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ON PINCHING DEFORMATIONS OF RATIONAL MAPS

By LElI TAN

ABSTRACT. — We introduce the notion of theynamical lengttof an invariant arc of a rational map.
A pinching deformationis a sequence of topological deformations Rfsuch that the corresponding
dynamical length shrinks to zero. We show that if the sequence converges to a rational map then the
spherical diameter of the corresponding arc also shrinks to zero. We use this result to show that if the
grand orbits of the closure of finitely many such arcs separate the Julia set, the deformafiotiserfe.
This is a generalization of a result stated by P. Makienko but with a different approach. We also present a
rich collection of examples.
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RESUME. — Nous introduisons la notion dengueur dynamiquel’'un arc invariant par une fraction
rationnelleR. Une déformation pincéest une suite de déformations topologiquesitgui contracte les
longueurs dynamiques correspondantes jusqu’a zéro. On montre que si la suite converge a une fraction
rationnelle, le diamétre sphérique des arcs correspondants tend également vers zéro. Nous utilisons ce
résultat pour montrer que, si l'orbite inverse de I'adhérence d’un nombre fini de tels arcs sépare I'ensemble
de Julia, la suite des déformations diverge. Ceci est une forme plus générale d'un résultat énoncé par
P. Makienko, mais avec une approche différente. Nous présentons également une large classe d’exemples
divers.
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1. Introduction

Pinching deformations for rational maps were first introduced by P. Makienko from the
analogy of Kleinian groups. A recent paper of his [5] states a result (part of Theorem A)
about divergence of such deformations, together with many interesting applications. This result,
however, relies on two intermediate statements, the proofs of which seem incomplete (see
Appendix A below). We present here a generalization of it, from a different approach. Our
method is based upon C. Petersen proof of a similar result [9].

We start with a

DerINITION (Dynamical length of an invariant Set- For a mapR, we say that a set is
R-invariantif R(v) C . If furthermorey C V C C, with V a hyperbolic open set, we define the
dynamical lengthiy (v, R) relative toV to be

ly (v, R) =supdy (z, R(z))7

zEy

wheredy denotes the hyperbolic metric &n Note that ifV’ DV, Iy (v, R) < ly (v, R) by the
Schwarz Lemma. For explicit examples see the next definition.
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354 L. TAN

Denote bydiam, the spherical diameter. In the following we will always assume thest
connectedOne of our central topics here is to relé€~, R) to diam, (7). Roughly speaking,
we will show that for R a degree> 1 rational map andR, a sequence of rational maps
topologically conjugate ta? with h,, as conjugacy such that ) (h.(v), R,) — 0, if R,
converges uniformly thettiam,, (h,, (7)) — 0. We will start with a concrete construction of such
pairs(h,, R,), namely pinching deformations &. Our definition is slightly more general than
that of Makienko [5].

DEFINITION (The model system-For! > 0, let B; denote the horizontal stripz + iy |
ly| < 3;}, andT, denote the translation— z + o. We consider the coupleB;, T.,) as a model
dynamical system, witfR as the central line. For the systgi;,,71), and for anyz € R, the
distancedp, (2,71(z)) coincides with the hyperbolic length of the segmentl’i(z)], and is
exactlylo (see for example McMullen [6], p. 12). Therefalg, (R,73) = lo. More generally
I, (R, Ty1,) = 1.

DEFINITION (The pinching modgl—Forly > 0 andt € [0,1], let ¢t — I; be a decreasing
continuous function tending @ ast — 1~, and choose a quasi-conformal méip B;, — Bj,
such thatS;(z) is aC*-function of (¢, z), S;(R) = R andS; conjugate$B;,, T1) to (B, , 1}, /1, )-
Ast— 17,1l =g, (R, T/,) — 0 and the quasi-conformal constant®ftends tooco.

(Although the concrete form &, (z) is not relevant for the purpose of this work, one should
keep in mind that a more careful choice of it may be important for further studies.)

DEFINITION (Admissible pai). — Let R:C — C be a rational map ank € N. An open arc
v c C (i.e. a continuous and injective image of the segniernt)) together with a neighborhood
U of it, is called R*-admissibleif:
1. R¥(y) =+, R¥(U) = U, R¥|y is univalent andU, R(U),..., R¥=1(U) are mutually
disjoint (note that/ cannot contain critical points but may contain points in their forward orbits).
2. There is a conformal normalizatidn: (U, v, R*) — (B,, R, T1) for somely > 0, in other
words there exists an analytic homeomorphidri/ — B;, mappingy onto R and satisfying
(I)ORk|U :Tl o (I)|U.

Thus U is an RF-invariant strip withy as the central line. We havg (v, R*) = Iy, and
it coincides with the hyperbolic length (relative &0) of the sub-arc iny between a point
andR*(z).

Examples of admissible pairs can be obtained, as in [5], by lifting suitable geodesics with
collar neighborhoods in the quotient Riemann surfac®,abr, as in [9], by projecting lines and
strips in the logarithmic linearizing coordinates of an attracting point, or in the Fatou coordinate
of a parabolic point. Details and further examples can be found in 85-7 below, including an
example withy containing postcritical points.

A more concrete example can be given for the még- ¢ with 0 < ¢ < 1/4, with ~ the real
segment between the two fixed points, diida suitable neighborhood of, symmetric with
respect taR.

DEFINITION (Pinching. — Let (v, U) be anR*-admissible pair. Fix a choice &f; on B,.
Denote byE:|y the pulled back ellipse field of the circle field dBy, by S; o ®. With the
help of R it generates an invariant ellipse field, of R, conformal outside the grand orbit
of U. Choose a quasi-conformal map: (C, E;) — C integratingE; (given by Ahlfors—Bers
Theorem), and sk, = ¢, 0 Rop; . We call(¢, Ry )ejo,1) apath of pinching deformatioresf
R along(v,U). Note that ify; is replaced byH; o ¢;, with H; a Mébius transformation, then
Ry is replaced byH; o Ry o H; .
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ON PINCHING DEFORMATIONS OF RATIONAL MAPS 355

Remarkl.— For a path of pinching deformations the pé&ik, U;) := (¢:(7), p:(U)) is
RF-admissible andb, shrinks the corresponding dynamical lengtidtan other words

lUt(%faRf) :lt—>0 ast — 1.

