On pluricanonical maps for threefolds of general type

By Meng Chen

(Received Sept. 17, 1996)

§ 1. Introduction

Let X be a nonsingular projective threefold of general type over the complex number field \boldsymbol{C}. It remains open whether there exists an absolute number $m(3)$ such that $\Phi_{\left|m K_{X}\right|}$ is a birational map onto its image when $m \geq m(3)$ for any X. Restricting interest to objects of nonsingular minimal threefolds of general type, Benveniste [1] got $m(3)=9$ and then Matsuki [9] obtained $m(3)=7$. In this paper, we want to show $m(3)=6$.

Main Theorem. Let X be a nonsingular projective threefold with nef and big canonical divisor K_{X}, then the 6-canonical map $\Phi_{\left|6 K_{X}\right|}$ is a birational map onto its image.

Throughout this paper, most our notations and terminologies are standard except the following which we are in favour of:
$:=$-definition;
$\sim_{\text {lin }}$-linear equivalence;
$\sim_{n u m}$-numerical equivalence.

§ 2. Proof of the Main Theorem

2.1 Kawamata-Viehweg's vanishing theorem. We will use the vanishing theorem in the following form.

Proposition 2.1 (Theorem 1.2 of [5]). Let X be a nonsingular complete variety, $D \in \operatorname{Div}(X) \otimes \boldsymbol{Q}$. Assume the following two conditions:
(1) D is nef and big;
(2) the fractional part of D has the support with only normal crossings.

Then $H^{i}\left(X, \mathcal{O}_{X}\left(\lceil D\rceil+K_{X}\right)\right)=0$ for $i>0$, where $\lceil D\rceil$ is the minimum integral divisor with $\lceil D\rceil-D \geq 0$.
2.2 Basic formula. Let X be a nonsingular projective threefold. For a divisor $D \in \operatorname{Div}(X)$, we have

$$
\chi\left(\mathcal{O}_{X}(D)\right)=D^{3} / 6-K_{X} \cdot D^{2} / 4+D \cdot\left(K_{X}^{2}+c_{2}\right) / 12+\chi\left(\mathcal{O}_{X}\right)
$$

by Riemann-Roch theorem. The calculation shows that

$$
\chi\left(\mathcal{O}_{X}(D)\right)+\chi\left(\mathcal{O}_{X}(-D)\right)=-K_{X} \cdot D^{2} / 2+2 \chi\left(\mathcal{O}_{X}\right) \in \boldsymbol{Z}
$$

therefore $K_{X} \cdot D^{2}$ is an even integer, especially K_{X}^{3} is even.

[^0]If K_{X} is nef and big, then we obtain by Kawamata-Viehweg's vanishing theorem that

$$
p(n):=h^{0}\left(X, \mathcal{O}_{X}\left(n K_{X}\right)\right)=(2 n-1)\left[n(n-1) K_{X}^{3} / 12-\chi\left(\mathcal{O}_{X}\right)\right],
$$

for $n \geq 2$.
Let X be a nonsingular projective threefold, $f: X \rightarrow C$ be a fibration onto a nonsingular curve C. From the spectral sequence:

$$
E_{2}^{p, q}:=H^{p}\left(C, R^{q} f_{*} \omega_{X}\right) \Rightarrow E^{n}:=H^{n}\left(X, \omega_{X}\right)
$$

we get by direct calculation that

$$
\begin{aligned}
h^{2}\left(\mathcal{O}_{X}\right) & =h^{1}\left(C, f_{*} \omega_{X}\right)+h^{0}\left(C, R^{1} f_{*} \omega_{X}\right), \\
q(X) & :=h^{1}\left(\mathcal{O}_{X}\right)=b+h^{1}\left(C, R^{1} f_{*} \omega_{X}\right) .
\end{aligned}
$$

Therefore we obtain

$$
\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{F}\right) \chi\left(\mathcal{O}_{C}\right)+\Delta_{2}-\Delta_{1},
$$

where we set $\Delta_{1}:=\operatorname{deg} f_{*} \omega_{X / C}$ and $\Delta_{2}:=\operatorname{deg} R^{1} f_{*} \omega_{X / C}$. We can also refer to corollary 3.2 of $[8]$ for the above formula.

