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We consider estimating an unknown function f from indirect white noise observations with particular

emphasis on the problem of nonparametric deconvolution. Nonparametric estimators that can adapt to

unknown smoothness of f are developed. The adaptive estimators are speci®ed under two sets of

assumptions on the kernel of the convolution transform. In particular, kernels having Fourier transform

with polynomially and exponentially decaying tails are considered. It is shown that the proposed

estimates possess, in a sense, the best possible abilities for pointwise adaptation.

Keywords: adaptive estimation; deconvolution; rates of convergence

1. Introduction

This paper investigates the problem of pointwise adaptive nonparametric estimation from

indirect white noise observations. Let f 2 L2(R) be an unknown function, and let

K : D (K) 7! R(K) be a linear transformation, D (K) � L2(R), R(K) � L2(R). We can

observe a process y(t) characterized by

dy(t) � (Kf )(t) dt � å dW (t), t 2 R, (1)

where å. 0 is a known parameter, and W (t) is the standard two-sided Wiener process on R.

This scheme is equivalent to observing Kf with added white noise. Our goal is to estimate f

at a single given point t0. We study here the white noise model (1) because it is

mathematically more tractable and gives some suggestions as to what could hold in related

nonparametric estimation problems.

Nonparametric estimation from indirect noisy observations arises in a wide variety of

applications. The usual approach to such problems is based on certain regularized operator

inversions; see, for example, O'Sullivan (1986), Wahba (1990), Nychka and Cox (1989),

Mair and Ruymgaart (1996) and references therein. These methods assume that the function

to be estimated belongs to a known pre-speci®ed class of smooth functions. In practice,

however, specifying the functional class presents severe dif®culties. Besides this, functions

may contain high-frequency oscillations, or discontinuities. Therefore it is desired to

develop nonparametric estimators which can easily be adapted to varying levels of

smoothness. In what follows such estimators are referred to as adaptive. Recently much

attention has been concentrated on developing adaptive nonparametric estimators both for

direct and indirect observations. In Donoho (1995) the wavelet±vaguelette decomposition
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(WVD) was proposed for estimating functions with inhomogeneous smoothness from

indirect observations. The basic idea of this proposal is to expand the unknown function f

as a wavelet series, to ®nd a corresponding vaguelette series for Kf , and then to estimate

the WVD coef®cients using an appropriate threshold technique. An alternative vaguelette±

wavelet decomposition (VWD) for estimating functions with inhomogeneous smoothness

was developed by Abramovich and Silverman (1998). Here, contrary to WVD, empirical

wavelet coef®cients of Kf are estimated by the threshold technique; the VWD estimator of

f is obtained by mapping that wavelet expansion into the original space. It was shown that

both WVD and VWD estimators adapt with `minimal cost' to the unknown smoothness of

f over a wide range of Besov scales. It should be noticed that these wavelet-based

estimators apply only to linear transformations which are homogeneous with respect to

dilatation.

In this paper we develop another adaptive estimator for nonparametric estimation from

indirect observations. Our construction exploits the linear functional strategy for the

solution of ill-posed inverse problems (Anderssen 1980; Goldberg 1979) along with the

general adaptation scheme (Lepskii 1991; 1992) proposed for the nonparametric regression

problem. In general, this approach can be applied to a wide variety of linear transformations

K, not necessarily homogeneous with respect to dilatation. In what follows we will study

the case of the convolution transform only, that is,

g(t) � (Kf )(t) �
�1
ÿ1

K(t ÿ s) f (s) ds:

Some conditions on the kernel K should be imposed to ensure that f is identi®able.

Throughout the paper we assume that the Fourier transform

K̂(ë) �
�1
ÿ1

K(t) eÿi të dt

of K does not vanish. Under this condition estimation accuracy depends heavily on the rate at

which K̂(ë) tends to zero as jëj ! 1. We consider two important cases where K̂(�) has

polynomially and exponentially decaying tails. In the former case we propose an adaptive

estimator and prove that it is near-optimal for estimating at a single point up to a factor

logarithmic in åÿ1. In other words, if the function f is smooth at the point t0, then the

estimation accuracy coincides, up to the logarithmic factor, with the best accuracy we could

achieve in the case of known smoothness. If kernel K is Green's function of a linear

