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Abstract We describe several classes of finite, planar Toeplitz graphs and present
results on their chromatic number. We then turn to counting maximal independent sets
in these graphs and determine recurrence equations and generating functions for some
special cases.
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1 Introduction

Let T = (V, E) be an undirected, simple graph with V = {1, . . . , n}. We call T Toep-
litz if its adjacency matrix A(T ) is Toeplitz, i.e. identical on all its diagonals parallel
to the main diagonal. A Toeplitz graph T is therefore uniquely defined by the first
row of A(T ), a (0 − 1)-sequence. If the 1’s in that sequence are placed at positions
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1+t1, . . . , 1+tk with 0 < t1 < · · · < tk < n, we may simply write T = Tn〈t1, . . . , tk〉,
two vertices x, y of T being connected by an edge iff |x − y| ∈ {t1, . . . , tk}. For V = N

and k < ∞ infinite Toeplitz graphs T = T∞〈t1, . . . , tk〉 are defined the same way.
We simply mention that both types may be studied as special subgraphs of integer
distance graphs.

Toeplitz graphs have been introduced by G. Sierksma and first been investigated
with respect to hamiltonicity by van Dal et al. [2] (see also Heuberger [8], Malik
and Qureshi [11], Malik and Zamfirescu [12] for more recent work). Infinite, bipartite
Toeplitz graphs have been fully characterized in terms of bases and circuits by Euler et
al. [6] (with results on the finite case presented in Euler [3]). Colouring aspects are espe-
cially treated in Heuberger [9], Kemnitz and Marangio [10], Nicoloso and Pietropaoli
[14]. Infinite, planar Toeplitz graphs, finally, have been fully characterized in Euler [4]
providing, in particular, a complete description of the class of 3-colourable such graphs.

This paper is organized as follows: in Sect. 2 we present several classes of finite, pla-
nar Toeplitz graphs, Sect. 3 is on colouring aspects, and Sect. 4 is devoted to counting
maximal independent sets in special instances of these graphs. We just mention that
counting such sets in planar graphs has been shown by Vadhan [16] to be #P-complete.

2 Finite, Planar Toeplitz Graphs

Let us start by recalling the infinite case, which was investigated in [4]. For that case
an infinite sequence (an)n∈N is said to dominate a sequence (bn)n∈N if ai ≥ bi for all
i ∈ N.

Theorem 1 An infinite (0−1)-sequence S defines a planar Toeplitz graph if and only
if S is dominated by a (0 − 1)-sequence whose 1-entries are at positions 1 + t1, 1 + t2
and 1 + (t1 + t2).

Consequently, for infinite, planar Toeplitz graphs T = T∞〈t1, . . . , tk〉, k can be no
more than 3. Under the circumstances treated in the following, we will show that k
must remain rather small if planarity is required. This is not, however, a general rule.
In fact, the next result shows that k can be arbitrarily large and planarity still preserved.

Theorem 2 If T = Tn〈t1, . . . , tk〉 is planar and c ∈N, then Tcn〈ct1, . . . , ctk, cn − 1〉
is planar, too.

Proof Observe that Tcn〈ct1, . . . , ctk〉 has c pairwise disjoint subgraphs, each of them
isomorphic to Tn〈t1, . . . , tk〉: the adjacency matrix of T simply decomposes into c
identical (0 − 1)-matrices. We embed the subgraphs in the plane in such a way that
the vertex 1 of the first and the vertex n of the last appear on the boundary of the
unbounded region. Thus, adding the edge {1, cn} does preserve planarity. In Fig. 1 we
show a planar Toeplitz graph with k = 5. ��

As an immediate consequence we obtain

Corollary 1 Tt1+t2〈t1, t2, t1 + t2 − 1〉 is planar.

To see this we just recall that the graph Tt1+t2〈t1, t2〉 is planar, being a cycle or a
union of pairwise disjoint cycles; hence Theorem 2 applies. ��
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Fig. 1 The Toeplitz graph
T12〈2, 4, 8, 10, 11〉

Since planarity is hereditary, it follows from Theorem 1 that the finite graph
Tn〈t1, t2, t1 + t2〉 and its Toeplitz subgraphs Tn〈t1, t2〉, Tn〈t1〉 are planar for all t1, t2
and all n ≥ t1+t2+1, t2+1, t1+1, respectively. To make this paper self-contained we
will give a separate proof of this result later. Also note that the finite case differs from
the infinite one with respect to connectivity: in general, a finite Toeplitz graph only
decomposes into at least c = gcd(t1, . . . , tk) many connected (and not necessarily
isomorphic) components (cf. [2]), whereas c is the exact number of connected and
isomorphic components in the infinite case (cf. [4]). For convenience, we will restrict
ourselves to the case gcd(t1, t2) = 1.