For a nonsingular threefold X with nef and big canonical divisor K_{X}, Miyaoka showed that $3 c_{2}-c_{1}^{2}$ is pseudo-effective, therefore we get $K_{X}^{3} \leq-72 \chi\left(\mathcal{O}_{X}\right)$ by the Riemann-Roch equality

$$
\chi\left(\mathcal{O}_{X}\right)=-c_{2} \cdot K_{X} / 24
$$

In particular, $\chi\left(\mathcal{O}_{X}\right)<0$.

2.3 A lemma.

Lemma 2.1 (Theorem 1 of [6]). Let X, C be nonsingular projective varieties and C is a curve, $f: X \rightarrow C$ be an algebraic fiber space, then $f_{*}\left[\omega_{X / C}^{\otimes m}\right]$ is semi-positive for $m \geq 1$.
2.4 Proof of the first part. From 2.2, we have $p(2)=3\left[K_{X}^{3} / 6-\chi\left(\mathcal{O}_{X}\right)\right] \geq 4$, therefore $\operatorname{dim} \Phi_{\left|2 K_{X}\right|}(X) \geq 1$, i.e., the bicanonical map is well-defined. We would like to formulate a proof through two steps: (1) $\operatorname{dim} \Phi_{\left|2 K_{X}\right|}(X) \geq 2$ and (2) $\operatorname{dim} \Phi_{\left|2 K_{X}\right|}(X)=1$.

Defintion 2.1. Let X be a nonsingular projective threefold. Suppose that $\left|2 K_{X}\right|$ is not composed of pencils, i.e., $\operatorname{dim} \Phi_{\left|2 K_{X}\right|}(X) \geq 2$. Set $2 K_{X} \sim_{l i n} M_{2}+Z_{2}$, where M_{2} is the moving part of $\left|2 K_{X}\right|$ and Z_{2} is the fixed part. We define $\delta_{2}(X):=K_{X}^{2} \cdot M_{2}, \delta_{2}(X)$ is intrinsic relating to X.

Theorem 2.1 (Theorem 6 of [3]). Let X be a nonsingular projective threefold with nef and big canonical divisor K_{X}, suppose $\left|2 K_{X}\right|$ be not composed of pencils, i.e., $\operatorname{dim} \Phi_{\left|2 K_{X}\right|}(X) \geq 2$, and suppose $\delta_{2}(X) \geq 2$, then $\Phi_{\left|6 K_{X}\right|}$ is a birational map onto its image.

Proposition 2.2. Let X be a nonsingular projective threefold whose canonical divisor K_{X} is nef and big. Suppose that $\left|2 K_{X}\right|$ is not composed of pencils, then $\delta_{2}(X) \geq 2$.

Proof. Obviously, we have $\delta_{2}(X) \geq 1$ under the assumption of the theorem. Suppose $\delta_{2}(X)=1$, we shall derive a contradiction.

Let $f_{2}: X^{\prime} \rightarrow X$ be a succession of blowing-ups with nonsingular centers such that $g_{2}=\Phi_{\left|2 K_{X}\right|} \circ f_{2}$ is a morphism. Let $g_{2}: X^{\prime} \xrightarrow{h_{2}} W_{2}^{\prime} \xrightarrow{s_{2}} W_{2} \subset \boldsymbol{P}^{p(2)-1}$ be the Stein factorization of g_{2}. Let H_{2} be a hyperplane section of $W_{2}=\overline{\Phi_{\left|2 K_{X}\right|}(X)}$ in $\boldsymbol{P}^{p(2)-1}$ and S_{2} be a general member of $\left|g_{2}^{*}\left(H_{2}\right)\right|$. Since $\operatorname{dim} W_{2} \geq 2, S_{2}$ is a nonsingular irreducible projective surface. We set $2 K_{X} \sim_{\operatorname{lin}} M_{2}+Z_{2}$, where Z_{2} is the fixed part of $\left|2 K_{X}\right|$, and M_{2} the moving part. Set $f_{2}^{*}\left(M_{2}\right) \sim \sim_{\text {lin }} S_{2}+E_{2}^{\prime}, K_{X^{\prime}} \sim_{l i n} f_{2}^{*}\left(K_{X}\right)+E_{2}$, where E_{2} is the ramification divisor for f_{2}, E_{2}^{\prime} is the exceptional divisor for f_{2}.

