
This a postprint version of the following published document:

Raiola, M., Discetti, S., Ianiro, A. (2015). On PIV random error 
minimization with optimal POD-based low-order reconstruction. 
Experiments in Fluids, 56(4). 

DOI: https://doi.org/10.1007/s00348-015-1940-8 

© Springer-Verlag Berlin Heidelberg 2015 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s00348-015-1940-8


Experiments in fluids manuscript No.
(will be inserted by the editor)

On PIV random error minimization with optimal POD-based

low order reconstruction

Marco Raiola · Stefano Discetti · Andrea Ianiro

Received: date / Accepted: date

Abstract Random noise removal from Particle Image
Velocimetry data and spectra is of paramount impor-

tance, especially for the computation of derivative quan-
tities and spectra. Data filtering is critical, as a trade-
off between filter effectiveness and spatial resolution
penalty should be found. In this paper a filtering method
based on Proper Orthogonal Decomposition and low
order reconstruction is proposed. The existence of an
optimal number of modes based on the minimization

of both reconstruction error and signal withdrawal is
demonstrated. A criterion to perform the choice of the
optimal number of modes is proposed. The method is
first validated via synthetic and real experiments. As
prototype problems we consider PIV vector fields ob-
tained from channel flow DNS data and from PIV mea-
surement in the wake of a circular cylinder. We deter-
mine the optimal number of modes to be used for the
low order reconstruction in order to minimize the sta-
tistical random error. The results highlight a significant
reduction of the measurement error. Dynamic Veloc-
ity Range is enhanced, enabling to correctly capture
spectral information of small turbulent scales down to
the half of the cutoff wavelength of original data. In
addition to this, the capability of detecting coherent
structures is improved. The robustness of the method
is proved, both for low signal-to-noise ratios and small-
sized ensembles. The proposed method can significantly
improve the physical insight into the investigation of
turbulent flows.
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1 Introduction

The key of the success of Particle Image Velocimetry

(PIV) lies in its ability to measure the instantaneous
velocity simultaneously at several points with sufficient
spatial resolution to allow the computation of instan-
taneous vorticity and rate of strain (Westerweel et al
2013). Unfortunately experimental noise and spuriously
detected vectors (commonly referred as outliers) pose
great challenges to the reliability of the measurement

of gradient-based quantities. For instance, for tomo-
graphic PIV measurements, the standard deviation of
the divergence computed on raw data of an incompress-
ible flow can be assumed as an estimation of the accu-
racy of measurement of the velocity spatial derivatives
and it is typically found to be around 7% (Ceglia et al
2014) of the maximum vorticity in the measured flow

field (locally the error can be much higher). Even us-
ing advanced PIV algorithms and temporal filtering of
data, a typical figure of 3% error in the vorticity mea-
surements is reported (see, e.g. Violato et al 2012).

PIV measurement uncertainty is traditionally clas-
sified in bias and random errors. The bias errors typ-
ically appear in the form of peak-locking, i.e. bias to-

wards integer displacement due to the pixel discretiza-
tion (Westerweel 1997), or as a modulation due to finite
spatial resolution effects (Scarano 2003). Even though
the bias error received a more significant attention from
the community of PIV developers, the random error is
often the dominant component of the measurement un-
certainty. According to Adrian (1991) the root mean
square (rms) of the random error is proportional to the
particle image diameter (and hence to the correlation
peak width). Other sources of random errors are the
change of relative intensity between two exposures of
particle images due to out-of-plane motion, fluctuating
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background intensity and camera noise introduced dur-
ing the recording process. Westerweel (2000) reported
a typical figure of 0.05 pixels for the rms of the ran-
dom error. The random error is reported to be highly
sensitive to the interrogation procedure: the use of win-
dow weighting functions and of advanced interpolators
is shown to affect its amplitude (Astarita 2006, 2007).

Moreover, false correlation peaks detection mostly oc-
curs when the correlating windows produce an insuffi-
cient number of particle image pairs, resulting in the
occurrence of spurious vectors (Huang et al 1997). Rec-
ognizing and eliminating such incorrect vectors is a
mandatory step to obtain undistorted velocity statis-
tics. This procedure is referred as data validation (West-
erweel 1994; Westerweel and Scarano 2005).

One path to reduce the instantaneous measurement
uncertainty due to random error consists in throwing
information from the temporal to the spatial domain.
Nowadays the availability of high speed hardware has
multiplied the number of attempts in this direction
(see the recent works by Cierpka et al 2013; Sciacchi-
tano et al 2012; Novara and Scarano 2013). In three-
dimensional flow field measurements physical criteria
can be exploited to reduce the measurement uncer-
tainty (see, for instance, the solenoidal filtering approach
by Schiavazzi et al 2014). This is normally not possi-
ble in planar PIV experiments. In case of non time-
resolved data the options to reduce the measurement
uncertainty are very limited and often rely simply on
spatial filtering which provides a smoother field but, on
the downside, a loss of spatial dynamic range.

In this work an approach based on the extraction of
a statistical filter from Proper Orthogonal Decomposi-
tion (POD, Sirovich 1987) of velocity data ensembles is
explored. POD allows for the identification of the flow
field principal components. It is possible to extract the

instantaneous flow field topology by taking into account
a subset of modes containing the bulk of the energy. A
low order reconstruction (LOR) acts as a filter on the
data while, at the same time, redistributes information
from the entire ensemble into the single snapshots, even
if they are statistically uncorrelated.

