q is defined by

q(x,y) = \x-y\((\ + \x\2)(\ + \y\2)y2-;       x^^^y

«7(.x,oo) = (l + |x|2n.

These two metric are equivalent, in fact q(x,y) = sin a (x, y ), 1 < a(x,y)/

q(x,y) < n/2 for distinct x,y e R and ^(0,oo) = 1 = 2a(0,oc)/n. Both

a and q are invariant under a subgroup of the group GM(R ) of Möbius

transformations, called spherical isometries. If X c R." , then GM(X) = {/ e

GM(lF): fX m X}.
The hyperbolic (or Poincaré) metric p in Bn is defined by the formula

(2.3)        tanh2(/>(*,j)/2) = \x -yfl(\x -y\2 + (1 - |x|2)(l - \y\2))

for all x ,y e B" . A basic fact is that p is GM(ß")-invariant.

Throughout the paper p will be a positive integer with p > 2. In most

cases p > p(n,K), where p(n,K) is the integer in the Picard and Schottky

theorem for K-qm mappings in R". Next we shall give a construction of a

metric t following closely S. Rickman's exposition [Ri3]. A difference is that we
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on picard's theorem for entire quasiregular mappings 385

introduce a constant A in formula (2.6) below to ensure a monotone property

of t which will be convenient later on. Therefore our metric x differs slightly

from S. Rickman's metric x. It is easy to show, however, that these two metrics

are equivalent.

For distinct points ax, ... ,ap  in  R    let   Y = R \{ax, ... ,ap},  dY -

{ax, ... ,ap}, and let

(2.4) ß = i min{o-(a.,a,.): 1 < /, /<p, i± j).

It follows from (2.4) that

(2.5) o(x) = o(x,dY)< |-2£

-=7"

for all x 6 Y. Denote Ba(z,r) = {w G R : a(z,w) < r} for z G R and

r € (0, n/2]. Let U, = 5, (a,, ß)\{a}} , j = 1, ... ,p . U = \fJ=xUrk metric
xY = t on Y is defined by the element of length

dt (x) = —.-n—. .,   .-rr\        x € {/,,        j=\,...,p
a(x,a)\og(A/o(x,a))' J'

(2.6) -^

The constant A is chosen so that dx(x)/da is monotonically decreasing as a

function of ct(x) = o(x,dY). Since cr(x,a ) < n we may choose ^4 = ne

(this choice is fixed throughout the paper). Explicitly, x(x,y) is defined by the

formula

(2.6)' x(x,y) = inf [ dx(z)
y   Jy

where the infimum is taken over all curves y with a ( y ) < oo and x ,y e y. It

follows from the above monotone property of dx(x) that for all x ,y g Y

(2.7) Qxo(x,y)<x(x,y)

where Qx = l/(ßlog(A/ß)). By integrating along circular arcs not intersecting

U , we see that for all x ,y £ Rn\U

(2.8) x(x,y)<Q2a(x,y)

where Q2 = nQx/2. Similarly, one can show that for r g (0,ß) and j =

1, ... ,p

x(dBa(aj,r))<n/log(A/r).

It follows from (2.6) that for 1 < j < p and all x ,y G Uj\{aj}

(2.9) r(x,y)>
\og(A/a(x,a.))

log
log^M^,^))]

Let tT be a sense-preserving spherical isometry with r2(z) = 0, zefi  . For

convenient reference, we point out here that for a g (0, n/2), x ,y G R

(2.10) a(x,y) = ao\t(y)\ = tana.
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By (2.10) we get

(2.11) Ba(0,a) = B"(tana).

It is also clear that for a(x ,y) = n/2 and 0 < a < n/2

(2.12) Bo(x,a) = Rn\Ba(y,n/2-a).

In what follows, n>2,K>l,p>2, Y,ß,A = ne will be fixed as de-

fined above. Note that xhY(h(x),h(y)) = xy(x,y) for spherical isometries h.

2.13.    Lemma. Let x,y G C7. , j — \, ... ,p. Then

\og(A/a(y,aj))
x(x,y)- log <7tQ,

log(A/a(x,aj))

where Qx is as in (2.7).

Proof. As pointed out in [Ri3, p. 138], a result of this form follows easily from

the definitions.

