ON POINCARE SERIES WITH APPLICATION TO H”
SPACES ON BORDERED RIEMANN SURFACES!

BY
C. J. EArLE AND A. MARDEN

Introduction

In this paper, as in [5], we use Poincaré ®-series to study the Hardy spaces
of a compact bordered Riemann surface. Our fundamental tool for projecting
theorems from the disk D to the surface R is the conditional expectation
operator F of Forelli [6], which we define in §2 by means of ®-series. Our
definition allows us in §3 to interpret F as a map from C(4D), the space of
continuous functions on 8D, to C(3R). The adjoint map E* enables us to
lift measures from R to 8D. Using E and E*, we give easy proofs of the
Cauchy-Read theorem and the decomposition of L7(dR) in §2, and of the
F. and M. Riesz theorem for R in §3. In addition, we obtain a pair of theo-
rems about ®-series. The more surprising one, Theorem 4, states that every
differential which is analytic in B and continuous in B is the ®@-series of a
function analytic in D and continuous in D.

If R ¢ D, the real parts of functions continuous in B and analytic in B do
not generate C(dR). Thereis a complementary subspace of finite but positive
dimension (see [1], (8], [6], [7]). Forelli [6] described such a subspace N, the
image under E of a certain subspace of H”(D). Our definition of £ shows
that N coincides with the complementary subspace obtained by Heins [7]
(see §2.3).

Interference from N makes it hard to obtain satisfactory forms of the
invariant subspace theorem or Szegd’s theorem on E. We illustrate the
difficulties in §3.6 by giving a form of Szegé’s theorem. One way around
them may be found in [1].

In the final §4 we examine some of our formulas more deeply to find their
relation to two classical reproducing formulas on R: the Poisson and Cauchy
formulas. Indeed we give explicit representations of the Poisson and Cauchy
kernels in terms of ©-series.

Except in §4.2, all our O-series have dimension —2. Since series of that
dimension are a bit unfamiliar, we devote §1 to an exposition, based on
Tsuji’s book [12], of their elementary properties.

1. Poincare series

1.1. We shall consider a compact bordered Riemann surface E = R u dR
whose boundary 3R consists of n = 1 analytic curves. The universal covering
surface of R can be identified with the unit disk D = {zeC: |2z]| < 1}. Then
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the group G of cover transformations is a free group of Mo6bius transforma-
tions, and R can be identified with the orbit space D/G so that the natural
map = : D — D/@ is holomorphic. @ acts in the extended plane; the set of
limit points L(@) is a closed subset of 9D. If weset D = Cu{w} — L(®),
D/@ can be identified with the double B of R, and the extended map = :
D — D/G = R isholomorphic. Note that v *(dR) = aD — L(@). We can
choose (in many ways) a relatively compact set 4 in 8D — L(G), consisting
of n half-open intervals, so that = maps each interval 1-1 onto a component of
AR, different intervals corresponding to different components. Then

(1.1) A($)nB(9) =@, if A= B, A Bed,
(1.2) G(9) = aD — L(@G).
Using 7, we will identify functions f and differentials of the form g(z) dz on
R or R with functions in D or D which satisfy, respectively,
(1.3) f(Az) = f(z) forall A eQ@
(14) g(Az)A'(2) = g(z) forall A eG.

A function satisfying (1.3) is said to be automorphic.

1.2. We will call g(2) dz a meromorphic differential on R or R if g(z) is a
meromorphic function in D or D satisfying (1.4). If g(z) has no poles and
has at least a double zero at «, we call g(z) dz an analytic differential. The
condition at « expresses the regularity of g(z) dz in terms of the local param-
eter { = 1/z. It is fulfilled automatically if g(2) satisfies (1.4) and is regular
at A( ) for some A ¢G.

The anti-conformal involution j(z) = 1/z induces an involution of B and
an involution f — fo j of meromorphic functions on R. A meromorphic
function f(z) on R is symmetric if f(z) = f(1/2) for all z e D, or equivalently,
if f(z) is real on 9. j also induces an involution ;* of meromorphic differen-
tials 8 = g(2) dz on R by

(1.5) 7*(g(2) de) = —274(1/2) de = §(jz) d(1/2).

B is symmetric if 75(8) = B. If gi(2) = 42g(z), that is described by the con-
dition ¢1(2) = §1(1/3) for all z € D; equivalently

(1.6) g(2) dz = 129(2) | dz |, z ¢ 4, is real.