The reconstruction of the flow field with a limited
set of PODmodes is already a quite assessed instrument
for PIV data handling, both for the identification of tur-
bulent coherent structures (Berkooz et al 1993; Adrian
et al 2000) and for spurious vectors replacement (Ven-
turi and Karniadakis 2004; Raben et al 2012). In the
latter case one can set up criteria based on data smooth-
ness to assess the optimal number of modes (Everson
and Sirovich 1995; Raben et al 2012). On the other
hand, for data reconstruction, the trade-off between re-

constructed signal and noise contamination is still left

to empirical judgment. A common criterion is based

on the heuristic consideration that the energy content
of the POD-based LOR should be a significative per-
centage of the energy of the field (Fahl 2000; Ravin-
dran 2000; Bergmann et al 2005). For instance, Liu
et al (2001) in a channel flow PIV measurement set a
48% of the turbulent kinetic energy threshold to define
the most representative large-scale coherent structures.
However, in general, no consideration on the amount of
contamination of noise in the reconstructed field is pro-
vided, neither the number of modes selected is shown
to be optimal.

The choice of the number of modes to obtain an op-
timal low order reconstruction of noise-corrupted data
has been long debated. The filtering capacities of a LOR
have been widely investigated in the branches of com-
puters science and data mining (see, e.g. Kargupta et al
2003; Huang et al 2005; Guo et al 2006). On PIV mea-
surements of turbulent flows, instead, the efforts have
been focused on the definition and identification of non-
corrupted modes more than the identification of an op-

timality criterion for the reconstruction of the measured
flow field (Venturi 2006).

In this paper we propose to use an optimal low or-
der reconstruction to significantly remove random error
from PIV data. The parameter for the optimization is
the random error minimization. The existence of an op-
timal number of POD modes for data reconstruction is

demonstrated in section 2. An operative criterion for
the selection of the optimal number of POD modes is
also proposed. The criterion is applied to synthetic data
of a DNS channel flow database to validate the method
(Section 3). A comparison with commonly-used spatial
filtering techniques is also reported in the same section.
Finally, a further validation is performed on experimen-

tal measurements in the wake of a circular cylinder.

2 Theoretical approach

2.1 The Proper Orthogonal Decomposition

The POD identifies an orthonormal basis for a data
matrix using functions estimated as solutions of the in-
tegral eigenvalue problem known as Fredholm equation
(see Fahl 2000 for a rigorous formulation). Consider a
data matrix, that for the case of PIV is the sample
ensemble of the fluctuating part of the velocity field
according to the Reynolds decomposition, U ∈ R

n×p,
where n is the number of samples and p is the number
of grid points. U can be decomposed as:

U = Ψ Σ Φ (1)
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where Φ and Ψ constitute the decomposition basis of
the fluctuating velocity field U , respectively in space
and time, and Σ is a diagonal matrix containing the
singular values associated to the fluctuating field. The
solution is not unique as it depends on the chosen basis
functions. POD univocally choses its basis according to
a criterion of energy optimality: if we consider U com-

posed by ui row vectors and Φ composed by φ
j
row

vectors, the objective is a set of φ⋆
j
mutually orthonor-

mal vectors satisfying:

∣∣∣(ui, φ⋆j )
∣∣∣ = max

‖φ
j
‖=1

1

n

n∑

i=1

∣∣∣(ui, φj)
∣∣∣ (2)

where (a, b) and ‖a‖ indicate respectively the ℓ2 inner
product and its associated norm in the vector space.
The solution to this problem is given by the normalized
eigenmodes of the two-point spatial covariance matrix:

UT U = ΦT ΣΣ Φ = ΦT ΛΦ (3)

Sirovich (1987, snapshot method) demonstrated that
the POD modes can be calculated as the eigenmodes of
the two-point temporal covariance matrix:

U UT = Ψ Σ Σ ΨT = Ψ ΛΨT (4)

Since U UT is a non-negative Hermitian matrix, it
has a complete set of non-negative eigenvalues, whose
magnitude indicates the energy contribution of the re-
spective eigenmodes. In the snapshot method imple-
mentation the number of eigenvalues is equal to that of
the snapshots, while the maximum number of non-zero
positive eigenvalues is equal to the rank of U . As the
eigenmodes are ordered by their energy contribution,
the field reconstructed with the first k most energic
modes is given by:

U
k
= Ψ

(
I
k
0

0 0

)
Σ Φ = Ψ

(
I
k
0

0 0

)
ΨT U (5)

where U
k
is the reconstructed flow field, I

k
indicates

the rank k identity matrix and 0 indicates that the ma-
trix containing I

k
is a square matrix of dimension n×n

with zero entries except for I
k
.

2.2 Reconstruction optimum

In this section we propose a theory on optimal low or-
der reconstruction from POD modes. From now on the
concept of optimality of the reconstruction will be as-
sociated to the minimization in the reconstruction of
random errors that affects the raw data. The effect of
bias error is not taken into account in this analysis and
it is totally out of the scope of this work.

The fluctuating part of the measured flow field en-
semble Ũ can be decomposed in the sum of a random
error part E and an objective function U . From now
on, symbols signed with a tilde refer to measured quan-
tities, while symbols unsigned refers to objective func-
tion quantities. The objective function U is not the
exact fluctuating component of the velocity field, as it

is affected by the bias errors. However, since these er-
rors are related mostly to peak locking effects and to
finite spatial resolution, it can be assumed that they
depend on the limits of the processing algorithm, and
thus cannot be removed by a filter. The measured flow
field is:

Ũ = U + E (6)

The sample covariance matrix is:

Ũ Ũ
T
= U UT + U ET + E UT + E ET (7)

As it can be assumed that the random error is un-
correlated with the objective field, considering a Gaus-
sian error with standard deviation σ and provided that
the number of vectors is sufficiently large, according to
Huang et al (2005), the sample covariance matrix is
approximately equal to:

Ũ Ũ
T
≈ U UT + pσ2 I

n
(8)

where σ is the standard deviation of the random error.
For a non-Gaussian (but still independent and identi-
cally distributed) error the approximation is still valid
when the matrix Ũ is rectangular, so that all the eigen-

values of E ET are with high probability in a neigh-
borhood of σ (Marchenko and Pastur 1967). This is
formally equal to assume a spectrally white distribu-
tion of the random error part in the eigenvalues of the

covariance matrix. A proof of the validity of this hy-
pothesis will be given in section 3.1.