In view of Theorem 1, we may consider a finite Toeplitz graph Tn〈t1, . . . , tk〉 with
k ≥ 3 which is not the graph Tn〈t1, t2, t1 + t2〉 and ask the question, from which n on
planarity will be lost. It turns out that this is the case whenever n ≥ 2t1 + 2t2 − 1.
Three cases arise:

(i) n ≥ 2t1 + 2t2 − 1
(ii) n ≤ 2t1

(iii) 2t1 < n < 2t1 + 2t2 − 1.

For the third case, an example is given by Tt1+t2〈t1, t2, t1 + t2 − 1〉, and we think that
investigating this situation further should be an exciting future task.

2.1 The Case n ≥ 2t1 + 2t2 − 1

We will show that for k ≥ 3 and t2 > 2 planarity implies k ≤ 3 and t3 = t1 + t2. For
this the following proof of the planarity of Tn〈t1, t2〉 will be very useful:
We embed T = Tn〈t1, t2〉 in the plane by using the infinite planar square lattice graph
L as follows: for vertex 1 we choose arbitrarily some lattice point. Then we label
the points below with 1 + t1, 1 + 2t1, . . ., and with 1 + t2, 1 + 2t2, . . . those to the
right of 1. Further, we take any of the points 1 + i t2 and label the points below with
1 + i t2 + t1, 1 + i t2 + 2t1, . . . (if any). For each j we complete the finite sequence
1 + j t1, 1 + t2 + j t1, 1 + 2t2 + j t1, . . . to the left with 1 + j t1 − t2, 1 + j t1 − 2t2, . . ..
These numbers, being vertices of Tn〈t1, t2〉, all lie between 1 and n. For j = t2,
the horizontal finite sequence becomes again 1, 1 + t2, 1 + 2t2, . . ., and the proce-
dure continues. In this way we get an infinite subgraph H of L. By identifying all
points of H carrying the same number we obtain a graph G which is both planar and
isomorphic to T .
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Lemma 1 Tn〈t1, t2, t1 + t2〉 is planar.

Proof We use the previous embedding of Tn〈t1, t2〉 in the plane and the graph H.
Indeed, we immediately recognize that any edge {x, x + t1 + t2} can be added to H
as a diagonal in the lattice square induced by x, x + t1, x + t1 + t2, x + t2. Planarity
is not violated either when passing from H to G. ��

We will see in the following that planarity of Toeplitz graphs is in an intimate and
not quite obvious relationship with the connectivity of H. Let H∗ be the infinite graph
homeomorphic to H and of smallest degree 3. (Thus, vertices such as 1 will disappear.)
Similarly, let G∗ be the graph homeomorphic to G and of smallest degree 3.

Lemma 2 If c ≤ 4 and n ≥ c(t1 + t2), then H∗ is c-connected.

The easy proof is left to the reader.

Lemma 3 If c ≤ 2 and H∗ is c-connected, then G∗ is 2c-connected.

Proof Indeed, we must remove two disjoint cut sets from H∗ or a 4-vertex set (the
neighbourhood of some vertex) to disconnect G∗. ��

Lemma 4 Suppose the connectivity of H is 1 and all its cutpoints carry the same
number (become the same vertex of G after identification). Then G∗ is 3-connected.

Proof Any cut set of G∗ with less than 4 vertices is the union of two disjoint cut sets
of H∗ numbered differently. Since only one of them can consist of a single vertex, any
cut set of G∗ has at least 3 vertices. ��

We are now able to show

Theorem 3 If gcd(t1, t2) = 1, t2 > 2, k ≥ 3 and n ≥ 2t1 + 2t2 − 1 for a planar
Toeplitz graph T = Tn〈t1, t2, . . . , tk〉, then T = Tn〈t1, t2, t1 + t2〉.