Every differential 8 can be written in the form 8 = 8; + 8;, where 8; and
B2 are symmetric. Simply put

B =3B +3%8), B= (1/20)(8 — 7%(B)).

1.3. Let m be the linear measure on dD : m(8) = [s|dz|, S < D a Baire
set.
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(1.7) m(L(@)) = 0.

In fact, let ¢(2) be the characteristic function of L(G). The Poisson integral
of ¢ is a harmonic function %(z) on D which vanishes on dD — L(G). Sinece
L(@) is a G-invariant set, ¢(z) and hence u(2) satisfy (1.3). In other words
u(2) is a harmonic function on B which vanishes on dR. By the maximum
principle % = 0 and hence ¢ = 0 a.e., proving (1.7).

If f(2) is integrable on 8D we obtain from (1.1), (1.2) and (1.7) that

[ 1@ 1dl=3 [ 16 a)
Jap 4eq YA(Y)
(L8)

- L (A0 1 4@ ) | d |

If in addition f satisfies (1.3) on 4D, so that f is a function on dR, (1.8) sim-
plifies to

[ #@ @)= [ 1T 146 ) (.
aD g Ae@
We introduce the function

(1.9) p(2) = 2| A'(2) |

so that our formula becomes

ProrositTioN 1.  For every integrable funciion f(2) on 3R,
(110) [, 7@ a1 = [ (e |z .
1.4, Applying (1.10) with f(2) = 1 we obtain

[o)1az| = 2
g

from which we conclude p(2) < « a.e. in 9. Much more is true:

ProrositioN 2. The series (1.9) converges uniformly on every compact sub-
set of D which does not intersect G( o) = [A() : A e}

Proof. Let {A,} be an enumeration of G with 4, = I. Hach A, is of the
form

A.(z) = (a2 + bn)/(l;nz + dn), I Qn l2 - i b lz =1L
Since no element of @ has a fixed point in D, b, % 0 forn % 1. Forzed,
|An@) = [Baz + @G| 2 (10u] + @)™ 2 (20 )7
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Since p(z) is finite for some 2 ¢ 9, we have

Zla’nl—2< ®,

and since | a, |* — | ba |* = 1,
(1.11) 2 b < .

Now let K be a compact set in D disjoint from G( ), and let § > 0 be the
distance of the closure G(«)u L(G@) of G(w) from K. For ze¢K and
n>1,

|An(2)| = | ba ]2 + @bt |7
= |ba [Pz — AT ()| S 87| b |,

and Proposition 2 immediately follows. Note that each point of G( « ) inter-
feres with only one term of (1.9).

(1.12)

CororLaRY. p(2) is a bounded continuous function on 4.

1.5. One way to obtain a meromorphic differential on R or R is to start with
an arbitrary meromorphic function F(z) in D or D and form the Poincaré
series

(1.13) (O F)(2) = D aca F(A2)A'(2).

If the series (1.13) converges uniformly on compact gubsets of D or
D, (OF)(2) dz will be a meromorphic differential on R or B. Proposition 2
implies the convergence of (1.13) for many functions F(z). For instance

ProrosrrioN 3. Let r(z) be a rational function with no poles in L(@).
Then (Or)(2) dz is a meromorphic differential on R.

Proof. If K is a relatively compact subregion of D then A(K)n K = ¢
for only a finite number of A ¢ G. Hence if K containg the poles of r(z) and
M = sup.x | 7(2)|, then | 7(42)] £ M for all A ¢G, with a finite number of
exceptions.

1.6. As an example consider our basic meromorphic differential
(1.14) a = 0(1/2) dz = D aee (A'(2)/A(2)) de, zeD.

o is analytic in R except for simple poles at w(0), w( ) (of residue 41, —1
respectively). Hence by the Riemann-Roch theorem, « has 2 § zeros in R,
where § is the genus of R.

The formula | A'(2) | = 24'(2)/A(2) for zedD and A G, with (1.9)
and (1.14), yields

(1.15) o =2"p(z) dz = ip(2) | dz |, zed.
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Comparing (1.15) with (1.6), we find that ¢a is symmetric on R and, by (1.5),
has symmetric zeros. Since p(z) = 1 for all 2, no zero appears on 0B. Thus,
o has exactly § zeros in R.

It will turn out (§§2, 3) that « has fundamental importance on R. But
this is hardly surprising, because « is closely related to Green’s function g(z)
on R with pole at #(0). Indeed, since

9(2) = Xacclog|A(2) |, a =dg+ idg.
Because dg = 0 along 4R, (1.15) gives
i(2) |dz| = a = 7(dg/0n) |dz| on IR,

so that we can write (1.10) in the form
- 9
[ 1141 = fgf(z)an|dz|.