We have $\delta_{2}(X)=K_{X}^{2} \cdot M_{2}=f_{2}^{*}\left(K_{X}\right)^{2} \cdot S_{2}=1$. Multiplying $2 K_{X} \sim_{l i n} M_{2}+Z_{2}$ by $K_{X} \cdot M_{2}$, we have

$$
2=2 K_{X}^{2} \cdot M_{2}=K_{X} \cdot M_{2}^{2}+K_{X} \cdot M_{2} \cdot Z_{2}
$$

Since $\left|S_{2}\right|$ is not composed of pencils, $f_{2}^{*}\left(K_{X}\right)$ is nef and big and since S_{2} is nef, we have

$$
\begin{aligned}
K_{X} \cdot M_{2}^{2} & =f_{2}^{*}\left(K_{X}\right) \cdot f_{2}^{*}\left(M_{2}\right)^{2}=f_{2}^{*}\left(K_{X}\right) \cdot f_{2}^{*}\left(M_{2}\right) \cdot S_{2} \\
& =f_{2}^{*}\left(K_{X}\right) \cdot S_{2}^{2}+f_{2}^{*}\left(K_{X}\right) \cdot S_{2} \cdot E_{2}^{\prime} \geq 1 .
\end{aligned}
$$

Whereas, $K_{X} \cdot M_{2}^{2}$ is even by 2.2 and $K_{X} \cdot M_{2} \cdot Z_{2} \geq 0$ because $M_{2} \cdot Z_{2} \geq 0$ as a 1-cycle. Thus we have $K_{X} \cdot M_{2}^{2}=2$ and $K_{X} \cdot M_{2} \cdot Z_{2}=0$.

Since $f_{2}^{*}\left(K_{X}\right)$ is nef and big, there exists a positive integer m such that

$$
B s\left|m f_{2}^{*}\left(K_{X}\right)\right|=\varnothing
$$

and a general member $T \in\left|m f_{2}^{*}\left(K_{X}\right)\right|$ is a nonsingular projective surface of general type. $\left.S_{2}\right|_{T}$ is a nef divisor on the surface T, because S_{2} is nef on $X^{\prime} .\left(\left.S_{2}\right|_{T}\right)_{T}^{2}=m f_{2}^{*}\left(K_{X}\right)$. $S_{2}^{2}>0$, i.e., $\left.S_{2}\right|_{T}$ is big. We have

$$
\left(\left.\left.S_{2}\right|_{T} \cdot f_{2}^{*}\left(Z_{2}\right)\right|_{T}\right)_{T}=m f_{2}^{*}\left(K_{X}\right) \cdot S_{2} \cdot f_{2}^{*}\left(Z_{2}\right)=m K_{X} \cdot M_{2} \cdot Z_{2}=0,
$$

therefore we should have $m K_{X} \cdot Z_{2}^{2}=\left(\left.f_{2}^{*}\left(Z_{2}\right)\right|_{T}\right)_{T}^{2} \leq 0$ by Hodge's index theorem on T.
On the other hand, $4 K_{X}^{3}=K_{X} \cdot\left(M_{2}+Z_{2}\right)^{2}=K_{X} \cdot M_{2}^{2}+K_{X} \cdot Z_{2}^{2}$, therefore $K_{X} \cdot Z_{2}^{2}=4 K_{X}^{3}-2>0$. We obtain a contradiction.

Theorem 2.2. Let X be a nonsingular projetive threefold with nef and big canonical divisor K_{X}, suppose $\left|2 K_{X}\right|$ be not composed of pencils, then $\Phi_{\left|6 K_{X}\right|}$ is a birational map onto its image.