-1
This is because the composition of the following mappidigsl U2 By, N By, is
conformal, mappingy; to R and conjugatingRy to T, ,1,- As U is contained in the Fatou
set F(R), we have alsdpg,)(v:, Rf) — 0. Moreover, for any fixed, the dynamical length
lu, (¢, RF) remains unchanged if the coule;, R;) is replaced by H; o ¢y, Hy o Ry o H; ).

DEeFINITION (Pinching deformations along an admissible)setMore generally, we call an
admissible sefor a rational mapR, a collection of finitely many admissible paif$+¢, U;),
i=1,...,v} such that the orbits of distinéf;’s are disjoint. We can then define on ed¢hthe
pulled back ellipse field by the correspondifig, o ®; (for some choice o, ;), and then an
R-invariant ellipse field. As above, this will generate, for each choice of the integratingmap
a path of pinching deformatior(s;, R;) along{(~*,U;)}.

We want to study the behavior &f; ast — 1, in particular the following questions:

1 (convergence). When does a subsequendg abnverge uniformly? How about; ?

1’ (path convergence). When does the entire gatbonverge uniformly?

Denote by= the uniform convergence df.

2 (consequence of convergence). In cRse = G for somet,, — 1, what can we say about

the limit of ¢, () and the dynamics af?

3 (divergence). When does no sequencefpfo R; o H; ' converge uniformly, no matter

which M6bius mapd{; are chosen?

Denote byl4; the space of rational maps of degrewith the topology of uniform convergence
onC, and byV, the quotient topological space#f; under M6bius conjugation. Let: Uy — V,
be the canonical projection. For a family; € U, we say thatr(F;) — oo if 7(F;) has no
convergent sequences. Question 3 can be then reformulated as follows:

3’ (divergence). When doeq R;) — oo ast — 1?

In this paper we will mainly study questions 2 and 3, following Makienko (but in a more
general setting). Question 2 will be relevant in answering question 3 with an argument by
contradiction. For papers treating Question 1, see Cui [2,3] and Haissinsky [4].

For A, B c C, we say thatd separates3 if B intersects more than one componentof. A.

So if A does not separatB, then B is contained in the union oft together with exactly one
component ofC \. A. Recall thatdiam, denotes the spherical diameter. Denote{yR) the
Fatou set ofR. Our main result is:

THEOREM A. —Let R be a rational map of degreg 2, with {(v*,U;), i =1,...,v} an
admissible set and’ of periodk;. Setlo = U, U,,>o R™ (v') andT'; = R~/ (T'y). Assume that
(@1, Ry) is a path of pinching deformations &f along this admissible séin particular ¢, is a
topological conjugacy fronk to R; andi,, v, (st (79, Rfi) — 0 (ast — 1) for eachi). More
generally assume thap, are topological conjugacies fron® to rational mapsR; such that
Lr(ro (pe(v1), RFY) — 0 (ast — 1) for eachi.

(a) AssumeR;, = G for some sequenag — 1. Then

1. For anyj > 0 and any connected compondhofI';, we havediam,¢;, (I') — 0 as
n — oo. Moreover ifl" is a component afy, the sequence, , (I') splits into at most
finitely many subsequences, each converging to a parabolic periodic pdaiht of

2. For everyj > 0, there is exactly one componeht of C \ T; intersectingJ (R). For
any other componemsg of C < L, diamgspy, (A_;.) —0ast, — 1. Forj =0, and
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356 L. TAN

any componenf\ of C \ Ty distinct fromAg, the sequence, (A_{J) splits into at
most finitely many subsequences, each converging to a parabolic periodic péint of
Moreover all critical points are contained if\g.
(b) If T'; separates/(R) for somej > 0, or I'y separates the critical points, ther{R;) — co
ast — 1.

Part (b) generalizes Theorem A.(2) in [5]. Examples realizing different cases can be found
in 87 below. Under the extra assumption tiiats geometrically finite, Cui announced a result
in [3] which can be considered as the converse of (b), namédly does not separat&(R) for
all j > 0, then for some suitable choice of pinching deformations, both gatlasdy, converge
uniformly to G andp; respectively, ands o o1 = ¢1 o R.

The proof of our theorem is in fact a soft argument, and may lead to various side results with
weaker assumptions. We will mention three of them in the paper: Proposition B drops off the
rationality of R;, Propositions B and C do not require the existence of topological conjugacies
and Propositions C and D replace the exact forward invariance assumptiérbgfthe weak
forward invariance (i.e.R* (v') C ~%).

In the following, we will split Theorem A into several independent parts: Part (a).1 will follow
from Lemma 2.1, (a).2 is proved in 83, and (b) in 84. Propositions B and C will be stated and
proved in §2. Proposition D is in §3. In 86 we will give interpretations of our results in terms
of Teichmuiller theory of rational maps (Theorem E and Corollary F). §7 contains many relevant
examples. Impatient readers can read directly Lemmas 2.1 and 3.1. The rest follows more or less
naturally.

2. Consequence of convergence, |

The following simple facts will be used frequently and implicitly: If a sequence of continuous
mapsF,, : C — C converges uniformly to a ma@, then for any convergent sequenge— 2z,
(of points or non-empty compact sets in the Hausdorff topology), we havg, (z,,) = G(zo0)-
If furthermoreF,, = R,, are rational maps of constant degree tliems a rational map of the
same degree, anll* = G™ for any fixed integefn > 0. If moreoverz,, = h,,(z), whereh,, is
a topological conjugacy fromk, to R,, thenz., is fixed byG whenevetr: is fixed by Ry.

LEMMA 2.1. - LetR be arational map of degreé> 2 and(v, U) be anR*-admissible pair.
Let R,, be a sequence of rational maps topologically conjugat&twith /,, as conjugacies.
Assume that, /) (hn(7), RE) — 0 and R, = G. Then

lim diam,h,(7) = 0.
Moreover the sequendg, () splits into at most finitely many subsequences, each converging to
a parabolic periodic point of7.

Proof. —The idea is to adopt Petersen’s proof in [9] (of his Proposition 4.1 and 4.3) to a more
general setting.