2. The conditional expectation
2.1. For f(2) defined in D, D, or 8D, set

_ s f42)A(2) A'(2)
(2.1) (Ef)(2) = AEZG A2) Z‘; A(z)

= 8(f/2)/0(1/2).

Obviously, Ef is an automorphic function whenever it exists. Its existence
for suitable functions f is guaranteed by Propositions 2 and 3. For example,
Ef is a meromorphic function on R whenever f is rational with no poles in
L(G). If fis a bounded analytic function in D, then Ef is meromorphic in
R with poles only at the zeros of the differential « defined in §1.6. If f itself
is automorphie, then Ef = f.

2.2. G is a free group of rank §, where ¢ is the genus of B. Choose a set
of generaters {4}, 1 £ j £ §, and define

(2.2) hi(z) = 28;/(1 — §i2), §$i=440), 1 27 =4
Lemma 1. (Eh;)a is an analytic differential on R.

Proof. From the definitions we have

(2.3) (Bh)a = © (TT?}TZ) dz.

Thus (Eh;)a is a meromorphic differential on R. Since 4;(») = 1/§;,
(Eh;)a can have a pole only at 7( ) (= »(1/§;)). But

§i _E 1 (47" (2) }
®(1 - i_'fz> B g‘]{l — §iz + 1 — &(47H)(2) +1@)
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where f(z) is analytic in a neighborhood of 1/§;. Elementary calculation
shows that the bracketed expression is regular at 1/f;. That proves the
lemma.

2.3. Let @(R) be the (complex) vector space of analytic differentials on
R which are continuous in B. The Dirichlet integral [2] defines an inner
product

6.0 = [[snm=i[[ sns

on @(R). Let T, be the closed curve in R covered by the line segment in D
joining 0 to ¢; = 4,(0). It is well known [2] that there is an analytic differ-
ential ¥(I';) on R such that

% fr_e — (8, W(T,)) forall §eG(R).

Levma 2. ¢(T;) = (Ehj)a.

Proof. Set 8 = f(z) dz. Then f is integrable in D, for if & is a funda-
mental polygon for G in D we compute

[[ 15y taean = 2 [ 15) | dean
- X ffa | £(42) | | A" (2) | do dy

= ffm | f(2) | p(2) dx dy,
where of course p(z) is defined by (1.9). But p(z) | f(2) | is continuous, hence

bounded, in the closure of &.
Since f is integrable in D, it satisfies

wf@) = [[ 100 - e aa, 2eD.

Integrating from 0 to {; we obtain
§4
de = (1= §) dEd
v [5) a = [ 5000 - 807 aean
= (=)™
Zfﬁ(m)f(f)r( £55)7" d dn

Ae@

- ffmﬂAz)ﬁ(l ~ AR A ()T do dy

Ae@

=[] 128G1 - G (@) da dy.
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In view of (2.3), that proves Lemma 2.

DerFiniTION. N is the vector space spanned by the functions {Ehg,
=759

CoroLrary 1. (i) N has dimension §.

(ii) N consists of the meromorphic functions f(z) on R such that fo is an
analytic differential on R.
(iii) N has a basts consisting of functions real on oK.

Proof. (i) The vector space of analytic differentials on R has dimension
4. If the differentials ¢(I';) = (Eh;)a were not independent, there would
be a non-zero analytic differential on B which was exact in R. That is im-
possible [2, p. 296].

(i) Lemma 1 asserts that N is a linear subspace of the vector space
M(—(a)) of functions f such that fo is analytic in B. But M(—(a))
has dimension ¢, for every analytic differential 8 on R can be written
8 = (B/a)a, and B/a e M(—(a)). By (i), N = M(—(a)). )

(iii) Choose a basis {8}, 1 £ j £ §, for the analytic differentials on B
such that each B; is symmetric (see §1.2). Since i« is a symmetric differ-
ential, the functions #8;/« form a symmetric basis for N. In particular, they
are real on OR. (A closer examination of the differentials ¢ (T';) would reveal
them to be symmetric.)

CoroLrary 2. (Heins [7]). If f ¢ N and is analytic in R, then f = 0.

Proof. Let f = > C;(Eh;). If f is analytic in R, then df e @(R), and
Lemma 2 gives

O=21rZC’,-ijdf= (df, f) =¢defAﬁ=¢LR,f|za,

where the last equality is Stokes’ theorem. Equation (1.15) shows that the
differential & is positive along 8E. Therefore f vanishes on dR, hence every-
where.