Recalling that the POD solves the eigenproblem for
the sample covariance matrix in both perturbed and
unperturbed cases:




(U UT + pσ2 I
n
 λ̃j In)ψ̃j

= 0

(U UT  λj In)ψj
= 0

(9)

It is possible to conclude that:



λ̃j ≈ λj + pσ2 ⇒ Λ̃ ≈ Λ+ pσ2 I

n

ψ̃
j
≈ ψ

j
⇒ Ψ̃ ≈ Ψ

(10)

These relationships can be more accurately derived
from matrix perturbation theory, along with their bounds,
and are a common assumption in perturbed Princi-
pal Component Analysis (PCA) applications (Kargupta
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et al 2003; Huang et al 2005). This approximation is
correct if the random errors are small with respect to
the distance between two succesive eigenvalues of U UT

(Stewart 2001; Kargupta et al 2003; Venturi 2006). The
perturbation of the eigenvectors increases as λ approaches
the value of σ.

If we indicate with Ũ
k
the reconstruction of mea-

sured flow field with the first k components, considering
Eq. 5 and Eq. 6, the difference between the objective
field and Ũ

k
modes is:

U  Ũ
k
= Ψ̃ I

n
Ψ̃

T
U  Ψ̃

(
I
k
0

0 0

)
Ψ̃

T
(U + E)

= Ψ̃

(
0 0

0 I
n  k

)
Ψ̃

T
U  Ψ̃

(
I
k
0

0 0

)
Ψ̃

T
E

(11)

and considering Eq. 10 :

(U  Ũ
k
)(U  Ũ

k
)T

= Ψ̃

(
0 0

0 I
n  k

)
Ψ̃T U UT Ψ̃T

(
0 0

0 I
n  k

)
Ψ̃

+ Ψ̃

(
I
k
0

0 0

)
Ψ̃T E ET Ψ̃T

(
I
k
0

0 0

)
Ψ̃

=Ψ

(
0 0

0 I
n  k

)
ΛΨT + Ψ

(
I
k
0

0 0

)
pσ2 ΨT

(12)

By using the linearity and rotation invariance of the
trace of a tensor:

Tr
(
(U  Ũ

k
)(U  Ũ

k
)T
)

= Tr

((
0 0

0 I
n  k

)
Λ

)
+Tr

((
I
k
0

0 0

)
pσ2

)

=
n∑

i=k+1

λi +
k∑

i=1

pσ2 =
n∑

i=k+1

λi + kpσ2

(13)

Using the Frobenius norm, we define the reconstruc-
tion error δRT with respect to the true flow field as:

δRT (k) =

(
1

np

) 1

2

‖U  Ũ
k
‖
F

=

(
1

np
Tr
(
(U  Ũ

k
)(U  Ũ

k
)T
)) 1

2

(14)

Substituting Eq. 13 into the error expression:

δRT (k) =

(
1

np

) 1

2

(
n∑

i=k+1

λi + kpσ2

) 1

2

(15)

Due to its optimality properties, the POD spectrum
will always decade faster or at least with the same
rate of the spectrum in another non-optimal base, the

Fig. 1: POD spectrum and another non-optimal ba-
sis spectrum for a dissipative system. Adopted from
Berkooz et al (1993).

Fourier spectrum for instance. This concept is well rep-
resented in Fig.1, adapted from Berkooz et al (1993).
We can then hypothesize that POD’s eigenvalues decay
rate can be modeled in a conservative way with that of
a turbulent spectrum in the Fourier space. For instance,
in the inertial subrange:

λi = Ci  
5

3 (16)

where C is a proportionality constant. To evaluate it,
one can consider that the sum of the λi is equal to the
total kinetic energy in the ensamble:

n∑

i=1

λi =
n∑

i=1

Ci 
5

3 = npq ⇒ C ≈
npq

ζ(5/3)
(17)

where q is the turbulent kinetic energy averaged over
all the spatio-temporal data ensemble and ζ(s) is the
Euler-Riemann zeta function. Substituting Eq. 16 and
Eq. 17 into Eq. 15, discrete deriving δRT with respect

to k and equating to zero:

∆δRT (k
⋆)

∆k
= 0

⇓
n∑

i=k⋆+1

λi  
n∑

i=k⋆

λi + pσ2 =  
npq

ζ(5/3)
k⋆  

5

3 + pσ2 = 0

(18)

It is easy to notice that k⋆ is a minimum point as
∆2

∆k2 δRT > 0. The optimum number of modes to recon-
struct the field, i.e. the one that minimizes the random
errors, is:

k⋆ =

(
nq

σ2ζ(5/3)

) 3

5

(19)
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In general the effective k⋆ corresponds to a lower
number of modes than indicated in Eq. 19 due to POD
optimality with respect to the ℓ2 norm. However, in
principle in experimental applications the standard de-
viation of the random error is not known a priori; fur-
thermore the Eq. 19 is a direct consequence of assuming
the POD eigenvalues decaying as in the inertial sub-

range of a high Reynolds number turbulent flow. Con-
sequently, Eq. 19 spotlights the existence of an optimal
number of modes, but it has very limited practical ap-
plicability. That relation gives a clear description of the
k⋆ dependencies: it increases both with the ratio of the
turbulent kinetic energy and the random error energy
and with the number of samples in the ensemble.

Even if Eq. 19 cannot be used to choose k⋆, it can be
used to safely estimate the number of samples required
for the convergence of the proposed method. Suppose
that the objective is a noise reduction by a factor RF
(i.e. the residual error energy in the reconstructed fields
is (1  RF)σ2). Since the noise spectral distribution is
white, the relation n ≈ (1  RF)  1k⋆ is a reasonable
approximation. Then, from Eq. 19:

n ≈ (1  RF)  
5

2

(
q

σ2ζ(5/3)

) 3

2

(20)

The required number of samples can be assessed via a
prior approximate estimate of the q and of the expected
measured random error.