Using the classification of periodic Fatou components one can easily sholi thabntained
in the immediate attracting basinof a periodic poinky, which is either attracting (non-super-
attracting) or parabolic.

The period ofa dividesk (may be equal). The period df is equal tok in the parabolic case
with (R*)'(a) = 1, and is equal to the period of otherwise.

To simplify the notation sef = R*, f,, = Rk andg = G*, so f,, = g. Set alsoy,, = h,,(7),
Un=hn(U), an = hp(a) andA,, = h,(A) etc.
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ON PINCHING DEFORMATIONS OF RATIONAL MAPS 357

To obtain a contradiction, suppoBewsup,,_, ., diam 7, > 0.

Stepl. Taking a few subsequences if necessary we may assume also:

an — o € C, 7, — Yo in the Hausdorff topology on compact sets, afiam., (Ys,) > 0.
As v, is connectedY, is a continuum (compact connected).

Replacingf,, by H o f, o H~' andg by H o go H~! if necessary, wher& is a Mobius map
sendingu, to 0, we may assume,, = 0.

Step2. We claim thaty(0) =0, ¢’(0) = 1: As f,, fixesa, anda, — 0, we haveg(0) = 0.
Furthermore, ifx is parabolic we hav¢! («,,) = 1; if « is attracting, the Maskit inequality (see
Lemma 5.1 below and the subsequent remark) gf/€e,,) — 1. In both caseg’(0) = 1. This
implies g, thereforef,, for largen, are univalent on a fixed neighborhobxg of 0.

Step3. Normalization so that/,, ¢ C*. Let z,, € 9A,, be a point closest teo. We claim that
|z, | = r, for otherwisedA,, C D, but f,, is not injective on any neighborhood 6f\,,.

Taking again a subsequence if necessary, we may assymez., # 0. SetH,,(z) = %
if 2z, # o0 and H,,(z) = z — a,, otherwise, sef,(z) = % if 200 Z00 andHyo(2) = 2
otherwise. In any casH,,(«,) =0, H,(z,) = o0 andH,, = Ho,

Conjugatingf,, by H,, andg by H if necessary, we may assumg = 0 and z,, = co. In
particularU,, C A, ~ {«a,, } C C*.

Step4. Inequalities We will use the following basic inequality (see for example Milnor, [8],
Appendix A): For any simply connected domainC C*, any z € V, and for A\y/(z) the
coefficient function of the hyperbolic metric dn, we have:

1 1

> > .
AVE) 2 3 2

Setn(z) = 2| - Let d,, denote the hyperbolic metric ofd* with » as coefficient function.
Then for any are: C V' C C*, we havelength, (k) < lengthy, (k).
n(

CLAIM . —For anyn and anyz € ,,, we havel, (f,(z), z) <lu, (Yn, fn)-
Proof. —Let « be the sub-arc of,, betweenf,,(z) andz. Then

dy, (fn(z), z) < lengthn(n) <lengthy, (k) = lu, (Vns fn)-
By assumptioriy,, (vn, fn) — 0 @asn — oc.

Step5. Contradiction Note thatf,, = g. Let z € (Yo N D) ~ {0} such thatg(z) # oc.
Choose a sequenag < 7, and thenz,, € v,, such thatc,, — = asn — co. Then

dn(g(:c),x) < dn(g(:c),g(a?n)) +dn(g(xn)afn(a7n)) +dn(fn(a7n) ) +d (xnv ).

The right hand side convergesi@sn — oo, sinceg is continuousy,, = g,

dy (fa(@n)zn) <lu, (Y, fn) —

Thusg(x) = z. Henceg(z) =z forall z € (Yoo N D,.) ~ {0}. This implies thay is the identity
map asY,, N D, is a non-empty continuum. But = G* is a rational map of degree 1.
A contradiction. O

The following statement stresses the essence of the above result and drops off irrelevant
assumptions such as the rationalityfotnd R,, and the topological conjugations between them.
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358 L. TAN

PROPOSITION B. —Let F;, be any sequence of holomorphic maps, each defined on a proper
attracting basinA,, of degreed,, > 2 of an attracting or parabolic fixed point,,, and with
(vn, Uyn) an F2-admissible pair inA,,. Assumey,, — a... Then the following four properties
cannot all hold at the same time

1.1y, (, F2) — 0.

2.limsup diam, (7)) > 0.

3. F,, converges uniformly on some neighborhood.gf to a mapG.

4. G #£d.

Proof. —Setf,, = F, g = G9. Assume that all four conditions of the proposition are satisfied.
Then Steps 1-5 above lead to a contradiction.

Examples satisfying 1, 2 and 4 are trivial to construct, satisfying 1, 2 and 3 can be constructed
via normalization, and 2, 3 and 4 can be constructed by sefing G for a suitableG. Our
pinching deformations provide examples satisfying 1, 3 and 4, and the conclusion is that 2 is not
satisfied.

We state here a result whose proof is classical (see for example Petersen [9], Lemma 3.3):

LEMMA 2.2.— For (v,U) an admissible pair, the closure efis equal toy U {a} U {5},
with « as the limit of any forward orbit iny and an attractingnon-superattractinpor parabolic
point and g as the limit of any backward orbit in and a periodic point in/(R).

(With the help of the Snail Lemma one can also show thi either repelling or parabolic.
But we don’t need the result here.)

The following is another variation of Lemma 2.1. Again, the topological conjugations are not
required, nor the exact forward invariance of admissible pairs.

PropPOSITION C. —For d > 2 and k > 0, assume thaR,, is a sequence of rational maps of
degreed each having amRk -invariant connected set, (i.e., R* (Yn) C ), satisfying
(1) vn C F(Ry) andip(g,)(yn, RE) — 0 asn — oo (0r v, C C \ {an, bn, cn},

n

inf{d,,(an,bn),dg(bn,cn),dg(cn,an) |ne N} >0

and ZE\{an,bn,cn} (7"7 Rfl) - O)!

(2) R,, converges uniformly.

Then diam, (3,) — 0. Moreover, if for eachn, v, together with some neighborhodd,
forms an admissible pair, angl, contains an attracting periodic point, thep, accumulates
to parabolic points of7 asn — co.