Turorem 1. If fis meromorphic in R and fa is regular in R, there isa
unique h ¢ N such that f — h is analytic in R.

Proof. 'The space P of principal parts of such functions f is a vector space
of dimension ¢, for « has § zeros in R. Corollaries 1 and 2 imply that the
map from N to P which sends each function to its principal parts is a vector
space isomorphism.

2.4. Since | A’(z) | = 24'(2)/A(2) for z ¢ 3D, we can write (2.1) in the
form

(2.4) (Bf)(2) = 2oacaf(A2) | A'(2) |/0(2), z e 4D,
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where p(z) is given by (1.9). Set L” = L°(dm), 1 = p £ «, where m is
the linear measure on 4D, and let L’ | G be the subspace of automorphic
functions. We claim that E : L” — L*| @ is a projection of norm one; in
other words

(2.5) 1Ef o = 171> l=p = .

That is clear if p = o because the series (1.9) converges almost everywhere
on dD. For p < » Holder’s inequality and (1.9) give

p(2)” | Bf(2) " £ (Luew | f(42) || 4'() ])
S (Laeo | J(42) |71 A'(2) Do(2)"

or

(2.6) | Ef " = E(|f["), 1=sp< .
For any g e L', (1.8), (1.10), and (2.4) yield

(2.7) fwgldzl=£(Eg)p|dz|=LD(Eg)|dz|.

From (2.6) and (2.7) we obtain

1B 15 = [ 1B lael s [ BQFP de) = [ 5P 1ae = 1712,

proving (2.5).
We should also note the obvious facts that Ef = ffor all f ¢ L” | @ and that
Ef = Ef for all f ¢ L".

Remark. The identity

E(fg) = fEg, feLl”| G, geL®
is immediate from (2.4). With (2.7) it implies that
(28) [ slaei=[ jmlde|,  fel?|Ggels
4D 8D
whence
f f(Eg) |dz|=f (Ef)g | dz |, feL? geL®
aD oD

Thus E is the conditional expectation operator considered by Forelli [6]. (Of
course the numbers p and ¢ above satisfy p™ + ¢ = 1.)

2.6. The Hardy space H*(D), 1 < p = o, is the Banach space of analytic
funetions in D which satisfy the equivalent conditions

) 1715 = time [ 1P a2l <0 (< )

11l = limys max {| f(2) [ |2] =1} < o,
(ii) |f|” has a harmonic majorant in D (p < ).

i
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For each f e H*(D), f(¢”) = lim,.; f(re”) exists a.e. on aD and is in L.
Furthermore, its L” norm equals the norm given by (i), and f is equal to the
Poisson integral of its boundary values [8]. We may therefore identify H?(D)
with a subspace of L”.

The Hardy space H°(R), 1 £ p £ o« is the Banach space of analytic func-
tions in R satisfying the equivalent conditions (see [11]):

) 1517 = times [ 15 PCo0/om)ds < = (0 < )

7 lle = limimax {|f(z)|:2zel} < ,

(ii) |f|” has a harmonie majorant in B (p < «),
(iii) feH"(D) and f is automorphic.

Here ¢ is Green’s function on B with pole at w(0), and

I, ={z2eR:g(z) =1—1}.
Furthermore || f]l» = [|f]l,. Using (iii) we shall identify H”(R) with a
subspace of L”; in fact H”(R) = L* | G n H*(D).

Finally, Hf (D) is the set of f e H*(D) satisfying the equivalent conditions
f(0) = 0 and

f(mfl dz | = 0;
set HY(R) = H{ (D) n H*(R).

2.6. The operator E is a powerful tool for the study of H*(R), as Forelli
has shown in [6]. The basic fact is

Proposition 4 ([6]). EH®”(D) = H'(R) ® N,1 £ p = .

Proof. The inclusion H*(R) < EH"(D) is obvious because E leaves H”(R)
fixed. Since the functions h; belong to H*(D) for all p = 1, we also have
N < EH*(D). Corollary 2, §2.3, implies that H*(R) N N = {0}. More-
over, H?(R) @ N is closed in I”/G, and the natural projection from
H”(R) ® N to H’(R) is continuous, because N is finite dimensional. (That
justifies the direct sum notation.) We have proved that

H*(R) ® N c EH”(D).