2.14.    Lemma. For all x ,y G F the following inequality holds

\og(A/a(x)) I
r(x,y) >ß3 log

\og(A/a(y))

where o(z) = o(z,dY) and ß3 depends only on ß.

Proof. By relabeling the points if necessary, we may assume a(x) > a(y).

Consider two cases.

Case A. a(y) > ß/2.

Lei D= l/\og(A/a(x)) and d = D\og(A/a(y)). Then D< 1 by (2.5). We

obtain

j     n„    ,,,,>,     A/o(y) - A/a(x)
d < D(log(A/a(x)) +    '     ,,  ,  {   K  ' = 1 +

A/a(x)

and hence

(2.15) \ogd < D
UCv)     /

1    <Do(x,y)/o(y).

In Case A, the inequality a(y) > ß/2 holds, and therefore by (2.15) and by the

proof of (2.7) we obtain

\ogd<2x(x,y)/(ßQx)

where Qx = 2/(ßlog(2A/ß)). The desired inequality with QiA = \/\og(2A/ß)

therefore holds in Case A.
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ON PICARD'S THEOREM FOR ENTIRE QUASIREGULAR MAPPINGS 387

Case B. a(y) < ß/2.

Let j be such that y G U¡. If also x G Í7 , then the proof of Case B

with Q'3B = 1 follows from (2.9). Otherwise x e Y\Uj. Let xx G ôC/. with

x(x,y)>x(xx,y). Then by (2.9)

\og(A/a(y))
i(x,y) > r(xx,y) >log:

A = ne and

i'" —   log(¿/0)

By (2.5) we get because A-ne and a(x) < n

<\og(A/a(y)).
\og(A/a(x))

The last two inequalities show that it suffices to find a constant E g (0,1] such

that

\ogX0^J^>EXog(Xog(Alo(y))).
\og(A/ß)

It is easy to show that we can choose E = (logu>0)/log(Cu;0) < 1 where C =

\og(A/ß) > 2 and wQ = (log(2A/ß))/\og(Alß) > 1 . Hence in Case B we may

choose Q3B = E.

In conclusion, in both Cases A and B we can choose Q} = min{Q3^ , Q3B} ■

Lemma 2.14 is a modification of (2.9). Still another modification is needed.

2.16.    Lemma. For all x,ye Y and all zedY the following inequality holds:

*(x,y)>Q4 log
log(^/cr(x,z))

\og(A/(T(y,z))\

where QA depends only on ß .

Proof. The proof is similar to the proof of Lemma 2.14 and the details are

omitted.

2.17.    Quasihyperbolic metric. Let  G be a proper subdomain of R".   The

quasihyperbolic distance kG(a ,b) of a, b G G is defined by [GP]

ds
(2.18) kr(a,b) = inf  /<-r -, JyyerabJy d(x,dG)

where Tab is the collection of all rectifiable curves y in G with a,b ey . It is

easy to see that kG is a metric on G. For a,b G G set

(2.19) >>,4) = log(1 + -_Í^L__

where d(x) = d(x,dG). It follows from (2.19) that

(2.20) log
d(a)

d(b)
<JG(a,b)< log

d(a)

d(b)
+ log   1 +

\a-b\
d(a)

for all a,b G G. It is well known that jG is a metric on G. As shown in [GP,

(2.2)] the very useful inequality

(2.21) kG(a,b)>jG(a,b)
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holds for all a,b eG. In the opposite direction we have

(2.22) M«.»)Stal(l + j5^j|Ll)_

for beB"(a,d(a)) [Vu2, (2.32)]. Bernoulli's inequality

(2.23) log(l+û5)<alog(l+i)

for 5 > 0, a > 1 , will also be useful. Now (2.22) and (2.23) together yield

(2.24) fcG(fl>6)<_J_,G(fl>è)

for b G B"(a,sd(a)), 5 g (0,1). For some properties of kG the reader is

referred to [GP], [GO], [Vu3].

Let G c R" be a domain, G ^ Rn . A mapping /: G —► R" is said to be

co-normal [Vu2] if

(2.25) a(f(x),f(y))<w(kG(x,y))

holds for all x,y g (7 where co: [0,oo) —» [0,oo) is a homeomorphism with

co(0) = 0. We call / normal if it is cu-normal for some <y. Sometimes the

function co is denoted by cof.