Proof We use the above terminology and consider Tn〈t1, t2〉 first. If n equals (2t1 +
2t2 − 1) and t2 is odd, we are led precisely to the situation of Lemma 3; otherwise we
get H and H∗ 2-connected, which implies by Lemma 2 the 4-connectivity of G∗. Thus,
G∗ is a polytopal graph, whence the regions in which G∗ divides the plane are uniquely
determined. Some vertices of G, like 1, are not vertices of G∗, but the homeomorphism
between G and G∗ suggests to say that they belong to certain edges of G∗ (so 1 belongs
to the edge {1 + t1, 1 + t2} of G∗). In this way all vertices 1, 2, . . . , t1 + t2 belong
to the boundary of the same region and no other vertex of G∗ lies on that boundary.
Thus, the only new edges incident at t1 + t2 − 1, which could be added preserving
planarity, have the other vertex on the boundary of one of the two incident regions,
i.e., in the set {1, 2, . . . , t1 + t2, 2t1 + t2 − 1, t1 + 2t2 − 1, 2t1 + 2t2 − 1}. An edge
produced by t3 is {t1 + t2 − 1, t1 + t2 + t3 − 1}. Since t3 > t2, the only possibility is
t1 + t2 + t3 − 1 = 2t1 + 2t2 − 1, that is t3 = t1 + t2. ��
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Fig. 2 The Toeplitz graph
T8〈2, 3, 5, 6〉

The lower bound on n given in Theorem 3 is best possible. Figure 2 shows the pla-
nar Toeplitz graph T8〈2, 3, 5, 6〉. By Theorem 3 the only planar Toeplitz graph with
t1 = 2, t2 = 3, k ≥ 3 and n ≥ 9 is Tn〈2, 3, 5〉.

What can we say if gcd(t1, t2, t3) = 1?
If gcd(t1, t2) = c > 1 and c|t3 then the preceding Theorem gives important infor-

mation on the planarity of the c components of Tn〈t1, t2, t3〉. This, in turn, can be
used for every Toeplitz graph admitting Tn〈t1, t2, t3〉 as a subgraph. However, the
case gcd(t1, t2, t3) = 1 appears to be untractable with our present knowledge if
gcd(ti , t j ) > 1 for i, j ∈ {1, 2, 3}, i �= j .

Still we have the following result.

Theorem 4 Let p, q, r be primes and n > pqr. Then Tn〈pq, pr, qr〉 is not planar.

Proof We may assume p < q < r . First, suppose {p, q, r} �= {2, 3, 5}. Then r ≥ 7.
We find the following subgraph of Tn〈pq, pr, qr〉 homeomorphic to K3,3: one set of
vertices is {pq + 1, pr + 1, qr + 1}, the other {1, p(q + r)+ 1, pqr + 1}. Obviously,
1 is adjacent to pq +1, pr +1 and qr +1. Vertex pqr +1 is joined with pq +1 by the
path [pqr + 1, pq(r − 1)+ 1, . . . , pq + 1], with pr + 1 by the path [pqr + 1, p(q −
1)r +1, . . . , pr +1] and with qr +1 by the path [pqr +1, (p−1)qr +1, . . . , qr +1].
These paths are pairwise disjoint (except at pqr + 1), because if pqi + 1 = pjr + 1,
say, then q| j , which contradicts j < q. Finally, the vertex p(q + r) + 1 is adjacent to
pr + 1 and to pq + 1. It remains to show that it is also joined to qr + 1 by a suitable
path. Indeed, the path P = [p(q + r) + 1, pq + pr + qr + 1, pr + qr + 1, qr + 1]
does not meet any previous path (except at p(q + r) + 1 and qr + 1), because if
pq + pr + qr + 1 or pr + qr + 1 equals pqi + 1 or pr j + 1 or qrl + 1, then
p|q or p|r , a contradiction. Also, we have to verify that P is entirely contained in
Tn〈pq, pr, qr〉, i.e., that

pq + pr + qr + 1 ≤ n.

Actually, if p ≥ 3 the strict inequality holds:

pq + pr + qr + 1 < 3qr + 1 ≤ pqr + 1 ≤ n.
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Fig. 3 A non-planar subgraph
for the case {p, q, r} = {2, 3, 5}

For p = 2 we first see that q ≥ 3 and r ≥ 7 imply

2q ≤ 6(q − 2) < r(q − 2),

whence 2(q + r) < qr and

2q + 2r + qr + 1 < 2qr + 1 ≤ n.

It remains to treat the particular case {p, q, r} = {2, 3, 5}. Figure 3 shows a sub-
graph homeomorphic to K3,3 in T31〈6, 10, 15〉. ��

2.2 The Case n ≤ 2t1

In case that t2 = t1 + 1 we are able to find all planar Toeplitz graphs. In particular,
k ≤ 4 must hold. If t2 > t1 + 1 we point out the existence of planar Toeplitz graphs
with k = 5.