As an example, tak&,, = R, 79 a compact connected invariant set contained in the immediate
basin A of an (super)-attracting fixed point ang, = R" (). By Schwarz’ LemmaR|, is
a strong contraction with respect to the hyperbolic metrichorFrom this it is easy to show
lp(r)(Tn, R) — 0. And, of coursediamq (7,) — 0.

Proof of Proposition C(note the Maskit inequality is not needed The idea to show
diam,(7,) — 0 is very similar. So we will only give a sketch. Again sgt= R* andg = lim f,,.
Skip Step 2 above. In Step 3 perturb three repelling periodic poingsaod then normaliz¢,,
so thatF'(f,) C C ~ {0,1}. In Steps 4 and 5 replace the two-point-metfjcby the three-
point-(hyperbolic)-metridc. 40,1} and then use the inequality. (0,1} < dr(y,) coming from
Schwarz’ Lemma. (This idea was pointed out to me by C. McMullen.)

Now we show thaty, accumulates to parabolic points, under the extra assumption that
v, is part of an admissible pair arg, contains an attracting point,,. By Lemma 2.2,
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ON PINCHING DEFORMATIONS OF RATIONAL MAPS 359

T = U {an} U{B,} with 5, in the Julia set. Asy, is attracting,«,, # 5,. Now assume
Tn, — {x} for some subsequence. Thep, — = andj,,, — =. Thereforer is a multiple fixed
pointof G¥. So(G*) (z) =1. O

Proof of Theorem A. Paifa).l — Assume at first thaf' is a component of

ro=J U B"G).

i=1m>0

As eachy’ is periodic forR, the sef is the union of finitely many elements {rRm(?)}i,m. To
obtain a contradiction we assuieisup diam, (¢¢, (I')) > 0. Then there areé, m andn;, such
that R (~¢) has definite spherical diameter under the actions,of. As (R™ (vH), R™(U;)) is
an admissible pair, we can apply Lemma 2.1 or Proposition C and get a contradiction.

Now let I be a connected componentBf = R~7(I'y). If its diameter under the actions
of ¢, does not tend ta), we may assume (taking a few subsequences if necessary)
o, (T") =T, diam T’ > 0andy;, (I') — s. BUt G/ (I') = I's, (WhereG is the uniform
limit of R;, )andl' is a point by above. This is not possible.

Now let o be the attracting or parabolic pointin (by Lemma 2.2). Then either;, (o) are
all attracting, or all parabolic with constant multiplier. Applying Lemma 2.1 or Proposition C we
conclude thaty;, (T") accumulates to parabolic points@f for any componerit of I'y. O

3. Consequence of convergence, |1

LEMMA 3.1.- Let R be a rational map of degreé > 2 and h,, a sequence of homeomor-
phisms such thak,, := h,, o Ro h; ! are rational maps. Assumi,, =% G. Then for any open
setD containing points of/ (R) and having a connected closutén inf diam, h., (D) > 0.

Proof. —To obtain a contradiction we assume, taking a few subsequences if necessary, that
h,(D) converges to a point sétr.. }. Let z, € J(G) be a repelling periodic point, of period,
say p, not in the forward orbit ofr..,. By the stability of repelling periodic points, there is a
continuous magP from a neighborhoodV' of G in U, to C such thatP(F) is a repelling
p-periodic point forf’ € " andP(G) = z... Letz, = P(R,,) for any largen such that,, € \V.

As h,, conjugatesk to R,,, the pointh_ !(z,) is a repellingp-periodic point forR. But R has

only finitely many such points. So taking again a subsequence if necessary, we may assume
h;1(zn) = z, independent ofi. As D N J(R) # () and preimages of are dense iV (R), there

is y € D such thatR™(y) = = for somem > 0. Sety,, = h,,(y). We havey,, € h,(D) — oo,
andR™(y,) = zn @SR (yn) = R (hny) = hn R™y = hpz = 2,). Thereforez,, — G™ (2).

On the other hand,, = P(R,) — zeo- S02+ = G™ (2 ). This contradicts the choice of, to

be disjoint from the orbit of.,. O

The following result is purely topological, we leave the proof to the reader.

LEMMA 3.2.— Let h,:S% — S? be a sequence of homeomorphisms. Let S? be a
compact set having finitely many connected components. Assuméidhaf(h,, (L)) — 0
for every componenf’ of L. If there is one connected componefst of S? < L with
liminf diam o h,,(A) > 0, then for any other componenty of S? \ L, diam,h.,,(A’) — 0.

The following result will be proved in parallel with Theorem A, part (a).2.
PROPOSITION D. —Let R be a rational map of degre¢ > 2. Let~?, i = 1,...,v, be finitely
many R*:-invariant connected set§.e R*(y") C 4*) contained in the Fatou sef(R). Set
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Lo = closure(J;U,,5o R™(7")) andT'; = R™T. Let R, = h,, o Ro ;' be a sequence
of rational maps withh,, topological conjugacies such thatax; [p(g,)(hn (%), Ri) — 0 as
n — oo. If R,, converges uniformly, then exactly one comporendf C \ T'; intersects/(R),
and diamyhy,(A") — 0 for any other componend\’ of C \ I';. Consequently, if somg;
separates/(R), the sequenc®,, has no convergent subsequences.

A quick example for the divergence is a m&pwith a Herman ringA and a core curve.
One can make quasi-conformal deformationsiogo that the modulus oft tends toco and
therefore the hyperbolic length (in particular the dynamical length) i&flative to A tends to0.
As v is Julia-separating, these deformations do not have convergent subsequences. This case was
included in Theorem A.(1) of [5].

Proof of Proposition D and Theorem A, pafh).2 —Set R,, = R;, and h,, = ¢, . By
assumptionR,, = G. Fix j > 0. Using the fact that holomorphic maps contract hyperbolic
metrics, it is easy to see that the corresponding dynamical length (@™~*) tends to0 for
any m andi. This allows us to apply Proposition C and the proof of Theorem A, part (a).1,
to conclude thatdiam, (h,(I")) — 0 for every component”’ of T;. Furthermoreh,,(y?)
accumulates to the set of finitely mak¥:periodic points of5.

Perturbing a repelling periodic point if(G) of high period we may show thaf R) ~T'q #
and therefore/(R) \. T'; # 0.