differential operator, then the deconvolution problem is equivalent to estimating the linear

differential operator of Kf from the direct white noise observations. For such a problem in

the case of unknown smoothness the aforementioned logarithmic factor cannot be reduced for

estimating at single point (see Lepskii 1992). Thus, in this speci®c case our estimator is the

best possible for pointwise adaptation. In the case of exponentially decaying tails of K̂(�) we

establish a lower bound on the estimation accuracy and show that pointwise adaptation to

unknown smoothness can be achieved by `direct tuning' of the smoothing parameter. Here the

optimal rates of convergence can be obtained without a priori information on smoothness of

the underlying function f . It should be pointed out that our results are concerned with

estimation of f at a single point. They can serve as a basis for proving that the same
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estimators are also adaptive over a wide range of the global accuracy measures. The

techniques of Lepskii et al. (1997) and Goldenshluger and Nemirovski (1997) seem to be

appropriate for this purpose.

The rest of the paper is organized as follows. In Section 2 we describe our main idea for

construction of adaptive estimators from indirect observations. In Section 3 we present our

main results on pointwise adaptive deconvolution for polynomially and exponentially

decaying tails of K̂(�). Proofs are given in Section 4.

2. Construction of estimator

Let h�, �i denote the standard inner product on L2(R). To estimate f (t0) we will construct

estimates for certain linear functionals h f , jäi. The functions jä(�) should meet the

following two requirements. First, the linear functionals h f , jäi should be suitable

approximations to f (t0); for this purpose, it is quite natural to choose jä(�) �
äÿ1j(äÿ1(� ÿ t0)) with some ®xed function j(�) and ä. 0 converging to zero. Second,

according to the linear functional strategy we have to choose jä(�) in such a way that the

linear functionals h f , jäi could be stably recovered from Kf . To this end, the functions

jä 2 L2(R) should lie in the range of the adjoint to K, operator K�. Indeed, if D (K) is

dense in L2(R) and jä 2R(K�), then there exists a function hä 2 L2(R) such that

jä � K�hä, and

h f , jäi � h f , K�häi � hKf , häi � hg, häi, 8 f 2 D (K):

Thus, if functions jä(�) satisfy the above requirements, then f̂ä(t0) � �1ÿ1hä(t) dy(t) can be

chosen as an estimate of f (t0). To de®ne the estimate completely, we should specify the

bandwidth ä. As usual in nonparametric estimation, ä controls the trade-off between the bias

and variance of the estimate. Typically the optimal choice of the bandwidth requires a priori

information on the smoothness of the function to be estimated, and for this reason is not

practical. We apply the general adaptation scheme to treat this problem.

Observe that for the convolution transform one has

R(K�) � f :

�1
ÿ1
j f̂ (ë)j2jK̂(ë)jÿ2 dë,1

� �
:

As we will see, in this case the linear functional strategy results in the kernel deconvolution

estimator extensively studied by Stefanski and Carrol (1990), Carrol and Hall (1988), Fan

(1991a; 1991b) and Masry (1991) for the problem of density deconvolution. It is worth

noting that in the construction of the WVD estimator, Donoho (1995) also applies the linear

functional strategy, but the functions jä are chosen to be an orthonormal wavelet basis, and

the resulting functionals h f , jäi are the corresponding wavelet coef®cients.
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3. Pointwise adaptive deconvolution

Consider the family of functions jä(�) � äÿ1j(äÿ1(� ÿ t0)) indexed by a positive real number

ä and associated with some function j(�). Given ä. 0, we de®ne the estimate for f (t0) as

f̂ä(t0) �
�1
ÿ1

hä(t) dy(t), (2)

where the function hä(�) is de®ned via its Fourier transform as

ĥä(ë) � eÿië t0
ĵ(äë)

K̂(ÿë)
: (3)

The following assumption will be used throughout the paper:

Assumption K1. jK̂(ë)j 6� 0, for all ë.

We now consider separately two important cases.

3.1. Kernel with polynomially decaying Fourier transform

Here our assumptions on the kernel K are as follows.