Suppose now that f e H°(D). As we observed in §2.1, Ef is meromorphic
in R with poles only at the zeros of «. By Theorem 1, there exists h e N
such that Ef — h e H°(R). Thus, EH*(D) ¢ H°(R) & N.

I feH" (D), p < ,and fi(2) = f(r2),r < 1, then f, > fin L’ ag r — 1
(see[8]). From (2.5) it follows that Ef, — Efin L” | G. But

Ef, e H*(R) ® N C H*(R) ® N.
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Since H*(R) @ N is closed, we conclude that EH*(D) < H*(R) @ N for
allp = 1.

ProrosiTion 5 ([6], [7]). Forl < p < «,
L |G = Hf(R) ® H°(R) @ N.

Proof. 1t is classical (see [8]) that L” = HF(D) @ H*(D)if1 < p < .
Writing f ¢ L? | G in the form f = g + h, with g and h ¢ H*(D), and applying
E, we obtain

f = Ef = Eg + FEh.

To complete the proof we apply Proposition 4 and observe that N = N be-
cause of Corollary 1, §2.3.

ProrostrioN 6. [3), [7], [9], [10]. feL'|G is in H'(R) if and only if
(2.9) faRfﬁ =0 forall Be@(R).

Proof. If fe H'(R) is continuous in B, (2.9) follows immediately from
Stokes’ theorem. For any f e H'(R), Ef, is continuous on R, r < 1. If Q
is the (continuous) projection from H'(R) @ N to H'(R), then QEf, belongs
to H'(R) and is continuous in B. Since QEf, — QEf = fasr — 1, (2.9)
holds for all f e H(R).

Conversely, let f ¢ L' | G satisfy (2.9). Then, foralln = 0,

0= [ 506" &= [ @B

I

i fg FDEE@ () |da | = 4 fa @ e,

by (2.1), (1.15) and (2.7). A classical theorem implies that feH'(D).
Thus, f e H'(D) N L' | G = H'(R).

Remark. Proposition 6 is a weak form of the Cauchy-Read theorem [9],
[10]. We shall obtain the strong form in §3.2 as a consequence of the F. and
M. Riesz theorem.

2.7. Remark. Let g be any meromorphic function on R having the same
zeros as a, with no other zeros or polesin £. Then, it is clear that

E(gH™(D)) = g(H"(R) ® N) = H*(R).

For on the one hand g(H*(R) ® N) is obviously contained in H*(R), and
on the other hand Theorem 1 implies that f/g e H°(R) ® N whenever
feH”(R).

As Forelli showed in [6], the corona conjecture for H*(R) can be proved
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in a few lines as soon as g e H(D) with E(gH”(D)) = H”(R) is found.
He found such a g by methods quite different from ours,

3. Functions with continuous boundary values

3.1, Let C(6D) and C(dR) be the Banach spaces of continuous complex-
valued functions on 4D and 4R, respectively. Proposition 2 and the formula
(2.4) show that E maps C(dD) into C(dR). Formula (2.5) shows that
E : C(8D) — C(8R) has norm one. We shall calculate the adjoint map
E* : C(8R)* — C(3D)*. In addition, we shall use a map

Tyt C(8D)* — C(3R)*

induced by the natural map = : D — R.

By the Riesz representation theorem, C'(8D)™ is the space of finite complex
Baire measures on 8D, and C(9R)™ is the space of finite complex Baire meas-
ures on dR, or equivalently, on 9 < dD.

LemMA 3. For each u ¢ C(3R)™ and each Baire set S C 8D,
(3.1) EWS) =2 [ 4@ (o) dula).
Aeq@ YATHSNg

Proof. Let u*(8) denote the right side of (3.1). It is clear that u* is a
finite complex Baire measure on dD. We will show that it has the properties

(3.2) WH(L(G)) = 0
(33) B = [ 1B @) |4, BeG
(3.4) [,1@ a@) = [ Ene) duce), f&C(aD).

The truth of (3.2) is clear. (3.4) implies that u* = E*u. By a change of
variable w = B(2), B €G, in (3.1) we find that x*(8) is equal to the series in
(3.1) with ¢ replaced by B(9). Hence du*(B(z)) = p(w) du(w) =
| B'(2) | p(2) " du(2) = | B'(2) | du*(2), first for z ¢ § and then for arbitrary
zedD — L(G). This is the differentiated form of (3.3). To prove (3.4):

L Bf(2) du(2) = 3 f F(42) | A'(2) | p(2)™ du(z)
- f f(42) | 4'(2) | du*(2)

- 3 [ sa0) autan) = [ gt

Ae@

Lemma 4. Define =, : C(8D)* — C(aR)* by
(3.5) (me ) (8) = u(G(8)) = 2acan(4(8))
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for each e C’(aD) and each Baire set S C dR. =, is linear of norm one.
Moreover, m, o E* is the zdentzty on C(8R)*, and P = E*o T, 18 a projection of
norm one from C(3D)™ onto the closed subspace of measures which satisfy (3.2)
and (3.3).