Fix again anyj > 0. We choose a componer; of C \. T'; containing points of/(R).

By Lemma 3.1,liminf, o diam,h,(A;) > 0. So, applying Lemma 3.2, we know that
diam,h, (A7) — 0 for any other componem\’ of C . T';. Applying Lemma 3.1 again, we
conclude that\’ N J(R) = 0.

This ends the proof of Proposition D.

Assume nowj = 0. Then by Theorem A, part (a).1, for ady, # Ao, h,(A}) accumulates
to the (finite) set of parabolic periodic points @f As a critical point inAj, would converge to
a critical point ofG, this is not possible. So critical points &f are contained i\ U T, and
therefore inA\y, asI'y does not contain critical points by definition of admissible set, and the fact
that for an admissible pairy, U), ¥ =y U {a} U {3} with « an attracting (non-superattracting)
or parabolic point and a periodic point inJ(R) thus non-critical (Lemma 2.2).0

4. DivergenceinV,

Recall thatr : U; — V), denotes the canonical projection by the action of Mdbius conjugations
only.

LEMMA 4.1.- Let F,,,G € Uy. Thenn(F,) — «(G) if and only if there is a sequence of
Mo6bius transformationg/,, such thatH,, o F,, 0o H,; ! = G.

Proof. —The sufficiency is due to the fact thats continuous. The necessity is a consequence
of the fact thatr is an open mapping, which can be shown as follows: Alet U/, be open.
ThenH.N :={H o F o H-' F € N} is again open, wherél is a Mobius map, therefore
Un mobius H+(N) is still open. By definition of the quotient topology,

T(N) = w( U H*(N))

H Mobbius

isopeninV;. O
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ON PINCHING DEFORMATIONS OF RATIONAL MAPS 361

Theorem A.(b) now follows from Lemma 4.1 and the fact that part (a) is equally valid if the
couple(yy, R:) is replaced by H; o ¢, H; 0 Ry o Ht_l), for any choices of M6bius mapg;.

5. Admissible pairs, inequalities

We are going to construct admissible pairs following essentially Petersen [9]. In this entire
section we assume that is a rational map of degree 1 with 0 as an attracting or parabolic
fixed point and withA as an immediate attracting basin(of

Recall thatT,, denotes the translation— z + o.

5.1. Attracting case

Assume thab is an attracting (non-super-attracting) fixed point, witas the multiplier (i.e.
w=F'(0)). Lety: A — C be a linearizing coordinate, i.é.o0 F = u1, 1 is holomorphic om\
and locally injective ab. Denote by ~! the local inverse ofy mapping0 to 0, and, by abuse of
notation, any analytic extension of it.

Let ¢q,...,c; denote the critical points fof' in A, not in the backwards orbit df. Then
the setCrity, , = {u "¢ (c;) | n >0, 1 <i <k} consists of the non zero critical values of the
(infinite degreed) branched coverigigFor1 < ¢ < k let C; denote a logarithm of(c;) and M
a logarithm ofu (soRe M < 0). LetG denote the right half grid

g::{n~(—M)+m~2m'—|—Ci|n,m€Z, n >0, 1§i§k}.

So thatz € G if and only if exp(z) € Crity, 5.

Now let us fix a coupl€ M, p/q) with M a logarithm ofy andp/q a rotation number (i.e.
q>0,0<p<q—1andp,q co-prime). Setr = ¢M — p - 2wi. We consider the unioG
of straight lines througlg parallel toO7. Let V be an open straight strip in the complement.
Theny—!exp |‘~/ is univalent and conjugatés to F'7. We may normalize the dynamical system

(V,T;) to a model systenB,,, 1) by a conformal affine map: z — a + (z/7).

Let 7 be the central line of/. Sety = ¢~ exp(¥) andV = ¢~ Lexp(V). Then(v,V) is an
admissible pair with periog.

5.2. Parabolic case

Assume now thaf is a parabolic fixed point foF". There is a rotation number/q such
that F/(0) = e*>™?/4, As A is an immediate basin df, it has period;. A Fatou coordinate is
a holomorphic mapl : A — C semi-conjugating”? to 77 and injective on a Fatou petal at
As in the attracting case, the critical pointsbfare preimages of critical points ét¢, and the
critical values of¥ are contained in a discrete collection of horizontal lines. Vdie an open
horizontal strip in the complement of these lines andyléte its central line. Sey = ¥—1(7)
andV = \I/*l(f/) (where¥ ~! is an appropriate extension of the local inverselofapping a
right half plane into a Fatou petal). Thén, V) is an admissible pair with periagd

5.3. Inequalities

Given an annulus!, letm(A) be its modulus ant{ A) be the hyperbolic length (relative i)
of its unique closed geodesic. They are both conformal invariants and are related as follows (see
McMullen, [6], p. 12):

m(A)-1(A) = .
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For the model systertB;,, R, T ), the quotient surfac®;, /T} is an annulus witlR / T} as its
unique closed geodesic. We hayg (R,T1) = (B, /T1) =l andm(B,/T1) =7/lo.

For a triple(W, x, F') conformally conjugate t¢B;,,R,T1), we havely (s, F) =ly. In the
particular case thdt’ is a straight strip and’ is a translatior{,, the setx is automatically the
central line ofiV’. Denote byh (W) the height ofiV/, i.e. the Euclidean distance between the two

boundary lines ofV. Thenly, (k, T,) = %
Let us go back to the attracting case. We keep the same notatiofl\iLgf ¢) andr be given

as above. Fot € C and the line

O
L—{a+t7,t€R}_{a+s<p m—M),SE]R},
q

we haven + "’“TQT”' € (Tm)" L. Soexp(U,,»o(Tm)" L) consists of; disjoint logarithmic spirals
(possibly straight lines), and — pz performs on them @/¢ rotation aroundd, since the
exponential map semi-conjugatgg to multiplication byy.

Let L be aline |ng passing through a pomt ®bg 1 (c1). Let W be the strip betweeh and
L + 2ri. ThenW — G consists ofi’q strlpsUj, j=0,...,k'q — 1, labelled in their increasing
order relative ofiR, for somek’ € {1,...,k}. MoreoverTA,f(ﬁj) = Ujs1p (modkrg) (Modulo
217,

No)te thatifk’ = 1, the height of eachf is 2 . T sin #, with 6 being the angle betweerand2mi.
This case is realized for example Whﬁmontalns only one critical point (i.é: = 1), or more
particularly whenA is a simply connected quadratic basin.