Assumption K2. There exist positive real numbers A, á and c0 such that

jK̂(ë)j > c0jëjÿá, 8jëj. A, (4)

min
jëj<A
jK̂(ë)j � m . 0: (5)

Green's functions of linear differential operators are important examples of kernels K

satisfying Assumption K2. For example, let

v(t) �
exp(t), ÿ1, t , 0

1
2

t � 0

0, 0 , t ,1,

8>><>>:
and for non-vanishing real constants a1, . . . , ak , let v j(t) � jajjv(ajt), j � 1, . . . , k. De®ne

K � v1 ? v2 ? � � � ? vk , where ? denotes convolution on R. For such a kernel

K̂(ë) �
Yk

j�1

1ÿ ië

a j

 !24 35ÿ1

,

and (4) holds with á � k. In this case f can be recovered from Kf by applying the linear

differential operator
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f (t) �
Yk

j�1

1ÿ aÿ1
j

d

dt

� �24 35(Kf )(t), t 2 R

see, for example, Hirschmann and Widder (1995, Chapter II). Here the estimation problem is

equivalent to estimating the linear differential operator of order á from the direct white noise

observations.

Let us ®x a positive integer number s and choose a function j satisfying the following

assumptions:

Assumption A1. j is a symmetric, supported on [ÿ1, 1], square-integrable function such that�1
ÿ1
jĵ(ë)j2jëj2á dë � B2 ,1, (6a)�1
ÿ1
jĵ(ë)j jëjá dë,1: (6b)

Assumption A2. j has s vanishing moments, that is,�1

ÿ1

j(t)t j dt �
1, j � 0,

0, j � 1, . . . , s:

(
(7)

If j has square-integrable derivative of the order dáe (where dáe denotes the smallest integer

number greater than á), then inequality (6a) holds. The moment conditions (7) are quite

standard for nonparametric kernel estimates. Assumptions similar to A1 and A2 have also

been considered in Fan (1991a; 1991b), where the density deconvolution problem has been

studied. A function j satisfying Assumptions A1 and A2 can be easily constructed using

Jacobi orthonormal polynomials on the interval [ÿ1, 1].

The following lemma asserts that under Assumptions K1, K2 and A1 the estimate f̂ä(t0)

given by (2)±(3) is well de®ned for any ä. 0.

Lemma 1. Let Assumptions K1, K2 and A1 hold; then for any ä. 0 one has jä 2R (K�),
and

khäk2
2 <

2Akjk2
1

m2
� B2

c2
0ä

2á�1
: (8)

Proof. It suf®ces to establish inequality (8). We have

khäk2
2 �

�1
ÿ1

���� ĵ(äë)

K̂(ë)

����2 dë �
�
jëj<A

���� ĵ(äë)

K̂(ë)

����2 dë�
�
jëj.A

���� ĵ(äë)

K̂(ë)

����2 dë: (9)

It follows immediately from (5) that�
jëj<A

���� ĵ(äë)

K̂(ë)

����2 dë < mÿ2

�
jëj<A

jĵ(äë)j2 dë <
2Akjk2

1

m2
:
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Further, taking into account (4) and (6a), we obtain�
jëj.A

���� ĵ(äë)

K̂(ë)

����2 dë < cÿ2
0 äÿ2áÿ1

�
jëj.Aä

jĵ(ë)j2jëj2á dë <
B2

c2
0ä

2á�1
:

Combining these inequalities with (9) gives (8). Note also that (6b) implies
� jĥä(ë)j dë,1,

so that hä can be obtained from (3) by standard Fourier inversion. h

Now we are ready to de®ne the adaptive estimate f̂ �(t0) we are actually interested in.

The main idea underlying the construction of our adaptive estimator is the following.

Consider a family of estimates f f̂ä(t0)gä2Ä, where Ä is a ®nite ordered set of possible

bandwidths. We choose the maximal bandwidth ä� 2 Ä such that the estimate associated

with this choice does not differ `signi®cantly' from the estimates with smaller bandwidths

from Ä. The extent to which f̂ä� (t0) should be close to the estimates with smaller

bandwidths can be evaluated without any a priori information on the function to be

estimated.