Theorem 5 If for a planar Toeplitz graph T , n ≤ 2t1 and t2 = t1 + 1, then T is
Tn〈t1, t1 + 1, t3, t3 + 1〉 or a Toeplitz subgraph of it.

Proof Figure 4 shows a planar embedding of Tn〈t1, t1 + 1, t3, t3 + 1〉 for t3 = t1 + 4,
the generalization to arbitrary t3 being straightforward.

Fig. 4 The Toeplitz graph T2t1 〈t1, t1 + 1, t1 + 4, t1 + 5〉

123



Graphs and Combinatorics

Consider now Tn〈t1, t1 +1, t3, t4〉 with t4 ≥ t3 +2. We show the existence of a sub-
graph homeomorphic to K3,3. The point sets will be {1, 3, t3+2} and {2, t3+1, t3+3}.
Now, 1 is joined to 2 by the path [1, t1 +2, 2], is adjacent to t3 +1, and either adjacent
to t3 +3 if t4 = t3 +2 or joined to t3 +3 by the path [1, t4 +1, t4 − t1, t4, . . . , t3 − t1 +
3, t3 + 3] otherwise. Also, 3 is joined to 2 by the path [3, t1 + 3, 2] and to t3 + 1 by the
path [3, t1 +4, 4, . . . , t3 − t1, t3 +1] and is adjacent to t3 +3. Finally, t3 +2 is adjacent
to 2 and joined by the paths [t3 + 2, t3 − t1 + 1, t3 + 1] and [t3 + 2, t3 − t1 + 2, t3 + 3]
with t3 + 1 and t3 + 3. ��
Theorem 6 Suppose t2 > t1+1 and n ≤ 2t1. If (t2−t1)|(t3−t1) then Tn〈t1, t2, t3, t2+
t3 − t1, n − 1〉 is planar.

Proof The graph Tn〈t1, t2〉 has t2 − t1 components. Each of them reduces to the case
Tn〈t1, t1 +1〉, which was treated in Theorem 5. In the (t2 − t1)-th component, t2 − t1 is
adjacent to t2 and to 2t2 −t1, vertex 2(t2 −t1) is adjacent to 2t2 −t1 and to 3t2 −2t1, etc.
Thus, a new series of edges, produced by another diagonal in the adjacency matrix
and preserving planarity, joins t2 − t1 to any j t2 − ( j − 1)t1 and corresponds to
t3 = ( j − 1)t2 − ( j − 2)t1. This means that t3 − t1 = ( j − 1)(t2 − t1) and hap-
pens precisely when (t2 − t1)|(t3 − t1). By applying Theorem 5 we find then that
planarity is also kept by joining t2 − t1 to ( j + 1)t2 − j t1 (in fact, each i(t2 − t1) to
( j + i)t2 − ( j + i − 1)t1), which corresponds to

t4 = j t2 − ( j − 1)t1 = t2 + t3 − t1.

Finally, the first component can be embedded in the plane so that vertex 1 appears
on the boundary of its unbounded region. The (t2 − t1)-th component can in turn be
embedded so that vertex n appears on the boundary of its unbounded region. Then
clearly, t5 = n − 1 yields a planar graph (disconnected, provided t2 − t1 > 2). ��

2.3 All Finite, Planar Toeplitz Graphs with t1 = 1

We know already that Tn〈1, t2, t2 + 1〉 is the only planar Toeplitz graph with t1 = 1
and t2 > 2 in case that n ≥ 2t2 + 1. That this remains true for any n follows from the
next lemma.

Lemma 5 Tt3+1〈1, t2, t3〉 is not planar for t2 > 2 and t3 ≥ t2 + 2.

Proof First assume that t3 < 2t2 (see Fig. 5). Then t3 +1− t2 < t2 +1. We find a sub-
graph homeomorphic to K3,3 in T as follows: consider the two vertex sets {1, t3 +1−
t2, t2 +2} and {2, t2 +1, t3 +1}. T contains the edges {1, 2}, {1, t2 +1} and {1, t3 +1}.
The vertex t3 + 1 − t2 is joined by the path [t3 + 1 − t2, t3 − t2, . . . , 3, 2] to 2, by the
path [t3 + 1 − t2, t3 + 2 − t2, . . . , t2, t2 + 1] to t2 + 1, and adjacent to t3 + 1. Finally,
t2 +2 is adjacent to 2 and to t2 +1, and joined by the path [t2 +2, t2 +3, . . . , t3, t3 +1]
to t3 + 1.