For n = 2, G - B2, and / meromorphic, it is well known (and easy to

prove) that this definition is equivalent to the definition of a normal meromor-

phic function given by Lehto and Virtanen [LV].

The next result shows that normality is a local property of the function.

2.26. Lemma. Let G c R" be a domain and f: G —» R be continuous. Then

f is normal if and only if there exists a homeomorphism to: [0,oo) —► [0,oo)

with ö(0) = 0 such that

a(f(x),f(y))<co(kB(x,y))

for every ball B = B"(x ,r) in G and for all y G B.

Proof. The proof is a somewhat lengthy (although straightforward) discussion

where (2.20)-(2.24) are useful. It should be noted that if co is given, then co

has a majorant depending only on co (thus the majorant is independent of n

and of the geometric and topological properties of G). The details are omitted.

Let {mD: D c R } be a family of metrics. We say that this family is mono-

tone if Dx c D2 implies mD (x,y) > mD (x,y) for all x,y G Dx . For

instance, {kD: D c R" ,D ^ R" is a domain} is a monotone family, and the

same is true if kD is replaced by jD or oD , the restriction of a to D .

2.27. Lemma. Let Gx ,G2 be domains in R." with GXP\G2 ̂0, Gx / R" ^ G1

and assume that there exists c G (0,1) such that

(1)     d(x,3Gx) + d(x,dG2) >cd(x,d(Gx u G2)), for all x e G = GxuG2.
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ON PICARD'S THEOREM FOR ENTIRE QUASIREGULAR MAPPINGS 389

Suppose that f: G —► fG is continuous, fG c R" ; that {mD: D c R"} is a

monotone family of metrics; and that

mfGj(f(x)<f(y)) ^ o)j(kGj(x,y))

for x ,y G Gj and j = 1,2. Then there exists to : [0, oo) —> [0, oo) such that

(2) mfG(f(x),f(y))<co(kG(x,y))

and to(t) —► 0 as t —► 0 provided coft) —► 0, as r —► 0, / = 1,2.

Proof. We consider two cases. Let rf(jc) = d(x ,dG).

Case A. ArG(x, y) < log( 1 + c/4).

In this case \x-y\ < § min{d(x),d(y)} by virtue of (2.21). We may assume

d(x) < d(y). By the hypothesis (1) of the lemma there exists / G {1,2} such

that d(x,dG¡) > %d(x), i.e., B"(x,cd(x)/2) c Gr Fix such /. By relabeling

(if necessary), we may assume that i = 1. Then

y e B"(x,cmin{d(x),d(y)}/4) c Bn(x,\d(x,8GX)).

It follows from (2.24) that

K (x,y) <2jr (x,y) = 21og( 1 +    .   f ]*~/ , , ,, )G,v   »^/_   jGt\   ,?i t> y      mm{dx(x),dx(y)}J

where dx(z) = d(z,dGx). By the above calculation, |jc — y| < \dx(x) and

hence dx(y) > \dx(x). The last inequality, together with (2.23) and (2.21),

now yields

4<Ji(Jc,y)<21og(l + fci!)

8

< ~kG(x,y).

Conclusion: In Case A we have

mfG(f(x),f(y)) <mfGi(f(x),f(y)) <cox(kG¡(x,y))

(2.28) /8 \
<coxi^kG(x,y)j

where also the monotone property of the family {mD} was applied.

Case B. kG(x,y) > Iog(l + c/4).

Fix a geodesic segment y of the quasihyperbolic metric [GO] with x, y G y

and points zx,...,zp+x G y with z, = x, zp+x = y and kG(z¡,z¡+x) =

log( 1 + c/4) for / = 1, ... ,p - 1 and kG(z , z   , ) < log( 1 + c/4), and with
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P < 1 +kG(x,y)C, C = l/log(l +c/4). Then by Case A

mfG(f(x),f(y)) <J2mfG(f(zi)>f(zi+i))
(2.29) j=x

< (1 +kG(x,y)C)max{Tx,T2}

where Ti = tot{* log(l + c/4)).

Hence in Case B we obtain by (2.29)

mfG(f(x),f(y))<2Cmax{Tx,T2}kG(x,y).

Finally, the desired function co is defined as follows with the aid of (2.28)

and (2.29):

co(t) = 2ma\ i co x i-^J ,co2 Mj J ;       t g (0, log(l + c/4)]

co(t) = (Ct + l)max{r,,r2};       r>log(l +c/4).