In order to find an operative criterion for the choice
of the optimal number of modes to be retained, the
reconstruction error with respect to the measured field
can be considered:

δRM (k) =

(
1

np

) 1

2

‖ Ũ  Ũ
k
‖

F

=

(
1

np

) 1

2

(
n∑

i=k

λi + (n  k)pσ2

) 1

2

(21)

Consider the relative decrease rate of the reconstruc-

tion error δRM , here called F (k), defined as the ratio
between forward and backward discrete derivative of
δ2RM (k):

F (k) =
δ2RM (k + 1)  δ2RM (k)

δ2RM (k)  δ2RM (k  1)
=

λk + pσ2

λk  1 + pσ2
(22)

The quantity in Eq. 22 may reach asymptotically
1, for k sufficiently large. In the next section it will be
shown that a reasonable threshold for the number of
modes to retain can be set at F (k⋆) = 0.999. This is
formally equivalent to look for an elbow in δRM , and can
be considered a restatement of the classic scree test plot

(Cattell 1966) used in PCA to determine the number
of components to retain in a low order reconstruction.

3 Validation

3.1 Numerical validation on synthetic images

Synthetic images are generated from the DNS data-
base of channel flow at Reynolds number equal to 4000
(based on the bulk velocity Ub and twice the half-channel
height h) included in the John Hopkins Turbulence

Database (Li et al 2008; Yu et al 2012; Graham et al
2013). The DNS domain size is 8πh×2h×3πh. The data
are stored in a 2048×512×1536 points grid. For the pur-
pose of the PIV synthetic experiment bi-dimensional
square sub-domains with one side corresponding to the
wall, covering regions with size h × h and parallel to
x-y plane are extracted from the DNS domain. These
sub-domains are used to generate synthetic images with
dimensions 1024 × 1024 pixels (resulting in a resolu-
tion of 4 pixels/grid DNS points). The displacements
are multiplied by a scaling factor in order to achieve a
mean displacement on the channel centerline equal to
15 pixels.

Gaussian particles (mean diameter 3 pixels, stan-
dard deviation 0.5 pixels, 300 counts peak intensity)
are randomly generated with a particle density of 0.01
particles per pixel. The laser intensity is simulated to
be Gaussian (with half power width equal to 4 pixels

along the thickness of the light sheet) in order to take
into account the effect of correlation degradation due to
the out-of-plane motion. Noise with uniform distribu-
tion (maximum intensity 50 counts, standard deviation
14.4 counts) is added on the images.

The interrogation strategy is an iterative multi-step
image deformation algorithm, with final interrogation
windows of 32x32 pixels, 75% overlap. A Blackman
weighting window is used to improve the stability and
the spatial resolution (Astarita 2007). Vector validation
is carried out with a universal median test (Westerweel
and Scarano 2005) on a 3x3 vectors kernel and threshold
equal to 2 is used to identify invalid vectors. Discarded
vectors are replaced with a distance-weighted average of
neighbor valid vectors. The spatial resolution achieved
in this simulated experiment is realistic and consistent
with that of recent PIV experiments (see, e.g. Hong et al
2012 achieving a resolution of about 125×60 vectors in
a 2h × h domain). The standard deviation of the ran-
dom error σ is estimated by interrogating images with
zero-imposed displacement and same background noise

feature, and it is found to be equal to 0.18 pixels. The
mean turbulent kinetic energy q in the ensemble is of
about 1.29 square pixels.

According to Eq. 20, in order to aim to a target of
random error reduction of 80%, 8000 synthetic images

are generated to form the ensemble. With the same val-
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Fig. 2: δRT , δRM (left axis) and F (right axis) versus
the number of modes used in the reconstruction.

ues, the expected optimal number of modes k⋆ (Eq. 19)
is of about 1300 modes. The 8000 images are obtained
by using flow fields with a time separation equal to 250
DNS timesteps (corresponding, in our resolution, to a
displacement of 250 pixels on the channel centerline)
and with a space separation along the z direction equal
to 0.23h (235 pixels). The flow fields are taken at two
streamwise positions, i.e. x = 0 and x = 4πh. The num-
ber of images is doubled by flipping data from the other
half of the channel.

In Fig. 2 the values of δRT (k) and δRM (k) as defined
by Eq. 14 and Eq. 21 are plotted; data are presented
in non-dimensional form dividing by δMT , i.e. the error
of the measured field with respect to the true one, that
in this test is equal to 0.32 pixels. It has to be outlined
here that this value is higher than the random noise
since it includes also signal modulation and other bias

errors. The minimum δRT is reached when the first 1200
modes are used for the reconstruction (corresponding to
96.6% of the fluctuating energy of the measured field).
The effective number of modes which minimize the re-
construction error will be indicated with kδ. It has to be
remarked that a quite extended plateau of about 500
modes width is present, thus the exact choice of the

number of modes to be retained is not critical, provided
that one can identify a reasonable estimate of the range
in which the optimum should be. In this plateau the er-
ror is of about 0.82 δMT (corresponding to a 0.06 pix-
els total error reduction). Beyond 1200 modes δRM has
approximately a linear trend with k. Indeed, as noise
has a white spectral distribution, it is reasonable to
expect that for large k the contribution of each mode
is approximately constant. The relative decrease rate
of the reconstruction error F (k) defined in Eq. 22 is
also plotted; its values are low-pass filtered (windowed
linear-phase FIR digital filter with 25 points span and

0 1000 2000 3000 4000
0

0.5

1

1.5

2

k

λk

 

 Measured flow field
True flow field
Error (random plus bias)

kδ kF ≃ k
⋆

Fig. 3: POD eigenvalues over the firsts 4000 modes.
Note that error includes both bias and random part.

normalized cutoff frequency 0.0313). The relative de-
crease rate of the reconstruction error approaches 1 be-
yond 1200 modes, apart from the very last coefficients
in which the linearity of the contribution of noise is lost.
A reasonable threshold is F (k) = 0.999, corresponding
to k ≈ 1300 and to a δRT nearby the minimum. The
number of modes satisfying the relation F (k) = 0.999
will be referred from now on with the symbol kF .