Now suppose that t3 ≥ 2t2. Then t3 − 2t2 + 2 ≥ 2. Again, we find a subgraph
homeomorphic to K3,3 in T : the two vertex sets are {t3 − 2t2 + 2, t3 − t2 + 1, t3}
and {t3 − t2, t3 − t2 + 2, t3 + 1}. Indeed, t3 − 2t2 + 2 is joined to t3 − t2 by the path
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Fig. 5 A non-planar subgraph
for the case t3 < 2t2

[t3 − 2t2 + 2, t3 − 2t2 + 3, . . . , t3 − t2], is adjacent to t3 − t2 + 2, and is joined to
t3 + 1 by the path [t3 − 2t2 + 2, t3 − 2t2 + 1, . . . , 2, 1, t3 + 1]. The vertex t3 − t2 + 1
is adjacent to each of the vertices t3 − t2, t3 − t2 + 2 and t3 + 1. Finally, t3 is adjacent
to t3 − t2, joined by the path [t3, t3 − 1, . . . , t3 − t2 + 3, t3 − t2 + 2] to t3 − t2 + 2,
and adjacent to t3 + 1. ��
Lemma 6 Tt3+3〈1, 2, t3〉 is not planar for t3 ≥ 4.

Proof Consider the vertex sets {1, 4, t3 +2} and {2, 3, t3 +1}. Vertex 1 is adjacent to 2,
3 and t3 +1. Vertex 4 is adjacent to 2 and 3, and joined by the path [4, 5, . . . , t3, t3 +1]
to t3 + 1. Vertex t3 + 2 is adjacent to 2, joined by the path [t3 + 2, t3 + 3, 3] to 3, and
adjacent to t3 + 1. ��
Lemma 7 Tt3+2〈1, 2, t3〉 is not planar for any odd t3 ≥ 5.

Proof Take the same vertex sets {1, 4, t3 + 2} and {2, 3, t3 + 1} as in the preceding
proof, and the same paths with two exceptions: the path joining 4 to t3 +1 will now be
[4, 6, . . . , t3−1, t3+1] and the path joining t3+2 to 3 will now be [t3+2, t3, . . . , 5, 3].

��
Lemma 8 Tt3+2〈1, 2, t3, t3 + 1〉 is planar for t3 even.

Proof Figure 6 presents a planar embedding of Tt3+2〈1, 2, t3, t3 + 1〉. ��
Altogether, we obtain

Fig. 6 The Toeplitz graph
Tt3+2〈1, 2, t3, t3 + 1〉
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Theorem 7 The finite, planar Toeplitz graphs with t1 = 1 are Tn〈1, t2, t2 + 1〉 and
Tt3+2〈1, 2, t3, t3 + 1〉 with t3 even, plus all their Toeplitz subgraphs (with t1 = 1).

Proof By Lemmas 1 and 8, the graphs from the statement are planar. By Lemma 5, if
a Toeplitz graph with t1 = 1 and k = 3 is planar and different from Tn〈1, t2, t2 + 1〉,
then t2 = 2. In this case, by Lemma 6, n ≤ t3 + 2. Moreover, Lemma 7 forces t3 to
be even. Obviously, k ≤ 4. ��

Corollary 2 Tt3+1〈1, 2, t3〉 is planar.

3 Colouring Aspects

It is well known (see for instance [1]) that any infinite Toeplitz graph T =
T∞〈t1, . . . , tk〉 can be coloured with k + 1 colours by a greedy-like algorithm. Hence,
planar such graphs and, in particular, the graphs Tn〈t1, t2, t1 + t2〉, Tn〈t1, t2〉, Tn〈t1〉
are immediately seen to be 4-colourable. We are interested in the chromatic number
χ(T ) of a finite, planar Toeplitz graph T , i.e., the minimum number p for which T
has a p-colouring. The aim of this section is to determine this number for all those
families of Toeplitz graphs that have been presented in Sect. 2.

For the infinite case we have the following result.

Theorem 8 [4] Let 2r and 3s be the highest powers of 2 and 3 that divide t1.

(i) T = T∞〈t1〉 is always bipartite.
(ii) If T = T∞〈t1, t2〉, then

χ(T ) =
{

2 if 2r+1| (t2 − t1)
3 if not.

(iii) If T = T∞〈t1, t2, t1 + t2〉, then

χ(T ) =
{

3 if 3s+1| (t2 − t1)
4 if not.