Following Petersen, define(M,p/q) = [M — £2mi|/(2sinf). A geometric interpretation
of r(M,p/q) is that it is the radius of the circle throudl tangent to the imaginary axis %m%.

Note thatr, @, k', (7]- andé all depend on the choice 6M, p/q).

Define alsor(p, p/q) = inf apreiog (M, p/q).
The second part of the following is a variant of the Maskit—Yoccoz inequality:

LEMMA 5.1.— 1 A pair (y, V) with V' C A is F?-admissible if and only ifthere is a choice
of (M p/q), two setsy C V C C satisfying

Pl exp maQsV univalently ontdV, onto%

(TnMV) (V+2miZ)y=0forn=1,...,q—1,andT; V=V;

The quotienﬁ7/TT is an annulus witﬁy/TT as its core curve.

2.lv(v,F?) = ¢*r(M,p/q) > ¢*r(u,p/q) = q-r(u?,0/1), with the first equality realized if
and only ifV is a straight strip of heighi"'q—’T sin 6.

Proof. —This is pretty standard material. We will only give a sketch of it. Odbe the lattice
in C generated bgmi andlog .. Then we have the following Riemann surfaces isomorphisms:

[exp]

c/Q R o juz M a/F,
The quotienG] consists of finitely many marked points @/2. By definition of admissible
pairy andV descend irC/( to a simple closed curvé and an annular neighborhoef and
then lift to 5 andV in C with a homotopy invariant € € in the form of gM — p27i, with
0<p<q—1.AsV andV are both universal covers df, the map)~—! exp mapsV univalently
ontoV. The rest of part 1 is just as easy.

Now choosed a fundamental quadrilateral in the lift, then there is a pair of arcs i such
that one arc is the translation byof the other. Now the extremal length of the set of arcs joining
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this pair of boundary arcs gives(A) < m with equality if and only ifV/ is a straight
strip of height%’T sinf. Asly (v, F1) =1(A) =n/m(A), we are done. O

Therefore if we have a familyV;,~;, FYY), with Ly, (v, F{) — 0, thenr(p{, %) — 0 and

q
e — 1.

Our Proposition B is a refinement of Proposition 4.3, [9], there condition 1 is replaced
by: A, is a simply connected quadratic basid, lifts to someU; relative to (M,,,p,/q)
so thatr(M,, pn/q) = infamreiog p, (M, pn/q), @andr(u,, pn/q) — 0. Under these conditions

v, (Yn, F2) = ¢*r(pin, pn/q) — 0.

6. Relatingto Teichmdller theory

This section is due to a conversation with C. McMullen. | am grateful for his help. The
presentation is very close to that of Makienko [5]. See also Pilgrim [11].

Let R be a rational map of degree> 2. Denote by~ the grand orbit relation (i.er ~ y
if there aren,m € N such thatR"(z) = R™(y)), by Q¥(R) the union of attracting (non-
superattracting) and parabolic basins minus the grand orbit of critical points and periodic points,
and by X (R) the quotient surfac@s/ ~. By construction the projectiop: Q45 — X (R) is
a covering and thus a hyperbolic isometry. A componenkoR) is either a punctured torus
(coming from an attracting basin @) or a punctured sphere (coming from a parabolic basin).
For any¢ C X (R) denote by its lift by p.

In each punctured torus componédt of X (R), there are homotopy classes of simple closed
curves corresponding to the quotients of loops around the attracting point. Every other simple
closed curve in X (R) lifts to grand orbits of periodic open arcs, and, in casea geodesic, it
has a collar neighborhoad such that(f, E) is the grand orbit of an admissible pair.

The Teichmuller space aR consists of, up to isotopy, paif®, F') such thaty is a quasi-
conformal conjugacy fronk to F'. See McMullen and Sullivan, [7] for details, where it is proved
that Teich(R) ~ Teich X (R) x something else. By abuse of notation, denoterktye natural
projection from Teich(R) into V4. A problem coming from the analogy withrmanifolds is:
when ist( Teich(R)) compact?

Following Pilgrim [11], we make the following

DEFINITION (Cylindery. — We say that aeodesic multicurvé C X (R) (union of finitely
many disjoint simple closed geodesics) representdiaderif someI'; separated(R), where
I'; = R77(Iy) andl, is the closure of the periodic arcs{nWe say thaf? is cylindrical if such
a multicurve exists.

(For intuition about cylinders and how they occur in the study of Kleinian groups, see [11]).

To each geodesic multicurv¢ and a pair(¢, F') as above, there corresponds a unique
geodesic multicurve, (¢) in X (F) isotopic to the quotient od)(f). There is a natural mapping
L¢: Teich(R) — R™T such thatL¢([¢, F]) is the maximum of the hyperbolic lengths of the
geodesics i, (¢). Our results can be now interpreted as follows:

THEOREM E.—If ( represents a cylinder forR, and [¢,,R,] € Teich(R) with
L¢([¢pn, Ryn]) — 0 thenm(R,,) — oo in V.

Proof. -To obtain a contradiction, we assume, taking a subsequence if necessary,
m(R,) — m(G). By Lemma 4.1 there are representativés and G such thatk,, = G. Re-
call that fory c Q4 c F(R) a connectedz*-invariant set, the dynamical length is defined to
belqais (v, R*) = sup, ., doais (2, R*(2)).
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For~ a periodic arc irC, of period sayk, it is also a geodesic ift?’s. So, denoting by:. the
sub-arc ofy between a point and R*(z), we have

Ip(r) (7, RY) <lga (v, RY) < Sup lengthqas (r2) = length x gy (p(7)) < L¢([1d, R)).
z€y

Similarly for any periodic arey, in the lifts of (¢,,) (), lr(r,,) (Y. RE) < L¢([fn, Rn)).