Proof. This is a direct result of theorem 2.1 and proposition 2.2.
2.5 Proof of the second part. Suppose $\left|2 K_{X}\right|$ be composed of pencils, again take $f_{2}: X^{\prime} \rightarrow X$ be a succession of blowing-ups with nonsingular centers such that $g_{2}:=$ $\Phi_{\left|2 K_{X}\right|} \circ f_{2}$ is a morphism. Let $g_{2}: X^{\prime} \xrightarrow{h_{2}} W_{2}^{\prime} \xrightarrow{s_{2}} W_{2}$ be the stein factorization of g_{2}. Because $\operatorname{dim} W_{2}=1$, we know that a general fiber F of the fibration h_{2} is a nonsingular projective surface of general type. We denote $b:=g\left(W_{2}^{\prime}\right)$.

Proposition 2.3 (Claim 9.1 of [9]). Let X be a nonsingular projective threefold with nef and big canoical divisor K_{X}. Suppose $\left|2 K_{X}\right|$ be composed of pencils, then we have

$$
\mathcal{O}_{F}\left(\left.f_{2}^{*}\left(K_{X}\right)\right|_{F}\right) \cong \mathcal{O}_{F}\left(\pi^{*}\left(K_{F_{0}}\right)\right),
$$

where $\pi: F \rightarrow F_{0}$ is the contraction to minimal model.

Theorem 2.3 (Theorem 10 of [3]). Let X be a nonsingular projective threefold with nef and big canoical divisor K_{X}. Suppose $\left|2 K_{X}\right|$ be composed of pencils and $p_{g}(X) \geq 2$, then $\Phi_{\left|6 K_{X}\right|}$ is a birational map onto its image.

Theorem 2.4. Let X be nonsingular projective threefold with nef and big canonical divisor K_{X}. Suppose $\left|2 K_{X}\right|$ be composed of pencils, $p_{g}(X) \leq 1$ and a general fiber F of h_{2} is not a surface with $K_{F_{0}}^{2}=1$ and $p_{g}(F)=2$, then $\Phi_{\left|6 K_{X}\right|}$ is a birational map onto its image.

Proof. Let $b_{2}:=\operatorname{deg}\left(s_{2}\right)$ and H_{2} be a hyperplane section of W_{2} in $\boldsymbol{P}^{p(2)-1}$, and let a_{2} be the degree of W_{2} in $\boldsymbol{P}^{p(2)-1}$. Then

$$
\begin{aligned}
& f_{2}^{*}\left(2 K_{X}\right) \sim_{\operatorname{lin}} g_{2}^{*}\left(H_{2}\right)+Z_{2}, \\
& f_{2}^{*}\left(2 K_{X}\right) \sim_{\text {num }} a_{2} b_{2} F+Z_{2},
\end{aligned}
$$

where Z_{2} is the fixed part of $\left|f_{2}^{*}\left(2 K_{X}\right)\right|$.
Let $\pi: F \rightarrow F_{0}$ be the contraction onto the minimal model F_{0} of F. From proposition 2.3, we have

$$
\mathcal{O}_{F}\left(\pi^{*}\left(K_{F_{0}}\right)\right)=\mathcal{O}_{F}\left(\left.f_{2}^{*}\left(K_{X}\right)\right|_{F}\right) .
$$

Noting that $g_{2}^{*}\left(H_{2}\right)$ can be a disjoint union of F_{i} 's $\left(1 \leq i \leq a_{2} b_{2}\right)$ at least over a Zariski open subset of W_{2}^{\prime}, each F_{i} is of the same kind as F mentioned in proposition 2.3. We have

$$
K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)+g_{2}^{*}\left(H_{2}\right) \leq 6 K_{X^{\prime}} .
$$

From the exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)\right) \\
& \rightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)+g_{2}^{*}\left(H_{2}\right)\right) \\
& \rightarrow \bigoplus_{i=1}^{a_{2} b_{2}} \mathcal{O}_{F_{i}}\left(K_{F_{i}}+\left.3 f_{2}^{*}\left(K_{X}\right)\right|_{F_{i}}\right) \rightarrow 0
\end{aligned}
$$

and because $H^{1}\left(X^{\prime}, K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)\right)=0$ by proposition 2.1 , we get the following surjective map

$$
H^{0}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)+g_{2}^{*}\left(H_{2}\right)\right)\right) \rightarrow \bigoplus_{i=1}^{a_{2} b_{2}} H^{0}\left(F_{i}, \mathcal{O}_{F_{i}}\left(K_{F_{i}}+\left.3 f_{2}^{*}\left(K_{X}\right)\right|_{F_{i}}\right)\right) .
$$