In the finite case, Tn〈t1〉 is always bipartite, and for k = 2 we have

Lemma 9 For T = Tn〈t1, t2〉,
(i) if 2r+1| (t2 − t1), then T is bipartite for any n ∈ N;

(ii) if 2r+1 � | (t2 − t1), then

χ(T ) =
{

2 if n ≤ t1 + t2 − gcd(t1, t2),
3 if n > t1 + t2 − gcd(t1, t2).
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Proof (i) follows directly from Theorem 8. For (ii), let c := gcd(t1, t2) and t ′i := ti/c
for i = 1, 2. We know that T 〈t1, t2〉 decomposes into c isomorphic components. Sup-
pose now that t ′1 + t ′2 is even. Then both of t ′1 and t ′2 have to be odd and 2 divides
(t ′2 − t ′1). But this means that T 〈t1, t2〉 is bipartite, a contradiction. The finite Toeplitz
graph Tt1+t2〈t1, t2〉 thus decomposes into c cycles of odd length t ′1 + t ′2. Since the c
vertices t1 + t2, t1 + t2 − 1, . . . , t1 + t2 − c + 1 all belong to different components of
Tt1+t2〈t1, t2〉, the maximum number n∗ for which Tn∗〈t1, t2〉 is bipartite, is given by
n∗ = t1 + t2 − gcd(t1, t2). ��

A corresponding result for the case k = 3 and t3 = t1 + t2 is as follows.

Lemma 10 For T = Tn〈t1, t2, t1 + t2〉,

(i) if 2r+1| (t2 − t1), then

χ(T )

{= 2 if n ≤ t1 + t2,
>2 if n > t1 + t2.

(ii) if 2r+1 � | (t2 − t1), then

χ(T )

{= 2 if n ≤ t1 + t2 − gcd(t1, t2),
>2 if n > t1 + t2 − gcd(t1, t2).

For a proof, we just observe that

Tn〈t1, t2, t1 + t2〉
⎧⎨
⎩

– coincides with Tn〈t1, t2〉, whenever n ≤ t1 + t2,
– contains a triangle induced by {1, 1 + t ′1, 1 + t ′1 + t ′2},

if n > t1 + t2.

It remains to determine the maximum number n∗ for which Tn∗〈t1, t2,
t1 + t2〉 is 3-colourable in case that 3s+1 is not a divisor of (t2 − t1).

For this we recall from [4] the notion of a (Kn \ e)-cycle.

Definition 1 Let Kn \ e be the complete graph on n vertices with one edge removed,
and let a and b denote the vertices of degree n − 2, which we call the distinguished
vertices. A collection (K 1, K 2, . . . , K p) of such (Kn \e)s with distinguished vertices
a1, b1, . . . , ap, bp is called a (Kn \ e)-cycle, if K i and K i+1 have one of their distin-
guished vertices in common, i.e., bi = ai+1 for i = 1, . . . , p − 1, and possibly n − 3
of its neighbors. Finally, a1 and bp are connected by an edge.

A (Kn \e)-cycle C is easily seen to be n-critical, i.e., χ(C) = n but χ(C\e) = n−1
for any edge e ∈ C . Since we only deal with Toeplitz graphs T 〈t1, . . . , tk〉 with k ≤ 3,
the use of (K4 \e)-cycles will be sufficient. The following theorem will also be useful.

Theorem 9 [4] Let T = Tn〈t1, t2, t1 + t2〉 such that 3s+1 is not a divisor of (t2 − t1).
Then T contains a (K4 \ e)-cycle as a subgraph.
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Fig. 7 The cases r0 = 0 and t2 ∼= 0 mod 3, t2 ∼= 2 mod 3

As in the proof (in [4]) of Theorem 9, we let t1 + t2 = mt1 + r0, 0 ≤ r0 ≤ t1 − 1.
We may also suppose that gcd(t1, t2) = 1, which reduces the hypothesis: 3s+1 is
not a divisor of (t2 − t1) to: 3 does not divide (t2 − t1). Since a complete analysis
seems to be very difficult, we only present a solution for r0 = 0, leading to t1 = 1
and the cases t2 ∼= 0 mod 3 and t2 ∼= 2 mod 3, that are illustrated in Fig. 7 for
n = 2(t1 + t2) = 2m.

In both cases a (K4 \ e)-cycle is easily detected as a subgraph, and a 3-colouring is
impossible unless the elements 2m − 1, 2m in the first case, and 2m − 2, 2m − 1, 2m
in the second are deleted. Thus, we get

Theorem 10 The maximum number n∗ for which Tn∗〈1, t2, t2 + 1〉 is 3-colourable,
equals 2m − 2 if t2 ∼= 0 mod 3, and 2m − 3 if t2 ∼= 2 mod 3.