3.  A REMOVABLE SINGULARITY LEMMA

We begin with the following result of S. Rickman [Ri3]:

3.1. Lemma. For K > 1 and each integer n > 3 there exists a number 5 —

ô(n,K) > 0 and a positive integer p0 = p(n,K) > 3 such that the following

holds. If p > p0 and ax, ... ,ap e R." are distinct points and if f: B" —» Y,

Y = R \{ax, ... ,a }, is K-qm, then

x(f(x),f(y))<Cxmax{p(x,y),ö}

where x is the metric defined in (2.6) and Cx is a constant depending only on

n, K,and ß (cf.  (2.4)).

Throughout this section we assume that p is as in Lemma 3.1. It is easy to

show that p(x ,y) < 2kB„(x ,y) < 2p(x ,y) for all x ,y G B" . Therefore, in the

definition of a normal function of the unit ball B" we may, and shall, replace

the quasihyperbolic metric kB„ by the GM(5")-invariant metric p.

3.2. Corollary. Let f:B"—>Y be as in Lemma 3.1. Then f is normal and

furthermore

o(f(x), f(y)) < C2p(x,y)° ;        a = KXI(X~n)

for all x ,y G B" where C2 depends only on n, K, and ß.

Proof. The proof follows from (2.7), 3.1, and [Vu2, 5.8].

3.3. Corollary. Let f: B" —► Y, be as in Lemma 3.1 and z G {ax, ... ,a }.

Then vl(x) = \og(Ala(f(x), z)) satisfies a Harnack condition

(3.4) v}(x) < C,v2f(y)
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for all x ,y G B" with \x - y\ < ( 1 - \x\)/2, where C} depends only on n, K,

and ß.

Proof. It follows easily from (2.3) that p(x,y) < log6 for all x,y e B" with

\x-y\ <(l-|x|)/2. By 2.16 and 3.1

Q4\og(vzf(x)/vzf(y)) < x(f(x),f(y)) < Cx max{<5, log6}

for all x ,y G B"  with  |jc - y\ < (1 - \x\)/2 and hence (3.4) follows with

C3 = exp{C, max{S, log6}/Q4}.

We next consider the problem of extending a K-qm mapping to an isolated

singularity. We are mainly interested in finding a quantitative estimate for the

modulus of continuity of the extended mapping.

3.4.    Lemma. Let Y be as in Lemma 3.1 and let f: B"\{0} -* Y be K-qm.

Then f has a limit at 0. Denote by f the extended mapping. Then

T(f(x) ,f(y)) < CAp(x,yf ;       a = Kx,{X-n)

for all x,y G B" , where C4 depends only on n,K, and ß .

Proof. The (finite or infinite) limit

lim/(*) = /* (0)
x—>0

exists by [Ril, 1.2]. Consider two cases. We may assume that / is nonconstant.

Case A. f*(0)eY.

In this case the assertion follows from 3.2 with the constant C2.

CaseB. f(0)edY.

Since the left side of the asserted inequality is invariant under spherical

isometries, we may assume that /""(0) = ax . By 3.3, the function

v¡(x) = \og(Ala(f(x),ai))

satisfies a Harnack condition in   5"\{0}.    That is,  if x  G  Bn\{0}   and

B"(x,2r)cB"\{0},then

(3.5) _max viz) < C.jnin viz);        1 < i <p
B"(x,r) B"{x,r)

where   C4   depends only on   n,   K,   ß.    Next it follows from (3.5) that

[Vul, 3.3]

(3.6) maxviz) < C.minviz);       iG(0,^]
|z|=í    ' 5 \z\=t    ' l

for i = 1, ... ,p , where C5 > C4 depends only on n , K, ß .

For t G (0,i] let Rt = Bn(X2)\E"(t2). We shall find a quantitative upper

bound for the spherical diameter o(fS"~ (t)), t G (0, j].

For each t G (0,^] choose xt G S"~ (t) and let I(t) be the set of all

those indices  i for which a(f(xt),aj) > ß.   Then card I(t) > p - 1   and
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v.(x,) < log(A/ß) for i G I(t). It follows from (3.6) that if t G (0, {], ie I(t),

and \y\ = t, then

a(/(yM,.)>^(/?M)C5 = C6.