This means that $\Phi_{\left|K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)+g_{2}^{*}\left(H_{2}\right)\right|}$ separates the fibers of g_{2} and the components on a general fiber at least on some nonempty Zariski open subset of X^{\prime}. On the other hand,

$$
\Phi_{\left|K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)+g_{2}^{*}\left(H_{2}\right)\right|| |_{F_{i}}=\Phi_{\left.\left|K_{F_{i}}+3 f_{2}^{*}\left(K_{X}\right)\right|\right|_{i_{i}} \mid}=\Phi_{\left|4 K_{F_{i}}\right|},{ }^{2} \mid}
$$

by Proposition 2.3. If F is not a surface with $K_{F_{0}}^{2}=1$ and $p_{g}\left(F_{0}\right)=2$, then $\Phi_{\left|4 K_{F_{i}}\right|}$ is birational. Therefore we see that

$$
\Phi_{\left|K_{X^{\prime}}+3 f_{2}^{*}\left(K_{X}\right)+g_{2}^{*}\left(H_{2}\right)\right|}
$$

is birational. Thus $\Phi_{\left|6 K_{X^{\prime}}\right|}$ is a birational map onto its image. So is $\Phi_{\left|6 K_{X}\right|}$.

Proposition 2.4. Let X be a nonsingular projective threefold whose canonical divisor is nef and big. Suppose $p_{g}(X) \leq 1$ and $\left|2 K_{X}\right|$ be composed of pencils, if F is a surface with $K_{F_{0}}^{2}=1$ and $p_{g}(F)=2$, then we have $b=p_{g}(X)=q(X)=1$ and $h^{2}\left(\mathcal{O}_{X}\right)=0$.

Proof. We have

$$
\chi\left(\mathcal{O}_{X}\right)=1-q(X)+h^{2}\left(\mathcal{O}_{X}\right)-p_{g}(X)<0 .
$$

Since $p_{g}(X) \leq 1$, then $q(X)>1+h^{2}\left(\mathcal{O}_{X}\right)-p_{g}(X)$, i.e. $q(X)>0$. Now we have a fibration $h_{2}: X^{\prime} \rightarrow W_{2}^{\prime}$, where W_{2}^{\prime} is a nonsingular curve. Denote by b the genus of W_{2}^{\prime} and F a general fiber of h_{2}. If F_{0} is a surface with $K_{F_{0}}^{2}=1$ and $p_{g}\left(F_{0}\right)=2$, then we have $q\left(F_{0}\right)=0$ by E. Bombieri's theorem in [2] and then $R^{1} h_{2 *} \omega_{X^{\prime}}=0$. Therefore we have $0<q(X)=q\left(X^{\prime}\right)=b+h^{1}\left(R^{1} h_{2 *} \omega_{X^{\prime}}\right)=b$, which says that $\Phi_{\left|2 K_{X}\right|}$ is actually a morphism. We have $X=X^{\prime}$.

For the fibration $h_{2}: X \rightarrow W_{2}^{\prime}$, we have $\operatorname{deg} h_{2 *} \omega_{X} \geq 4(b-1)$ by Lemma 2.1. From Riemann-Roch theorem, we have

$$
\begin{aligned}
1 & \geq p_{g}(X)=h^{0}\left(h_{2 *} \omega_{X}\right)=h^{1}\left(h_{2 *} \omega_{X}\right)+\operatorname{deg}\left(h_{2 *} \omega_{X}\right)+2(1-b) \\
& \geq 2(b-1) .
\end{aligned}
$$

Therefore $b=1$ and then $q(X)=1$. From $\chi\left(\mathcal{O}_{X}\right)=h^{2}\left(\mathcal{O}_{X}\right)-p_{g}(X)<0$, we get $p_{g}(X)=1$ and $h^{2}\left(\mathcal{O}_{X}\right)=0$.

Theorem 2.5. Let X be a nonsingular projective threefold with nef and big canonical divisor. Suppose $p_{g}(X) \leq 1$ and $\left|2 K_{X}\right|$ be composed of pencils, if F is a surface with $K_{F_{0}}^{2}=1$ and $p_{g}(F)=2$, then $\Phi_{\left|6 K_{X}\right|}$ is a birational map onto its image.