For the second example of a planar Toeplitz graph T with t1 = 1 as studied in
Sect. 2.3 we can easily show

Lemma 11 If T = Tt3+2〈1, 2, t3, t3 + 1〉 and t3 is even, then 2 < χ(T ) ≤ 4, and
χ(T ) = 3 iff t3 ∼= 1 mod 3.

4 Counting Maximal Independent Sets

Given a Toeplitz graph T = Tn〈t1, . . . , tk〉, a set of vertices I ⊆ V = {1, . . . , n}
is called an independent set, if |i − j | /∈ {t1, . . . , tk} for all i, j ∈ I . A maximal
independent set, or a basis, is an independent set with the property that I ∪ {v} is not
independent any more for any v ∈ V \ I . Just observe that a basis of T corresponds
to a maximal complete subgraph, or a clique, in the (edgewise) complement of T , the
Toeplitz graph T̄ = T 〈V \ {t1, . . . , tk, n}〉.

Moon and Moser [13] have shown that a graph G = (V, E) with n vertices can
have at most 3n/3 bases. The exact number b(n) of bases is given in the n-vertex cycle
Cn by the Perrin numbers (see Füredi [7]), and in the n-vertex path Pn by the Padovan
sequence (see Euler [5]).

In the following we are going to determine b(n) for several instances of Toeplitz
graphs including the planar case for small values of tk . Since the problem of counting
bases in planar graphs is #P-complete (see Vadhan [16]), our approach may be seen
as a contribution to the emerging field of fixed parameter counting.
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4.1 The Case T = Tn〈1, . . . , l〉

We start with a first case: T = Tn〈1, . . . , l〉. T consists of a sequence of cliques of
size l + 1, and two vertices i, j ∈ {1, . . . , n} are independent, iff they are at distance
≥ l + 1. But this is precisely the way l-independence over the path Pn is usually
defined, and the number b(n) of maximal such independent sets has already been
studied by Skupien (2007, Private communication).

Theorem 11 (Skupien, 2007, Private communication) Given the Toeplitz graph T =
Tn〈1, . . . , l〉, the number b(n) of bases satisfies the recurrence

b(n) = b(n − l − 1) + · · · + b(n − 2l − 1) for n ≥ 2l + 2,

with initial values

b( j) = j for j = 1, . . . , l + 1,

b(l + j) = (l + 1) +
(

j − 1

2

)
for j = 2, . . . , l + 1,

and generating function

∑
n≥1

b(n)xn =
∑l+1

j=1 j x j + xl+1 ∑l−1
k=1(l + 1 − k)xk

1 − ∑2l+1
k=l+1 xk

.

For a proof of the recurrence, consider the path Pn over the vertex set V =
{1, . . . , n}. Partition the family Bn of maximal l-independent sets in Pn into l + 1
classes C0, . . . , Cl according to the largest element such a set does contain: this can
be n, n − 1, . . . , n − l. Clearly, the cardinality of Ci equals b(n − (l + 1) − i) for
i = 0, . . . , l, and one easily verifies the initial conditions.

Theorem 11 thus provides recurrence formulas for the number of bases in the planar
Toeplitz graphs Tn〈1〉, Tn〈1, 2〉 and Tn〈1, 2, 3〉.

For more general results we have adapted the transfer matrix method, well known
from statistical physics (see Stanley [15] for a presentation) in a similar way as we
did in Euler [5] to count the number of bases in grid graphs. The main steps can be
described as follows:

1. Create a partition of Bn into a fixed number of classes, reproducing itself (with
growing class cardinalities) when going from n to n + 1;

2. Determine the associated transfer matrix M ;
3. Calculate det (1 − x M) to obtain a recurrence formula for b(n).

To see how the different classes evolve at each step, we need to know how Bn+1 arises
from Bn . As an example, consider the adjacency matrices An and An+1 associated
with Tn〈t1, t2〉 and Tn+1〈t1, t2〉 as represented in Fig. 8.
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Fig. 8 Matrices An and An+1

Now, if

B′ = {
B \ {n + 1 − t1, n + 1 − t2} ∪ {n + 1}, B ∈ Bn}

,

then

Bn+1 = {
B ⊆ {1, . . . , n + 1} : B ∈ Bn or B ∈ B′, and B maximal

}
.