In Fig. 3 the POD spectra of the measured and true
flow fields and of the error are illustrated. The latter
is defined as the difference between measured and true
flow fields, thus it includes both bias and random part
of the error. The eigenvalues of both measured and true
fields follow approximately a power law, at least for the
first half of the set of POD modes. The eigenvalues of

the error present a slower decay rate. Even if this may
seem in contrast with the hypothesis introduced in sec-
tion 2.2, i.e. white random error distribution, it should
be remarked that, in the plot, the error includes also
bias. It is worth to highlight that true spectrum and er-
ror spectrum cross over in the region that contains the
values k⋆, kδ and kF . After the cross over point, the

measured spectrum approaches error spectrum. This
means that, from this point on, each additional mode
included in the reconstruction would introduce a con-
tribution in which noise is predominant on the signal.

In Fig. 4 a true snapshot is compared to the raw
snapshots obtained with PIV interrogation and with
POD-based low order reconstruction (LOR). Maps of
the out-of-plane vorticity component are reported to
stress differences. The measured field (Fig. 4c) is af-

fected by spurious vortical features that are not present
in the original field. As an example, the negative vor-
ticity peak marked as A in the figure is much weaker
in the original field, while in the measured field has
intensity comparable to that of the vortex marked as
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Fig. 4: Instantaneous fluctuating vorticity (ωz) field. a) The DNS field used for this benchmark. Magnified view
of the: b) DNS field, c) measured field, d) field reconstructed with 1300 modes, e) field reconstructed with 3000
modes.
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Fig. 5: a) Compensated transverse velocity spectra E22

in stream-wise direction versus wavelength ℓ; b) trans-
verse vorticity spectra Ω33 in stream-wise direction ver-

sus wavelength ℓ.

B, that is an original field feature. The optimal recon-
struction with 1300 modes (Fig. 4d) provides an aston-
ishing improvement of the data quality with respect to

the measured field. This reconstruction smears out the
negative vorticity peak in A, while retaining vortex B.
Such a result could not be achieved by a conventional
spatial filter as it will be shown in subsection 3.3. Even
though the residual error δRT (kδ) from Fig. 2 might
still appear relatively large, it has to be reminded that
in this simulated experiment the measurement error is
dominated by bias due to finite spatial resolution. If the
number of modes used for the low order reconstruction
is significantly increased (e.g. 3000 modes in Fig. 4e)
the noise contamination is stronger, and, for instance,
the vortex A is still present.

In Fig. 5 the power spectra of the true, the mea-
sured and the reconstructed fields are reported. In both
Fig. 5a and 5b the wavelengths are expressed in pixels.
Data are proposed in Fig. 5a in the form of the com-
pensated spectrum (i.e. multiplied by the wavenumber
to the 5/3) in order to magnify the effects at the small-
est scales. It has to be remarked that, even in the case

of the original DNS data, the spectrum at the small

scales is contaminated by aliasing effects due to the
finite length of the domain. The reconstruction with
1300 modes closely follows the DNS spectral behav-
ior to a larger extent with respect to reconstructions
with a larger number of modes. The growth of the er-
ror with respect to the true spectrum for smaller wave-
lengths can be associated mostly to the residual noise.
For the sake of completeness, the spectrum obtained by
a reconstruction with a lower number of modes is also
reported. The reconstruction with 300 modes (which
corresponds to 95% of the fluctuating energy) causes
a significant underestimation of the spectral energy of
a wide range of large scales, thus highlighting that the

information obtained from these modes is still insuffi-
cient to achieve a proper description of the flow field.
The vorticity spectra reported in Fig. 5b further stress
the improvement achieved using the optimal POD fil-
ter. The spectrum obtained using 1300 modes for the
reconstruction follows with high fidelity the true one up
to a wavelength of 70 pixels. The spectrum obtained

from the PIV measured data largely overestimate the
vorticity power spectrum already at very large scales
(e.g. 35% at 512 pixels and 100% at 128 pixels) due to
the measurement noise. The LOR with only 300 modes
provides a completely distorted view of the vorticity
distribution over the turbulent scales (even if taking
into account the 95% of the energy content).

3.2 Validation of the criterion for modes selection

In the subsection 3.1 relative decrease rate of the recon-
struction error F (k) was shown to be a possible param-
eter to be used for the choice of the optimal number of
k modes to be used for the LOR, being F (k) = 0.999 a
suitable threshold value. This criterion is here assessed

on synthetic images for several conditions, by chang-
ing the parameters affecting k⋆ as given by Eq. 19 (i.e.
the number of snapshots used in the POD n and the
standard deviation of the random noise σ). A study to
evaluate the effects of a change of resolution on the se-
lection criterion is also performed. It will be shown in
the following that the spatial resolution is not an inde-
pendent parameter, since it effects both q, σ and also
the maximum number of images to be used in the POD.