By assumptionL¢ ([¢n, R.]) — 0 asn — co. We can then apply Proposition C to conclude
that diam, (7,) — 0. We can then apply Proposition D to conclude that[fpthe closure of the
union of the periodic arcs ig, andl’; = R~ (T'y), there is exactly one componeht of C \. T
intersecting/(R). This contradicts the assumption tlatepresents a cylinder.o

COROLLARY F.—If R is cylindrical thenm(Teich(f)) is not compact.

Proof. —Our pinching deformations related to a collar neighborhood gfrovide a path
[ot, Ri] € Teich(R) with L¢ ([, Ri]) — 0 ast — 1 (see Remark 1). O

7. Examples and applications

It is known that for f,, and g rational maps,f,, = ¢ if and only if there are choices of
coefficients off,, tending to that of; andg has the same degree sfor n large, in other words,
the uniform convergence topology ofy coincides with the algebraic convergence topology. See
for example Beardon [1], §2.8. The constructions of the following examples are guided by the
idea of perturbing postcritically finite maps and by Pilgrim—Tan’s arc-blowing technique. See
Makienko [5], Pilgrim [11] and Pilgrim—Tan [12,13] for more theoretical treatments. The figures
are drawn by K. Pilgrim.

7.1. Examplesof convergence

Examplel. —f., :z — 2% + ¢o With ¢ = 3/16 < 1/4. Let v = ]o, 3] be the real segment
between the two fixed points ariél a suitable neighborhood af, symmetric with respect t&
and invariant byf.,. Then(~,U) is an admissible pair. Fare [cy, 1/4][, the corresponding.
can be regarded as a path of pinching deformations oélong(~,U). This path converges to
J1/4 @sc — 1/4, with 7 — 1/2. See Fig. 20 in Milnor [8], p. 113.

Example?2. — This is an example where maps have symmetries and, if the pinchinggnaps
are not normalized properly; (o)) may not converge, buk, converges. Let

f(2) ! <z5—%0z3+5(1—52)z), withf’(z)zl_—582((z2_1)2_s2),

T1-s2
Fors > 0 andc = /1 + s the largest critical pointf (c) = %(3 —1—45).S0f(c) =cifand
only if s =5/9. From this one can deduce that foe g — ¢ the mapf has four real critical
pointstc, +¢’ and five real fixed points-3, +«, 0 positioned in the following order:
—f<—a<—c<—c<0<d<e<ax<p
and thatay are attracting. Now pinching simultaneoudly 3, —a| and o, 5[ we get a
converging sequence of polynomials. However, ggra path of conjugacies, normalized so

that ¢,(0) = 0 and ¢ (+a) = +1, we can replace, by —¢; for a sequence,, — 1. Then
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Fig. 1. Example 3 The dark regions are grand orbits of neighborhoofi®fin the limit of pinching, these
regions collapse, forcing the uniform light gray regions to collapse as well. Observe that the largest of such
regions contains the critical point shown in medium gray whose imagécz) (shown in the same color)

is just to the right of the attractar (the white dot to the right). The other critical poiat is shown in very

light gray.

the images ofy under this new family of conjugacies oscillate betweehand1 and therefore
do not converge.

Example3. — This is a case whergcontains a critical value. Let be the cubic polynomial
23 4+ 1.62%2 4 0.56z. It has the following property: The fixed poiriis3, 3’ and the critical points
c1,cp areallreal withd’ < co < ¢; <0< f(e2) < 8, andJ(f) is a Jordan curve. Take= |0, 3.

Example3’. — This is a convergence case whére. I'y has a componenk not intersecting
the Julia set. Takg as in Example 3. Take,, 7. two boundary arcs of a neighborhood of
10, B[. Then there are appropriate neighborhod@sU, such that(gy,U1), (v2,Uz) forms an
admissible set. Sdty =71 U~s. The pinching deformations converge, with a componr€nof
C~.T, containing a critical value, but containing no Julia points nor critical points. The diameter
of A’ tends to0 under pinching. This is also an example that some critical point might be pushed
into the Julia set under pinching and become eventually parabolic.

Example4. — Pinching in a parabolic basin. L&Y z) = 23 + 2% + 2. Theny =]-1,0[ is a
pinchable arc contained in the immediate basin of the parabolic fixed@wihich has only one
attracting petal. The pinching alongconverges, and the limit map has a parabolic fixed point
with two fixed attracting petals instead.

Example5. — Fat basilica with a cauliflower attached at the beta fixed point. A case where two
different types of parabolic orbits develop at the limit, and one of them is due to pinching. Let
gv(2) = =23+ 2bv/b + 122 — bz. One can check easily that fbe= 1 — ¢, g, has0 as the unique
real fixed point and two real critical points; byt has two real fixed point8 and+/2 and two
real critical points.
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Fig. 3. Example 6and zoom.

7.2. Examples of divergence

A. Ty is not Julia-separating, but sondg;, j > 0, is:

Example6. — Let

3 U
R(z):z2—|————, u=0.01.
g

For u = 0, this is just a quadratic polynomial with two fixed poiritg4, 3/4 and mapsy/5/4
to the middle pointl /2 of them. By stability of hyperbolic fixed points and symmefyhas
two real fixed pointsy, 5 close to the above ones. The are- |a, 3] is forward invariant and is
part of an admissible pair. Moreovercontains two critical values anfi—!~ contains a Jordan
curveL disjoint fromJ(R) and separatind (R). The Julia set of? is disconnected. In this case
m(R:) — oo in V3 (we haveR € W in the notation of [5]).

Example6’. — TakeR as in Example 6, angl;, 7> the two boundary components &f. One
can define pinching alorg, U7,. It forms a Jordan curve not separating the Julia set. But its
preimage consists of itself together with two Julia-separating Jordan curves.

Example7 (I'; has a separating curve in a preperiodic componenfTake f., with —1 <
¢1 < —3/4 so that it has a period two attracting cycle. As in Examplg.Jis a converging path,
for ¢; < ¢ < —3/4 andc — —3/4. Butin this case the Fatou set has infinitely many components.
And one can make similar perturbations as in Example 6 in either periodic or non-periodic
components to get many diverging paths of pinching deformations.
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Fig. 4. Example 8 and zoom.

Example8 (The postcritically finite version of this map was first obtained by K. Pilgrim.
Sed11], pp.70-72). — This is similar to Example 6 but with connected Julia set.