Because /? > 3 and card I(t) > p - 1   for all 0 < t < \ , it follows that

/(I) n /(i2) ¿ 0 and hence there is jt G /(i) n I(t2)  for each í G (0, J].

Because a. G 97, it follows from the maximum principle (or from the fact

that / is open) that

/(*,) n *,(«,,, c6) = 0.

Let r7, be the set of all curves y: [0,1} -* jf with y(0) e fS"~x(t) and

7(l)e9fiff(a.,C6), t G (0, ^]. Denote by Tr the set of all maximal liftings

of the elements of 1^ , starting at Sn~x(t) (for terminology, see [MRV3, 3.11]).

It follows from [MRV3, 3.12] that each a g T? intersects either Sn~ (*■) or

S"~l(t2), 0 < t < i . Therefore by a standard inequality [VI, 7.5]

(3.7) M(r()<2w„_1(logl/201""

for t G (0, j). By performing an auxiliary Möbius transformation and a spher-

ical symmetrization one can show that (cf. [Vu3, 7.32, (7.24), (2.27), 1.17])

(3.8) M(tt) > con_x(\og(XnC7/a(fS"-X(t)))x-n

where kn G [4,2ea"~x) is a constant depending only on n and C7 =

4(1 - C¡)C~2. Because M^) < KM(Yt) by [V2], it follows from (3.7) and

(3.8) that

(3.9) o(fS"-X(t))<C1Xn(2t)a;        a = (2K)XI{X~n)

for all t G (0, j). Hence there exists a number i0 G (0, j) depending only on

n , K, and ß such that

f*B"(t) c Ba(f(0),tT(fS"-x(t))) c fija, ,yS)

whenever f e (0, r0].

It follows from 2.26 and 3.2 that /|ß"\{0} is fc^-normal where cox(t) =

Csf and Cg depends only on n,K,ß. On the other hand, f*\B"(t0) is co2-

normal with co2(t) = C9ta by [Vu2, 5.8] where C9 depends only on n,K,ß .

Finally, by the proof of Lemma 2.27 we see that f* is w-normal in B" with

co(t) = 2max{cox(St/t0),co2(St/t0)} for small t.

As a corollary we obtain a result due to L. Carleson [C] (see also [M2]) in the

case of meromorphic functions.

3.10. Corollary. Let K > 1, Y as in Lemma 3.1, let 6 > 0, R(\ ,e2B) =

{zeR":l <\z\<e26}, and let f:R(l,e28)-+ Y be K-qm. Then

o(fS     (e )) < Cxoe      ;       a = (2K)

where C10 depends only on n,K,ß .

Proof. Apply the proof of Lemma 3.4 to a slightly smaller annulus.
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4. The proof of Theorem 1.1

In this section we prove the main result of this paper.

4.1. Theorem. Let co: [0,oo) —► [0,oo) be a homeomorphism with co(0) = 0,

let (b¡) be a sequence in R" with \b¡\ = 2', and let f: R" -* R" be a K-qr

mapping such that 1/(6,01 < 1 for all i - 1,2,..., and the following holds.

For each i = 1,2,..., the mapping f\A¡ with Ai = Bn(2i+X)\B~"(2!~X), is

co-normal. Then f is a constant.

Proof From the proof of [Vu2, 5.13] and [Vul, 3.3] it follows that \f(x)\ <

Dx < oo for all x G \J°1X S"~ (2'). If / is a constant there is nothing to

prove. Otherwise / is open and hence \f(x)\ < Dx for all x G R" . But this

contradicts the Liouville theorem in [MRV2, 3.9].

4.2. Proof of Theorem 1.1. If f~x W is bounded, the limit exists by [Ril, 1.2].

Thus we may assume that /" W is not bounded, and without loss of generality

we may assume that f~ W = {2 ex: k = 1,2,...}. Let

^ = ß"(2'+1)\5"(2'-1),       ¿; = 4\{2'e,}.

From 2.26 it follows that f\Ai is eonormal where co depends only on n,K, ß ,

and from 3.4 and 2.26 we also conclude that f\A¡ is eu,-normal where cox de-

pends only on n, K, and ß . Thus after a rescaling the hypotheses of Theorem

4.1 are satisfied, and accordingly / is a constant and the limit exists.
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