The effect of a lower number of images (6000 im-
ages in Fig. 6 and 4000 in Fig. 7) is tested under the
same noise level and resolution of the test case in sec-
tion 3.1. Figs. 6a-7a show that the number of modes
that minimize the error kδ decreases with n decreasing,
in agreement with the trend predicted by Eq. 19. The
weaker reduction of kδ with respect to the theoretical
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Fig. 6: 6000 images test case: a) δRT , δRM (left axis)
and F (right axis) versus the number of modes used in
the reconstruction; b) Compensated transverse velocity
spectra E22 in stream-wise direction versus wavelength
ℓ reconstructed with kF number of modes.

prediction of Eq. 19 can be associated to the hypoth-
esis of POD spectrum equal to the Fourier spectrum
introduced for simplification in section 2. The flatness

of the curve δRT is also affected by a smaller number
of snapshots: the maximum achievable error reduction
decreases, while the plateau centered in kδ increases
in size. This behavior is consistent with a lower de-
gree of separation between true field and noise modes,
that produces a stronger contamination of the measured
field modes. The values of kF track the kδ value in a
conservative way (with respect to preserving the signal
content), always predicting a number of modes slightly
larger than kδ. Difference between kF and kδ increases
as the ensemble decreases in size. This is mainly due to
an increase in the extension of the optimal plateau and
affects only marginally the reconstruction: the value kF
estimated with the F (k) = 0.999 criterion always iden-
tifies a δRT inside the optimal plateau, i.e. a low order
reconstruction with an error nearly equal to the opti-
mal one. The effect of a smaller ensemble size on ve-
locity spectra is shown in Fig. 6b and 7b, respectively
for n = 6000 and n = 4000 snapshots. The low order
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Fig. 7: 4000 images test case: a) δRT , δRM (left axis)
and F (right axis) versus the number of modes used in
the reconstruction; b) Compensated transverse velocity
spectra E22 in stream-wise direction versus wavelength
ℓ reconstructed with kF number of modes.

reconstruction obtained with the F = 0.999 criterion
is less effective in predicting the true spectrum as the
ensemble size decreases, but it still achieves remarkable
results (reduction of about 75% and 40% of the orig-
inal error for a 64 pixels wavelength, respectively for
n = 6000 and n = 4000).

Fig. 8 and 9 show the effect of a change in the level
of background noise. The intensity of the uniformly dis-
tributed noise is set to 25 ad 75 counts (the original
case was generated with 50 counts noise), leading re-

spectively to σ = 0.11 and σ = 0.27 pixels (estimated
with zero-displacement test) on the calculated velocity
fields. Resolution and number of images are set as in the
test case of subsection 3.1. A lower level of noise (Fig.
8a) shifts the kδ value towards an higher number of
modes, meaning that it is possible to achieve an higher
order reconstruction without introducing strongly cor-
rupted modes. Conversely, an higher noise level (Fig.
9a) shifts kδ towards a lower number of modes, meaning
that noise is significantly contaminating a larger spec-
trum of modes. As in the previous case, the variation
of kδ respects the trend predicted by Eq. 19. It should
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Fig. 8: σ = 0.11 test case: a) δRT , δRM (left axis) and F
(right axis) versus the number of modes used in the re-
construction; b) Compensated transverse velocity spec-
tra E22 in stream-wise direction versus wavelength ℓ
reconstructed with kF number of modes.

be highlighted that the δRT curve shape is strongly af-
fected by the noise level: the maximum percentual noise

reduction increases when the noise level increases, while
the optimal plateau extension decreases. The F (k) =
0.999 criterion permits a reasonable prediction of the kδ
position with a conservative weak overestimation, still
achieving a value of δRT inside the optimal plateau. For
lower noise levels the LOR obtained with the F = 0.999
criterion achieves a lower percentual noise reduction
with a larger kF . The effect of this behavior on ve-
locity spectra is shown in Fig. 8b: a lower percentage of
energy is discarded, while the higher order reconstruc-
tion leads to a more precise computation of the spectra
(predicted spectrum is extremely accurate up to a 64
pixels wavelength). In Fig. 9b the effect of a more in-
tense noise contention on velocity spectrum is shown.
Less favorable cases permit to discard an higher per-
centage of noise-related fluctuation energy, at the cost
of a poorer, but still satisfying description of the spec-
trum (reduction of the 85% of the original error for a
64 pixels wavelength).
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Fig. 9: σ = 0.27 test case: a) δRT , δRM (left axis) and F
(right axis) versus the number of modes used in the re-
construction; b) Compensated transverse velocity spec-
tra E22 in stream-wise direction versus wavelength ℓ
reconstructed with kF number of modes.

As previously reported in subsection 2.1, the maxi-
mum number of modes of the POD is given by the rank
of the vector field U , meaning that the maximum num-
ber of images n that can be used in the POD snapshot
method is limited by the velocity field grid points p, i.e.
by the PIV algorithm final resolution. This means that
it is not possible to change the spatial resolution with-
out modifying also the number of images used for POD
and the noise level. A test is performed on the PIV
images used for the basic test case, changing the final
interrogation window to 32x32 pixel with 50% overlap
(Fig. 10). For this test case a q = 1.32 square pixels
and a σ = 0.17 pixels are estimated, while the number
of images used for the POD has been reduced to 3900.
It is difficult in this case to extract information that
a change in resolution produces on the estimate of kδ,
since effects of a change of both noise level and number
of snapshots should be taken into account. As in the
previous cases, also for this case the F = 0.999 crite-
rion predicts an overestimation of kδ, and a δRT (kF )
value completely inside the optimal plateau. The main
effect that can be distinguished is a reduction of the
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Fig. 10: Lower spatial resolution test case: a) δRT ,
δRM (left axis) and F (right axis) versus the number
of modes used in the reconstruction; b) Compensated
transverse velocity spectra E22 in stream-wise direction
versus wavelength ℓ reconstructed with kF number of
modes.

maximum error reduction with respect to the case with
4000 images (Fig. 7a) that seems to be at least partially
justified by a reduction of the noise level and an incre-
ment of average turbulent kinetic energy. The velocity
spectrum reconstructed with kF number of modes (Fig.
10b) still gives remarkable results (the error reduction

for a 64 pixels wavelength is higher than 60% of the
original error).