Proof. Under the assumption of this theorem, we know from proposition 2.4 that $\Phi_{\left|2 K_{X}\right|}$ is a morphism because $b=1>0$. We actually have

$$
X \xrightarrow{h_{2}} W_{2}^{\prime} \xrightarrow{s_{2}} W_{2}
$$

We can take a modification $f: X^{\prime} \rightarrow X$ according to Hironaka such that all the singular fibers of the fibration $h_{2}^{\prime}=h_{2} \circ f: X^{\prime} \rightarrow W_{2}^{\prime}$ have the support with only normal crossings. Let $g_{2}^{\prime}:=\Phi_{\left|2 K_{x}\right|} \circ f=s_{2} \circ h_{2}^{\prime}$. From proposition 2.4, we have $p_{g}\left(X^{\prime}\right)=p_{g}(X)=1$. Let $D \in\left|K_{X^{\prime}}\right|$ be the unique effective divisor. Set $D=V_{0}+H_{0}$, where V_{0} is the vertical part and H_{0} the horizontal one. Because $2 D \sim_{l i n} 2 K_{X^{\prime}}$, there is a hyperplane section H_{2}^{0} of W_{2} in $\boldsymbol{P}^{p(2)-1}$ such that

$$
2 D=g_{2}^{\prime *}\left(H_{2}^{0}\right)+E
$$

where E is the fixed part. Note that each component of $g_{2}^{\prime *}\left(H_{2}^{0}\right)$ is vertical with respect to h_{2}^{\prime}, we have $g_{2}^{\prime *}\left(H_{2}^{0}\right) \leq 2 V_{0}$ as divisors. Therefore $(1 / 2) g_{2}^{\prime *}\left(H_{2}^{0}\right) \leq V_{0}$ as \boldsymbol{Q}-divisors and then $\left\lceil(1 / 2) g_{2}^{\prime *}\left(H_{2}^{0}\right)\right\rceil \leq V_{0}$ as divisors. Denote $D_{0}:=\left\lceil(1 / 2) g_{2}^{\prime *}\left(H_{2}^{0}\right)\right\rceil$.

Now we consider the system $\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right|$. Obviously, we have

$$
\left|K_{X^{\prime}}+2 f^{*}\left(K_{X}\right)+g_{2}^{\prime *}\left(H_{2}\right)\right| \subset\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right| \subset\left|6 K_{X^{\prime}}\right| .
$$

At least over a nonempty Zariski open subset of $W_{2}^{\prime}, g_{2}^{\prime *}\left(H_{2}\right)$ can split into disjoint union
of fibers of h_{2}^{\prime}. We have the following exact sequence:

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+2 f^{*}\left(K_{X}\right)\right) \\
& \rightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+2 f^{*}\left(K_{X}\right)+g_{2}^{\prime *}\left(H_{2}\right)\right) \\
& \rightarrow \bigoplus_{i=1}^{a_{2} b_{2}} \mathcal{O}_{F_{i}}\left(K_{F_{i}}+\left.2 f^{*}\left(K_{X}\right)\right|_{F_{i}}\right) \rightarrow 0
\end{aligned}
$$

From Kawamata-Viehweg's vanishing theorem, we have $H^{1}\left(X^{\prime}, K_{X^{\prime}}+2 f^{*}\left(K_{X}\right)\right)=0$. Therefore we get the surjective map

$$
H^{0}\left(X^{\prime}, K_{X^{\prime}}+2 f^{*}\left(K_{X}\right)+g_{2}^{\prime *}\left(H_{2}\right)\right) \rightarrow \bigoplus_{i=1}^{a_{2} b_{2}} H^{0}\left(F_{i}, K_{F_{i}}+\left.2 f^{*}\left(K_{X}\right)\right|_{F_{i}}\right)
$$