Second, once we have partitioned Bn into a certain number of classes C0, . . . , C p,
when transforming Bn into Bn+1 as indicated above, a basis B ∈ Ci , will contribute
to a number of classes Ci1 , . . . , Ciq within Bn+1: if these classes are the same for
every B ∈ Ci , we will call Ci a stable class. It is our aim to find a partition of Bn into
stable classes. If there are p such classes, we are able to define the transfer matrix
M ∈ {0, 1}p×p as follows:

Mi j = 1 iff class j contributes to class i .

Moreover, if ck
i denotes the cardinality of class Ci at stage k, then

ck+1
i =

p∑
j=1

Mi j c
k
j for i = 1, . . . , p,

and

b(k + 1) =
p∑

i=1

ck+1
i .

4.2 The Case T = Tn〈1, 3〉

Following this approach for the Toeplitz graph T = Tn〈1, 3〉 we obtain a partition of
Bn into 5 classes, as indicated in Table 1.
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Table 1 Partition of Bn , n ≥ 6,

into 5 stable classes
Classes B =
C1 {∼, n − 5, n}
C2 {∼, n − 7, n − 2, n}
C3 {∼, n − 4, n − 2, n}
C4 {∼, n − 6, n − 1}
C5 {∼, n − 3, n − 1}

The corresponding transfer matrix is

M =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

with det (1− x M) = 1− x2 − x5, providing a recurrence for the sequence (b(n))n∈N,
together with the associated generating function.

Altogether, we obtain

Theorem 12 Given the Toeplitz graph T = Tn〈1, 3〉, the number b(n) of bases satis-
fies the recurrence

b(n) = b(n − 2) + b(n − 5) for n ≥ 6,

with initial values

i = 1, . . . , 5

b(i) 1 2 2 2 2

defining the sequence

(b(n))n∈N = (1, 2, 2, 2, 2, 3, 4, 5, 6, 7, 9, 11, 14, 17, 21, . . .),

whose generating function is

∑
n≥1

b(n)xn = x + 2x2 + x3

1 − x2 − x5
.

4.3 The Case T = T 〈1, 4〉

The partition of Bn in this case is presented in Table 2.
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Table 2 Partition of Bn , n ≥ 9,

into 13 stable classes
Classes B =
C1 {∼, n − 8, n − 5, n − 2, n}
C2 {∼, n − 7, n − 5, n − 2, n}
C3 {∼, n − 9, n − 2, n}
C4 {∼, n − 7, n − 2, n}
C5 {∼, n − 6, n − 3, n}
C6 {∼, n − 5, n − 3, n}
C7 {∼, n − 9, n − 6, n − 3, n − 1}
C8 {∼, n − 8, n − 6, n − 3, n − 1}
C9 {∼, n − 10, n − 3, n − 1}
C10 {∼, n − 8, n − 3, n − 1}
C11 {∼, n − 7, n − 4, n − 1}
C12 {∼, n − 6, n − 4, n − 1}
C13 {∼, n − 4, n − 2}

And the corresponding transfer matrix is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with det (1 − x M) = 1 − x3 − x5 − x7 − x9 + x10 + x12.
Similarly to Theorem 12 we obtain

Theorem 13 Given the Toeplitz graph T = Tn〈1, 4〉, the number b(n) of bases satis-
fies the recurrence

b(n) = b(n − 3) + b(n − 5) + b(n − 7) + b(n − 9) − b(n − 10)

−b(n − 12) for n ≥ 13

with initial values

i = 1, . . . , 12

b(i) 1 2 2 3 5 5 6 7 8 11 14 18
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defining the sequence

(b(n))n∈N = (1, 2, 2, 3, 5, 5, 6, 7, 8, 11, 14, 18, 23, 28, 34, 43, . . .) ,

whose generating function is

∑
n≥1

b(n)xn

= x + 2x2 + 2x3 + 2x4 + 3x5 + 2x6 + x7 − x8 − 2x9 − 3x10 − 2x11 − x12

1 − x3 − x5 − x7 − x9 + x10 + x12
.

We observe that with increasing value of t2 the effort to determine the sequence
(b(n))n∈N grows rapidly. It would be interesting to identify cases similar to the first
one of this section, for which this effort remains reasonable.

5 Conclusion

In this paper we have described several classes of finite planar Toeplitz graphs, deter-
mined their chromatic number and given results on counting maximal independent
sets for several instances of such graphs. We think that, beyond the ongoing work on
colorability and hamiltonicity, future work should focus on the independence number
of finite Toeplitz graphs in relation with algorithmic aspects.
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