Proof. Let p, = meu, peC(dD)*. Then du(z) = 2 du(4z), and

«LD-—L(G)fd“ = Z f f(w) dp(Aw) = Lfdﬂ*

for all feC(8R). Thus =, has norm one. Let peC(dR)* and suppose
S C gisaBaireset. Setting u* = E*u ¢ C(8D)™ we obtain

(r™)(8) = T AS) = T [ 14°0) |4

= j;p(z) dﬂ*(Z) = [gdﬂ(z) = “(S))

proving that o E* is the identity.

Finally, each u* ¢ C(8D)* which satisfies (3.2) and (3.3) is in the range
of E*;in fact, u* = Pu* = E*u, where y = 7, u*. For by (3.3),

5(8) = fsp(z) dt(z) S Cs.

Hence for any Baire set T < 8D

(B*)(T) = Zf e | 4@ 1087

- fm(g) d*(Az) = (T,
by (3.2) and (3.3).

Remark. We map L' into C(8D)* by identifying each feL' with the
measure du = f(z) | dz| on dD. Each subspace of L' will be identified with
its image in C(8D)*. The restriction of P to L' is simply E. In particular,
PH'(D)) = H(R) ® N.

3.2. Our work in §3.1 has two immediate applications.
TueoreM 2. E maps C(aD) onto C(IR).

Proof. A standard result in functional analysis [4, p. 488] says that B
has dense range if and only if E* is one-to-one and E has closed range if and
only if E* does. Therefore Theorem 2 is equivalent to the assertion that
E™ is one-to-one and has closed range. These properties of E* are immediate
consequences of Lemma 4, specifically of the fact that E* has a left inverse.
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We will now introduce the two Banach spaces
Ao(D) = {fe HF (D) : f is continuous in D}
Ao(R) = {f e Hy(R) : fis continuous in F}.

The functions 2", » > 1, are dense in 4o(D). We have by uniform conver-

gence that Ef is meromorphic in B, continuous on 4R, and vanishes at 7(0).
Hence as in §2.6,

(3.6) E(Ao(D)) C Ao(R) ® N
but the opposite inclusion is not obvious.

Lemma 5 (F. and M. Riesz) [3], [7], [10]. Let u be a finite complex Baire
measure on OR such that

faRfdu — 0, allfeE(Ao(D)).

Then du = h(2)p(2) | dz | for some h ¢ H'(R).

Proof. Set u* = E*u. (3.4) implies that [sp 2" du™ = 0 for all n > 1,
and hence the classical result in D implies that du® = h(z) | dz| for some
h'e H'(D). But (3.3) implies that

h(B(2)) | B'(2) || dz| = | B'(2) | h(2) | dz |
so that A(B(2)) = h(z) for all z ¢ 8D and B ¢ G. Hence h ¢ H'(R).
Cororary 1 ([9], [10]). [Ao(R) @ N]* = = (H'(R)).

Proof. Since ,(H '(R)) consists of the measures on dR of the form
du = h(2)p(2) | dz |, h e H'(R), (3.6) and Lemma 5 imply that

(8.7) [Ao(R) ® NI* C [E(Ao(D)T* C = (H'(R)).
Conversely, if f e Ao(R) ® N and p ew+(H'(R)), then

ifgfdu - zf FDh(2)p(2) | de | = fw hfe = 0,

by (1.15) and Proposition 6, since fa e @(R) when f e Ao(R) ® N.
CoroLLARY 2. E(Ao(D)) is dense in As(R) @ N.

In fact, Corollary 1 and (3.7) imply that every linear functional which
vanishes on E(4¢(D)) vanishes on 4Ao(R) ® N.

Remark. Corollary 1 is the strong form of the Cauchy-Read theorem which
we promised in §2.6. It corresponds to the classical theorem that

AoD)* = H'(D).
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3.3. We are now ready to prove the main result of this chapter.

TaeoreEM 3. E(A((D)) = A(R) ® N.