3.3 Comparison with spatial filtering

In this subsection the performances of the proposed op-
timal low order reconstruction are compared with those
of standard spatial filtering techniques. The test case
is the same of subsection 3.1. In Fig. 11 the veloc-
ity and vorticity spectra of the LOR with 1300 modes
are compared with those of two of the most commonly
adopted spatial filtering techniques found in PIV litera-
ture: Gaussian filter (kernel size 5x5 grid points, corre-
sponding to ±3 standard deviations) and second order
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Fig. 11: Spatial filter comparison: a) Compensated
transverse velocity spectra E22 in stream-wise direction
versus wavelength ℓ; b) transverse vorticity spectra Ω33

in stream-wise direction versus wavelength ℓ.

polynomial filter (kernel size 5x5 grid points). The low
order reconstruction (LOR) outperforms the standard
spatial filtering techniques, achieving a precise descrip-
tion of both velocity and vorticity spectra up to a 70
pixel wavelength. For the velocity spectrum at the same
wavelength the Gaussian filter and the polynomial filter
provide respectively an error reduction of 65% and 40%
with respect to the original error. A similar behavior is
observed on the vorticity spectra.

Direct comparison of istantaneous vorticity fields
(Fig. 12) clarifies the astonishing performance of the
optimal POD-based LOR with respect to conventional
spatial filters. As anticipated in subsection 3.1, optimal
LOR (Fig. 12b) is capable to retain true field vortical
features (such as the vortex labeled as A) and to discard
spurious vortical features (such as the vortex labeled
as B) even if the intensities of these features are quite
similar. Conversely, in the same context, both Gaussian
filter and polynomial filter (respectively Figs. 12c-12d)
retain both true field and spurious vortical features.
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Fig. 12: Instantaneous fluctuating vorticity (ωz) field.

Magnified view of the: a) DNS field, b) field recon-
structed with 1300 modes, c) field filtered with Gaus-
sian filter, d) field filtered with polynomial filter.

3.4 Experimental validation

The POD-based filter is validated on an experimental
PIV dataset. The flow field under investigation is the
turbulent wake of a infinite circular cylinder.

The experiment is performed in the recirculating
wind tunnel of the Aerospace Engineering Group at
University Carlos III of Madrid. The wind tunnel has
a square test section of 400 mm height. Free stream
turbulence intensity is estimated to be lower than 1%.
A circular cylinder, with diameter D = 10 mm, is
mounted at tunnel’s half height, spanning the entire
test section width. The blockage ratio is equal to 0.025.
The free stream velocity U∞ at the end of the contrac-
tion is about 6.2 m/s which gives a Reynolds number
based on the cylinder diameter of about 3900.

The flow is seeded with Di-Ethyl-Hexyl-Sebacat drop-
lets with diameter of approximately 1 µm. The light
source is a Big Sky Laser CFR400 ND:Yag (230mJ/pulse).
The acquisition is performed with two Andor Zyla 5.5MP
sCMOS cameras (2560× 2160 pixels resolution, 16.6×
14.0 mm sensor size). The cameras are synchronized in
order to grab images simultaneously. The first camera
is equipped with a 25 mm focal length objective. The

resolution of the images grabbed with the first cam-
era is equal approximately to 55 pix/D (5.5 pix/mm).
The second camera is equipped with a Nikon 60 mm
focal length objective. The resolution of the images
grabbed with the second camera is equal approximately
to 110 pix/D (11 pix/mm). The time delay between
laser pulses is chosen to be 200 µs, in order to give a

displacement of about 14 pixels in the higher resolu-
tion images and of about 7 pixels in the lower resolu-
tion images. The higher resolution camera has then a
lower relative error, since the measured displacement
is longer while the expected absolute error is the same
(the typical figure of merit of 0.1 pixels, Adrian and
Westerweel 2011). The velocity fields grabbed from the

higher resolution camera are considered to be the refer-
ence fields due to their intrinsically lower noise content
(Neal et al 2015), while the corresponding velocity fields
grabbed from the lower resolution camera are the mea-
surement on which POD-based filtering is performed.
The cameras are placed side by side in order to have an
overlap region between their respective field of view of

about 14 cylinder diameters. An optical calibration is
performed on both the cameras as described in Heikkila
(2000). Using the calibration parameters, dewarping is
applied to the two cameras images in order to match
the overlap region as in Giordano et al (2012). The over-
lap regions of both images are dewarped on the same
grid (size 1548 × 443 pixels) with resolution equal to

110 pix/D (11 pix/mm). The PIV interrogation strat-
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Fig. 13: δRT , δRM (left axis) and F (right axis) versus
the number of modes used in the reconstruction.

egy is an iterative multistep image deformation algo-
rithm with final interrogation window of 32× 32 pixels
and 75% overlap. The Blackman weighting windows is
used in the cross-correlation step (Astarita 2007). The
vector validation (universal median test, 5 × 5 kernel,

threshold 2) is implemented similarly to the synthetic
testcase. The processed images result in 190×52 veloc-
ity vectors fields. The POD-based filter is applied on an
ensemble of 9000 velocity fields grabbed from the lower
resolution camera.

The values of δRM (k), δRT (k) and of the function
F (k) (low-pass filtered by windowed linear-phase FIR
digital filter with 25 points span and normalized cut-
off frequency 0.0313) are plotted in Fig.13. The recon-
struction errors δRM (k) and δRT (k) are presented in
non-dimensional form, normalized by the error of the

measured field over the true field δMT , that for this
test is equal to 1.29 pixels. Compared with the previous
synthetic benchmarks, a similar shape in the error both

with respect to the measured flow field δRM (k) and with
respect to the true flow field δRT (k) is found. The min-
imum δRT is reached for kδ ≈ 1000 (corresponding to
84.7% of the fluctuating energy of the measured field).
As in the synthetic benchmark, in this test an extended
plateau is present around the value kδ, in which the
function δRT has a nearly constant value of about 0.9
δMT . By taking as a criterion a value of F (k⋆) = 0.999,
an optimum number of modes kF ≈ 1100 is found. For
a number of modes higher than kF , the error δRM has

a nearly linear trend that indicates a dominant contri-
bution of random noise in the reconstruction.