Which means that $\Phi_{\left|K_{X^{\prime}}+2 f^{*}\left(K_{X}\right)+g_{2}^{\prime \prime}\left(H_{2}\right)\right|}$ can separate fibers of g_{2}^{\prime} and disjoint components of a general fiber of g_{2}^{\prime} at least over a nonempty Zariski open subset of W_{2}, so can $\Phi_{\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right|}$. In order to prove the birationality of $\Phi_{\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right|}$ we have to show that $\left.\Phi_{\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right|}\right|_{F}$ is birational for a general fiber F of h_{2}^{\prime}. Now let F be a general fiber of h_{2}^{\prime}, denote

$$
G:=4 f^{*}\left(K_{X}\right)+\frac{1}{2} g_{2}^{\prime *}\left(H_{2}^{0}\right)-F .
$$

Because $b=1, p(2)=h^{0}\left(g_{2}^{\prime *}\left(H_{2}^{0}\right)\right)=h^{0}\left(a_{2} b_{2} F\right)=a_{2} b_{2}$. Noting that $p(2) \geq 4$ and $a_{2} \geq p(2)-1$, we actually have $b_{2}=1$ and $p(2)=a_{2} \geq 4$. Therefore $(1 / 2) g_{2}^{\prime *}\left(H_{2}^{0}\right)-F$ is nef and then G is nef. It is easy to see that G is big. G is also an effective \boldsymbol{Q}-divisor because $4 f^{*}\left(K_{X}\right)-F \geq 0$. Note that the fractional part $\{G\}$ of G is composed of components from singular fibers of h_{2}^{\prime} and at most one smooth fiber of h_{2}^{\prime} (one only has to consider the components of V_{0}), therefore $\{G\}$ has support with only normal crossings. Thus by Kawamata-Viehweg's vanishing theorem, we have

$$
H^{1}\left(X^{\prime}, K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}-F\right)=H^{1}\left(X^{\prime}, K_{X^{\prime}}+\lceil G\rceil\right)=0 .
$$

Noting that D_{0} is vertical, we have $\left.D_{0}\right|_{F}=0$. By the definition of f, we see that the ramification divisor of f is contained in singular fibers of h_{2}^{\prime}, therefore $\left.f^{*}\left(K_{X}\right)\right|_{F}=$ $\left.K_{X^{\prime}}\right|_{F}=K_{F}$. From the exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}-F\right) \\
& \rightarrow \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right) \\
& \rightarrow \mathcal{O}_{F}\left(5 K_{F}\right) \rightarrow 0
\end{aligned}
$$

we get the surjective map

$$
H^{0}\left(X^{\prime}, K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right) \rightarrow H^{0}\left(F, 5 K_{F}\right)
$$

Which means $\left.\Phi_{\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right|}\right|_{F}=\Phi_{\left|S K_{F}\right|}$ is a birational map, therefore

$$
\Phi_{\left|K_{X^{\prime}}+4 f^{*}\left(K_{X}\right)+D_{0}\right|}
$$

is a birational map, so is $\Phi_{\left|6 K_{x^{\prime}}\right|}$.
Theorem 2.2, theorem 2.3, theorem 2.4 and theorem 2.5 imply main theorem.

References

[1] Benveniste, X.: Sur les applications pluricanoniques des variétés de type très général en dimension 3, Amer. J. Math. 108 (1986), 433-449.
[2] Bombieri, E.: Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Etude. Sci. 42 (1973), 171-219.
[3] Chen, M.: An extension of Benveniste-Matsuki's method on 6-canonical maps for threefolds, Comm. in Algebra 22 (1994), 5759-5767.
[4] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326.
[5] Kawamata, Y.: Cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603-633.
[6] Kawamata, Y.: Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), 5771.
[7] Kollár, J.: Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11-42.
[8] Kollár, J.: Higher direct images of dualizing sheaves II, Ann. of Math. 124 (1986), 171-202.
[9] Matsuki, K.: On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan 38 (1986), 339359.
[10] Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety, In: Algebraic Geometry, Sendai, 1985 (Adv. Stud, in Pure Math. 10, 1987, pp. 449-476).

Meng Chen

Department of Applied Mathematics, Tongji University
Shanghai, 200092
China
e-mail:
chenmb@online.sh.cn

[^0]: 1991 Mathematics Subject Classification. 14E05, 14J30.
 Key words and phrases. Nonsingular minimal model, pluricanonical map, birationality.
 The author is supported by NNSFC.