13 v
_ 2 _ =% v _
F(z)== 16+z+2_21/ﬁ7 v=0.01.

Forv = 0, the map has a repelling fixed point= (2 — v/17)/4 and an attracting periodic cycle
a,bwith v = ]a, | a pinchable arc of period two. In this casg:=7U F(v) = [a,b]. Forv >0
small, this set is stable, but the map has a pole@tAnd v = 0.01 is chosen so thdt, has two
critical values, one ifa, [ and one inja, b[. As a consequendg; = F~'T; contains a Julia

separating Jordan curve.
B. I'y is Julia-separating

Example9 (I'y touches only one Fatou component, is formed by one single orbit of arcs,
i.e. lifts of one closed geodesic in the quotient surfacdake f_; : z — 22 — 1 and perturb it
into R(z) = (2 —1)/(32+ 1) so thatoo becomes attracting but not superattracting. For the
rotation number /2, we may construct period-two arcs issuing fremas in 85: as the basin
of 0o is quadratic and simply connected,= 1 and there are exactly two strip§ andU, in
any W as in 85. Their central lines project to two arcs issuing frasrand are permuted by
the new map. These two arcs must land on a common fixed point on the Julia set (as they land
either on a period two cycle or on a fixed point, ithas a unique period two cycle which is
super-attracting). So their union is a Jordan curve separating the Julia set. Any pinching along
them is divergentR € W in the sense of [5]). The magd3(z) and f_; (=) are gqc-conjugate on
neighborhoods of Julia sets. See Fig. 9 in Milnor [8], p. 89 for the Julia sgt of

Example10 (I'y touches only one Fatou component, is formed by lifts of two closed quotient
geodesick —
z3

3 2+az

I&=1ga
2

with a = 0.01. Fora = 0 this map is conjugate (by/z) to the cubic polynomiat® + %z which
has two fixed simple critical points and a double critical pointatThe perturbation is chosen
so that0 for f is only attracting andR is in its basin consisting of two invariant arcs of rotation
numberd/1. SoT'y = RU {co} is a Julia-separating Jordan curyeq W, in the sense of [5]).
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Fig. 5. Example 10.

Examplell ([, touches two Fatou componehpts Relaxed cubic Newton’s method (see
Tan [14,15))R(z) = 2 — hlf,((zz)) , whereP is a cubic polynomial with simple roots and 7 < 1.
When h = 1 two of the three superattracting fixed basins (of roots?fhave many shared
periodic points on the boundary, as shown in [1)].is a perturbation so that the superattracting
fixed points become only attracting (of multiplier— h). For suitably choser® these basins
are of degre@; in particular their boundary contains a unique orbit of given rotation number.
Then as in Example 9 one can show that the projection of suitable strips and their central lines
should land at the perturbed periodic points, giving invariant Jordan curves separating the Julia

set (inW3 in the sense of [5]).

Example12 (', touches more than two Fatou components and is minimal

25

.1—%224—5244_&2

Q(z) =

Wl oo

with « = 0.25. Fora = 0 this is conjugate (byt/z) to a degree five polynomial with two fixed
points each of type®. After perturbationR U {co} is invariant, containing three attracting
fixed points, three repelling fixed points and the complement consists of six intervals each is an
invariant pinchable arc. Lefy = R U {oo}. It is a Jordan curve running through three Fatou
components and is Julia separating. The pinching deformations Blpdiyerge. This example

can be generalized to construct maps such EQatuns throughV Fatou components for any
given numberV > 3.

Application For h(z) = 23 + ¢ a small perturbation of3, the repelling cycle{a,b} with
external angle$/4,3/4 can never be pinched. We may prove this by contradiction: denate by
the attracting fixed point. Assume that there is a simple closed geodesic in the quotient surface
of rotation numbenr /2 whose lift contains a periodic-two cycle of arcs joiningto a andb.
Then one can define a path of pinching deformations along these arcs and obtaima giath
cubic polynomials, gc-conjugate ta The set of cubic polynomials with connected Julia set is
compact. Hencé,  converges to a cubic polynomialfor some sequencg, — 1. The mapg
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Fig. 6. Example 12.

has a unique critical point of multiplicity, just as the mapk; do. By Theorem A, for the map
the two external rays of angldg4,3/4 land at a common fixed point. Therefore the union of
these two rays together with the landing point forms a line separétiimgo two partsC’, C”.

By looking at the angle tripling map one may conclude thhas a critical pointin eact”’, C"'.
This contradicts the fact thgthas a unique critical point.
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Appendix A. Relating to the paper [5]

To avoid confusion statements in italic refer to results in [5].

Part (b) of our Theorem A is a generalizationitfeoremA, Part (2) in the following sense: we
deal with topological conjugacies shrinking appropriate dynamical lengths, with quasi-conformal
pinching deformations as a particular case; we allow the pinchable aoosin through forward
orbits of critical points; and finally we allow some preperiodic part of the pinchingI(i.dor
j > 0) to separate/ (R), whereas the periodic part (i.Bg) may or may not separat& R). We
provide a proof that does not use the Maskit inequality. Also, Part (a).2 treats the caSe.that
may have components disjoint from the Julia set, a case that is misdtrgposition1.1.

Regarding the proofs, the original proof ®heoremA, Part (2) relies on two intermediate
resultsLemmal.2 andProposition1.1+ Theoreml.1, whose proofs seem incomplete (see
below). Our Lemma 3.1 replacaemmal.2, and Lemma 2.1 by pass€soposition1.1+
Theoreni.1 and proves a consequence of them directly (see the remarKlaéteren.1, p. 13,

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



370 L. TAN

top). Lemmal.2 is also used elsewhere in [5], for example in the prodftedoremA, Part (1).
Its replacement Lemma 3.1 is equally suitable at these places.

As for the original proof ofLemmal.2, in Part (2) it states the equal cardinality of two
finite sets, but the proof gives only an injection from one set to the other, and the caNgtant
chosen in the proof is certainly too small (the statement is however true, as shown recently by
C. McMullen).

The statement dPropositionl.1 is not correct as shown by our Example 3. This is due to the
fact that the assertion ‘eadh; must contain a critical point’ in the proof is not always true.
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