In Fig. 14 the power spectra of the true, the mea-
sured and the reconstructed velocity fields are reported.

Data are plotted in the form of the compensated spec-
trum (i.e. multiplied by the wavenumber to the 5/3) in
order to magnify the effects at the smallest scales; wave-
lengths are expressed in pixels. Wavelengths smaller
than 64 pixels are not considered in the comparison.
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Fig. 14: Compensated transverse velocity spectra E22

in stream-wise direction versus wavelength ℓ.

This limit deposed to account for the filtering behavior
of the PIV algorithm itself, that degrades spectral infor-
mation at scales comparable to the interrogation win-
dow size. The reconstruction with 1100 modes closely
follows the reference field spectral behavior nearly up to
the limit considered in the comparison, sightly under-
estimating the spectral power (4% error at 90 pixels).
The spectrum obtained from non-filtered data, instead,
considerably overestimates the reference spectrum even
at large scales (14% at 160 pixels and 25% at 90 pixels)
due to its noise content.

The direct comparison of raw, filtered and reference
fluctuating velocity fields (Fig. 15) gives a better in-
sight on the noise removal obtained using the POD-
based filter. The raw measured flow field (Fig. 15c) is
degraded by measurement noise if compared to the ref-

erence field (Fig. 15a). A number of spurious vectors
are present in the measured field, and even some large
scales flow structures appears to be distorted and barely
recognizable. The POD-filtered velocity field (Fig. 15b)
is smoother and more regular than both measured field
(Fig. 15c) and reference field (Fig. 15a). This behavior
is twofold: indeed one should consider that the reference

field itself is a measurement, meaning that it contains
some measurement uncertainty and thus noise. More-
over the POD-filter is able to recover coherent struc-
tures in the field and save them from being smeared
out in the filtering process. While this certainly hap-
pens for large structures that are well discretized, this
is not likely to happen to poorly discretized structures

due to the nature of the proposed method, that looks for
a trade-off between field description and noise removal.
This behavior can be better appreciated in the veloc-
ity spectrum (Fig. 14), where the POD reconstruction
appears to overfilter the smaller scales.



14 Marco Raiola et al.

(a)

x/D

y/
D

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23-1.5

-1

-0.5

0

0.5

1

1.5

(b)

x/D

y/
D

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23-1.5

-1

-0.5

0

0.5

1

1.5

(c)

x/D

y/
D

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 15: Magnified view of fluctuating velocity fields: a) reference velocity field, b) velocity field reconstructed with
1100 POD modes, c) measured velocity field.
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4 Conclusion

The existence of an optimal number of POD modes
to achieve random error minimization in low order re-
construction of randomly perturbed flow fields (such as
PIV data) is demonstrated. The reduction of the ran-
dom error is extremely beneficial in the computation of
derivative quantities, which are more prone to be af-
fected by noise amplification. An empirical criterion for
the choice of the optimal number of modes is also indi-
cated and validated. The optimal number of modes is
obtained by simply observing the variation of the differ-
ence between the reconstructed fields and the original
ones, without adding any hypothesis on the features of
the flow field itself, thus making the method very ro-
bust and flexible. Notwithstanding with the relatively
low sensitivity of random error on the optimal num-
ber of modes (thus simplifying the task of finding an

empirical criterion), for the first time a robust method
is provided without relying on computation of the re-
tained energy in the reconstructed fields. The method is
validated on synthetic images ensembles generated from
a channel flow DNS data set and on real PIV measure-
ments in the wake of a circular cylinder. In the first
test case the error is dominated by modulation effects,

which cannot be recovered by the POD-based low order
reconstruction. Nevertheless, a total error reduction of
about 18% is achieved, corresponding to a value that
is about the 33% of the noise estimated with a zero-
displacement benchmark test, while retaining most of
the spectral information of the original field. The vor-
ticity distributions highlight that the method is able
to suppress spurious vorticity blobs without removing
original vortical structures with comparable size and in-
tensity. The spectra of the data closely follow those of
the DNS for a wider portion of the wavelengths with re-
spect to reconstruction with a larger number of modes.
The cutoff wavelength is slightly larger than twice the
interrogation window size. In the experimental testcase
a total error reduction of about 10% in respect to the
reference field is achieved. The velocity spectrum of the
low order reconstruction reveals that noise reduction
preserves small scale structures up to scales compara-
ble with the interrogation window size. Furthermore,
the low order reconstruction is very effective in remov-
ing clusters of spurious vectors, which generally pose a
challenge to the standard validation methods. An ex-
tensive parametric validation with synthetic test cases
is performed, proving the robustness of the method and
of the criterion used for the identification of the op-
timal low order reconstruction. Moreover the method
allows for improvements: more efficient predictions are

obtained in more favorable cases (high signal-to-noise

ratio and large ensemble). As expected, the improve-

ment is more remarkable on derivative quantities (see,
for instance, the vorticity spectra). Comparison with
common spatial filtering techniques provides a clear
idea of the advantages that this technique could intro-
duce, especially for measurement of turbulence statis-
tics. The proposed method is expected to contribute
in enhancing the reliability of PIV as it allows for un-
certainty reduction and robustness improvement. The
spatial resolution might also indirectly benefit from it.
Indeed, generally the choice of the processing algorithm
(window size, interrogation method, etc.) arises from a
trade-off between desired spatial resolution and mea-
surement noise amplification. The optimal low order
reconstruction allows for the use of advanced high reso-
lution interrogation algorithms since the random noise
can be consistently reduced in post-processing. As tur-
bulent flows investigation is demanding in terms of dy-
namic range requirements, this advancement would be
beneficial.
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