Proof. By Corollary 2 of Lemma 5, we need to prove only that
E:A(D) — A(R) ® N

has closed range. As in Theorem 2, we shall prove instead that E* has closed
range. Corollary 1 of Lemma 5 allows us to interpret E* as a map from the
coset space C(0R)*/m (H'(R)) into C(3D)*/H*(D). The image of E* is
therefore

E*(C(8R)*)/H'(D) = P(C(3D)*)/H'(D),

where P : C(dD)* — C(38D)™ is the projection defined in Lemma 4. It is
not obvious that P(C(8D)*)/H (D) is closed. The difficulty is that P does
not preserve H'(D). To compensate for that we use the projection

Q: H'(D) ® N — H'(D)

with kernel N. Here we interpret H'(D) and N as closed subspaces of
C(aD)*. The subspace H'(D) ® N is closed, and Q is continuous, because
N has finite dimension.

Let {u.} © P(C(38D)*) and {»,} < H'(D) be sequences such that

o + v — N eC(8D)".
We must find ¢ e H'(D) such that ¢ + A = P(c + A). We assert that
o = Q(P\ — ) = lim (QPr, — w), n— o,

suffices. First we verify that o exists. Since u, -+ va — A\,

P(un + vn) = pn + Pvn— PA
Therefore PA — N = lim (Pv, — v,) e H' (D) ® N, and ¢ exists, because

Py, e PH'(D) = H(R) ® N c H'(D) @ N,
a closed subspace. Since QP», e H'(R), it is fixed by P, and we find that
P(s + N\) = lim (PQPv, — Pv, + Pvy + un)

=lim (QPvp — va + va + pta) = 0 + ),

completing the proof.

3.4. Theorem 3 has an interesting application to Poincaré series Set
A(D) = AyD) ® C; A(D) is the closure in C(3D) of the polynomials.

TrroreM 4. The Poincaré series (1.13), maps A(D) onto G(R).
Proof. The map f(2) — fo(z) = 2f(2) carries A(D) onto Ao(D). Com-
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paring (1.13), (1.14) and (2.1) we find that

(6)(2) dz = (Efo)(2)a.

By Theorem 3, the range of @ is the set of all differentials fa, f e Ao(B) @ N.
But the mapping 8 — B8/a is a one-to-one correspondence between G(R)
and Ao(R) @ N, by Theorem 1.

Remark. Since polynomials are dense in A(D), the Poincaré series of
polynomials are dense in @(R). Thus each differential in @(R) can be
uniformly approximated in B by meromorphic differentials in R which have
poles only at ().

3.5. The meromorphic differentials on R can also be described easily by
Poincaré series. In fact, Proposition 3 has the following converse.

TeEOREM 5. Every meromorphic differential on R has the form (Or)(z) dz,
where r(z) is rational with no poles in L(GF).

Proof. Put r,(2) = (2 — ¢)". If ¢ eD — G(), then (Or,)(2) dz has
a pole of order —n at =(¢) for n < 0, a pole of order n + 2 at w( ) for
n > —2, and no other polesin B. Therefore, every meromorphic differential
on R is the sum of an analytic differential and a linear combination of the
differentials (®r,)(2) dz. From (2.3), Lemma 1, and Corollary 1 of Lemma,
2, we conclude that every analytic differential on R is the O-series of a ra-
tional function with poles only in G{ « ). That proves Theorem 5.

3.6. To illustrate some of the difficulties that can arise upon projecting a
theorem on H”(D) we will present the theorem of Szegd and Kolmogoroff-
Krein as presented in [8] (cf. [1, §5]).

Let u be a finite positive Baire measure on 4R with

du = (1/2m)h(2)p(2) | dz | + dpa,
pe singular. Then for

D) = [ 11-1fdu,

infremcagony D(f) = exp (1/27) j;R (log h)p(2) | dz | < infreagmy D(S).

There is equality on both sides if ¥ 1 4 (R) with respect to dp.
Proof. The corresponding theorem in D applied to E*s implies that

infyusnm | B~ o) du = exp (1/20) [ (1og Wo(a) | de].

On the one hand from (2.6) we have
E(J1—gM 2z |BQL—-g) [ =|1—E@g
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On the other hand if f e Ao(R) then f.(2) = f(rz) e Ao(D) and it is not hard
to show that

IimE(|1 — £ =B(1—fP) =|1—-f[

uniformly on 4. Finally if N . A(R) with respect to du then writing
FeE(Ao(D)) asf = fi + fo, fi e Ao(R), f2¢ N, we have

fmll—ffdu =faR|1—f1|2du+faEllezdu.

