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1. Introduction. A new form for the fundamental equations of non-aligned flows
has been obtained [1]. In the present paper steady, plane, aligned MHD flows of a
viscous, incompressible fluid of infinite electrical conductivity are considered. When
the streamlines (j? = constant) and their orthogonal trajectories (£ = constant) are
taken as the curvilinear coordinate system £, ?? in the physical plane the fundamental
equations governing the flow are replaced by a new system of equations in which £
and rj are the independent variables.

The new form of the basic equations thus obtained is used to generalize some of the
well-known results existing for the flows of non-conducting fluids [2],

Two familiar flow patterns of plane flows with straight streamlines are the source
flows and the straight parallel flows. Are these the only plane flows with straight stream-
lines? With the help of the new equations, this question is answered in affirmative.
In Sec. 3b, it is proven that if the streamlines are involutes of a curve, they are con-
centric circles.

2. Flow equations. The steady, plane, aligned MHD flow of an incompressible
fluid of infinite electrical conductivity in the absence of heat conduction is governed
by the system of six equations:

div V = 0, (2.1)

(V-grad)V + p_1 grad p = v div grad V + up'1 (curl H) X H, (2.2)

H = oV, (2.3)

div H = 0, (2.4)

where V is the velocity, H the magnetic field vector, p the pressure, v the constant
kinematic viscosity, n the constant magnetic permeability and a an arbitrary scalar
function.

Substituting (2.3) in (2.4) and using (2.1), we find that a is constant along each
individual streamline, i.e.

V-grad a = 0. (2.5)

Elimination of (V-grad)V and div grad V between (2.2) and the vector identities

(curl V) X V = (V-grad) V — grad (F2/2)
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and

curl (curl V) = grad (div V) — div grad V

yields

(curl V) X V + grad {pp~l + (F2/2)} + v curl (curl V)

= up'1 (curl H) X H, (2.6)

where (2.1) has been used. With the introduction of the vorticity vector

o = curl V (2.7)

the momentum equations (2.6) can be written as

(curl V) X V + grad {pp-1 + (V2/2)} + v curl o

= up-1 (curl H) X H. (2.8)

In breaking Eqs. (2.6) into (2.7) and (2.8), we have reduced the order of equations
from two to one.

In natural i.e. streamline coordinates with gi(£, r/) and g2(%, v) dij as the components
of a vector element of arc length, we have

= (29)

cuilv- (210)

(curl V) X V = j- (9lV)e2 , (2.11)
0102 or)

grad (~ + y) = i It (p + I)61 + 1(p + I)62 ' (2.12)

1 dco 1 3co
curl co = — — ei — — —;e2, (2.13)

g2 gri

(curl H) X H = a(curl «V)XV = f (ffi«7)e2 , (2.14)
0102 Ol?

V-grad« = ~, (2.15)
0i o?

where F is the magnitude of the velocity, e! a unit vector in the direction of the velocity,
e2 a unit vector in the direction perpendicular to the velocity but in the plane of flow,
e3 a unit vector in the direction of normal to the plane of flow such that ej , e2 and e3
form a right-handed coordinate system. The metric of this (£, ?y) net is of the form

ds2 = 0i2($, v) df + g22(t, rj) dt]

where qx and g2 satisfy the Gauss equation

l_0i d£ J d-q
L i>9±
.02 dv -

0. (2.16)
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On using Eqs. (2.9) to (2.15) in (2.1, 5, 7, 8), we find that the flow equations in natural
coordinates are:

^ (0,V) = 0, (2.17)
da/dt = 0, (2.18)

<2-19)

F?+'i? + "£!f! = 0' <2 20)p g2 d r,

V2 dgi 1 dp g2 dco aV d . .
— 1 a r"_i; = M IT KQ&v), (2.21)9i dy P dv 9i pgx dt]

where to = |w|.
Eqs. (2.16) to (2.21) constitute a set of six equations for six dependent variables V,

gh , g2 , p, a and co. Eqs. (2.17), (2.18), (2.19) can be used to eliminate V, a, co and we
are left with three equations in three unknowns p, gl , g2 ■ Upon eliminating p from
(2.20), (2.21) a system of two equations results for gY , g2 .