4, Reproducing kernels on R
4,1, We will first construet the Poisson kernel for BR. We recall that

P;(Z)=(1—'I§'|2)/l2—-§"2, zeaD: g‘eD
is the Poisson kernel for D. Noting that
2 2 !
Pulde) = L- 1A Q= [EDIAG L py | ace |

e =& [z—SFlA@ |46
for all A e @, we find that
E(P)(2) = E(P;)(z), all AeG and zedD — L(Q)

Thus (EP4)(B(z)) = (EP;)(z) forallzedD — L(G),{eD and 4, B ¢,
so that (EP;)(2) is a function on 6k X R. Furthermore if f({) is any har-
monic funetion in R, continuous on dR, we have, using (2.8),

24f() = [ 1@Ps(@) 2] = [ 1) (BP)@o(2) | de).
Therefore (EP;)(z) is the Poisson kernel for R.

4.2. We call the function C(z, ¢) a Cauchy kernel in B if for fixed
zeD — L(@), C(z, ¢) dt is a meromorphic differential in £ having one simple
pole of residue one at 7(z), and for fixed {, C(z, ¢) is a meromorphic function
in B having one simple pole of residue —1 at w(¢). Thus C(z, ) must satisfy

C(4z, B$)B'(¢) = C(2,¢), 2 teD; A, BeG.
By analogy with §4.1 define
_ 4G _ ( ¢ )

where the subscript ¢ indicates that (¢ — 2)™" is interpreted as a function of
¢. For f(2) analytic in B and continuous in B we find

2i(e) = [ TG jar = [ j0mG6 - 066 1 |
(4.1)
= —i [ 56)0iz5) as.
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Furthermore, Ci(z, ) d¢ is a differential on B for each z e¢D. However
Ci(z, ¢), for fixed ¢, is not a function on B. To rectify this problem we will
use a projection P that we constructed in [5]. Consider the Poincaré series

®h = 2 aech(A(2))A'(2)"
We choose a polynomial F so that ®F is non-zero in B (see [5]), and we define

(Pf)(2) = (BfF)(2)/(2F)(2).

If f is analytic in D, Pf is an analytic function in B. If f is meromorphic in
D with a simple pole of residue ¢ at 2 = ¢, then Pf is meromorphic in B with
a simple pole of residue c¢#(¢)/(®F)(¢) at v ().

Now we claim that

(4.2) C(z¢) = P.Cu(z¢)

where the subseript z indicates that Ci(z, ¢) is to be considered as a function
of z, is the required Cauchy kernel. Explicitly

. ~ F(B)A'(1)B (2)* _ F(B2)A'(¢)
42" C&9) = 3 e Bael) ~ > f(Ba)Af = B

where ¢(z) = (®F)(z).
To prove that the double series involved in (4.2) converges, we need the
identity

| B(A¢) — B(2) | = | A(8) — 2| | B'(A¢) [*| B'(2) ['*
and the inequalities
[B(2)| = (Ja| = 10)" = (la| +[0]), zeD,
|B'(2) | = ¢ 2|07, z2e®.

Here B(z) = (az -+ b)/(bz + @), |a|® — |b[* = 1, ® is a fundamental
region for G in D, and o is the distance from ® to the closed set G( ) u L(Q@)
(ef. (1.12)). Setting

M =sup{|F(z)|:2eD} and m = inf{] (BF)(2) : z e @},

we obtain, for 2z, { € &,

M | B'(2) '] (BA) (%) |
| P-Cue6) | = 0 2 2 ey = By |
_M s | BG) [ BUD MAQ) |
m B 4 I Ag) — = '
s 146 | (bl +a]
@lA(y)——ﬂ)(”E T

where D’ denotes summation over all B < I. By (1.11), >./|b|™ con-
verges. Since |a/b| = | B () |, the terms | a/b | are uniformly bounded,
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and the second series in parenthesis converges. The first converges uni-
formly for z ¢ ®, provided the term A = I is omitted.
Finally we note that the residue at =(¢) for fixed ¢ of P, Ci(z, ¢) d{ is

— 2 F(AD)/(OF)(4F) = —1

and similarly we see that C(z, ¢) df for fixed 2 is & meromorphic differential in
¢ with simple pole at ¢ = z. Since Pf = f for G-invariant functions f, the
fact that C is a Cauchy kernel now follows from (4.1).

Remark. The essential part of our proof is the construction of C;. At
that point there is considerable freedom in choosing a projection P. Our
construction of a Cauchy kernel appears to be simpler and, in a sense, more
natural than the classical one.
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