3a. Straight streamlines. We prescribe the streamlines to be straight lines. We
assume that they are not parallel but envelop a curve T. We now take the tangent
lines to the curve r, and their orthogonal trajectories, the involutes of r as the system
of orthogonal curvilinear coordinates. The square of the element of arc length ds in this
orthogonal curvilinear coordinate system is given by [1]:

ds2 = d? + (£ - <r)2 dr? (3.1)

where a = a(rj) denotes the arc length of the curve r, rj is the angle subtended by the
tangent line with .-r-axis and £ is a parameter constant along each involute. In this
coordinate system, the coordinate curves £ = constant (the orthogonal trajectories
to streamlines) are the involutes of the curve T and 77 = constant (the streamlines)
are its tangent lines.

From (3.1), we get

91 = l' (3.2)

02 = £ — <r(y)-

For the flows considered in this paper, we shall now show that these forms of g 1 and g2
imply that the streamlines are radial and hence the orthogonal trajectories are con-
centric circles.

Substituting for gx and g2 from (3.2) in (2.16), we find that it is automatically satisfied.
From Eq. (2.17), we have

£hV = A(v) (3.3)
where A(t]) is an arbitrary function of Using (3.2) and (3.3) in (2.19), we obtain

1
[ft - a(y)]2

A'M + (3.4)
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Differentiating (2.20) with respect to y, (2.21) with respect to £ and adding, we find

d_
dt]ir%)+"I [r^w Si+' k [(t -°W) tO= 51 [°MVr,W,)F|]

(3.5)
Elimination of V and co between (3.3), (3.4) and (3.5) yields

Yo + F,{S - *(,)} + F2{£ - crWl2 + F3{£ - a(v)}3 - 0 (3.6)

where 7, = F,(?j) and

F„ = 15v A(ri)[a'(ri)]3,

Y1 = 15vA'(ri)[a'(ri)]2 + lO»A(ij)a'(ri)<r"(ri),

F2 = ?,A2{ii)a'{r]) + 6vA"(rj)o'(i]) + 4^ A' (77)0-" (17) + vA{t})g"'(t))

+ 9i>A(ri)ff'(Ti) + ?ytxp~la{ri)A'Xri)<j'{ri),

F3 = 2A(ti)A'(ti) + 1iA"'(it) + 4j'A'(tj) + /zp l[2a(i))A{ri)A'{ri) + 2a(ri)a'(v)A2(ri)].

Since £, 77 are independent variables, the identity (3.6) can hold only if all the F, vanish
identically. In particular, this requires that

F„ = 15vA (ij)[a'(rj)]3 = 0

either A(rj) = 0 or <r'(rj) = 0.

The first possibility together with (3.3) implies that either V = 0 or g2 — 0, which is
not true. Therefore, the radius of curvature R ( = a'(v)) of r vanishes identically and
hence we have the following theorem.

Theorem. If the streamlines in steady, plane aligned MHD flow of a viscous fluid
are straight lines, then they must be concurrent or parallel.

3b. Vortex flows. In this example, we consider the involutes of the curve F as
the streamlines and the tangents to the curve r as the otrhogonal trajectories. The
square of the element of arc length ds in this orthogonal curvilinear coordinate system
is given by

ds2 = [(„ - <r(£)]2 dt + dr,2 (3.7)

where the coordinate curves £ = constant (the orthogonal trajectories of the stream-
lines) are the tangent lines to the curve T and r? = constant (the streamlines) are the
involutes of I\ From (3.7), we obtain

gi = v- (3 8)

02 = 1.

These metric coefficients imply that the flow field is the general vortex flow.
Eq. (2.16) is again automatically satisfied. The second equation of (3.8) together

with (3.3) requires that the velocity magnitude is constant along each individual stream-
line. Using (3.3) and (3.8) in (2.19), we get
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(3.9)

Eliminating p between (2.20) and (2.21), we get

3vA(r))[a'(£)]2 + [vA(v)v"(£)]{v ~ c(?)l

+ MO?) — A*(n)<r'(g) + ^p"V(7?)il2(r))(7'©]{77 — <r(£)}2

- vA'(v){v - cr©}3 + 2vA"(V){r, - <7©}4 + VA"'(V){V - <r©}6 = 0 (3.10)

when eqs. (3.3), (3.8) and (3.9) are used. For the relation (3.10) to hold identically,
it must hold on the curve ?? = <r(£) and therefore, we have

R = a' = 0.

Theorem. If the streamlines in steady, plane, aligned MHD flow of a viscous
fluid are involutes of a curve r, then the streamlines are concentric circles.
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