Let

r(ä) � 2Akjk2
1

m2
� B2

c2
0ä

2á�1

 !1=2

, (10)

and de®ne

ä � B2 m2

2Ac2
0kjk2

1

 !1=(2á�1)

, ä � å2=(2á�1)ä: (11)

Fix a real number a . 1, and consider the family of estimates f̂ä(t0) indexed by ä. 0 from

the set

Ä � fä 2 [ä, ä] : ä � a jä, j � 0, 1, 2, . . .g:
With every estimate f̂ä(t0) we associate the interval

Iä � [ f̂ä(t0)ÿ 2kår(ä), f̂ä(t0)� 2kår(ä)],

where k > 1 is a ®xed real number. Let ä� denote the maximal ä 2 Ä such that\
ä2Ä,ä<ä�

Iä 6� Æ: (12)

Then we de®ne our estimate as f̂ �(t0) � f̂ä�(t0). Note that ä� is well de®ned, in particular

the minimal ä� � ä always satis®es (12). Observe that our construction depends on observed

trajectory y(t), on information on the kernel K, on å, and on three `design' parameters s, a

and k. In the following k will be chosen as function of s, a and å, so that actually our

estimator depends on two `design parameters' s and a only.

The accuracy of the estimate f̂ �(t0) will be analysed under the following assumption on

the function f to be estimated.

912 A. Goldenshluger



Assumption F. There exist a positive integer number l > 1, positive real numbers L and

p 2 [1, 1], and an interval D � [t0 ÿ d, t0 � d] such that pl . 1, and�
D

j f ( l)(t)j p dt

� �1= p

< LjDj1= p: (13)

In the case of p � 1 the left-hand side of (13) is the usual k:k1-norm on D. For functions

satisfying this assumption we write f 2 W l
p(L, D).

We would like to stress here that parameters L, D, l, p of the class W l
p(L, D) are not

involved in the construction of our estimate, and in fact the estimate does not use any a

priori quantitative information on f .

Theorem 1. Let Assumptions K1, K2, A1 and F hold. Assume that A2 holds with s� 1 > l,

and let q � l ÿ 1= p and â � á� 1
2
. Let å be small enough so that

å < min
c0kjk1

B
(LjDj1= p)ÿâ=q

������
2A
p

m

� �1�â=q

,
dâ

������
2A
p

c0kjk1

mB
, aÿ3

( )
: (14)

Then there exists a constant C � C(a, s) depending on a and s only such that for our

estimate f̂ �(t0) associated with the choice k � C(a, s)
��������������
ln(åÿ1)

p
one has

[Ej f̂ �(t0)ÿ f (t0)j2]1=2 < O(1) (LjDj1= pkjk1)â=(â�q) B

c0

å

��������
ln

1

å

r !q=(â�q)

�
����
A
p kjk1

m
å

��������
ln

1

å

r24 35
,

(15)

where O(1) is a constant depending on a and s only.

A proof is given in Section 4.

If we knew in advance parameters p, l, L, D of the class W l
p(L, D), we could achieve

the minimax rate of convergence O(åq=(â�q)). Therefore the quality of our adaptive estimate

coincides, up to a factor logarithmic in åÿ1, with the lower bound on the minimax risk

corresponding to the case of known smoothness. It is well known (Lepskii 1992) that in the

case of unknown smoothness the indicated factor cannot be reduced for estimating

derivatives at a single point from the direct white noise observations. In Lepskii (1992) the

corresponding lower bound was established on the minimax risk uniformly over a functional

family containing at least two classes W l11(L, [0, 1]) and W l21(L, [0, 1]), with l1 6� l2. As

was noticed before, if K is Green's function of a linear differential operator of order á, then

the deconvolution problem is equivalent to estimating the linear differential operator of Kf

from direct observations. Observe also that the upper bound (15) holds for all f from all

classes W l
p(L, D) with parameters p, l, L and D satisfying p 2 [1, 1], pl . 1, and

conditions (14). Thus, our estimate adapts optimally to the unknown smoothness, whenever

K is Green's function of a linear differential operator.
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3.2. Kernel with exponentially decaying Fourier transform

Now consider the case of exponentially decaying tails of the Fourier transform K̂(ë). We

assume that K1 holds, and that instead of K2 the following condition is ful®lled:

Assumption K3. There exist positive real numbers A, á, ã and c0 such that

jK̂(ë)j > c0 exp(ÿãjëjá), 8jëj. A, and min
jëj<A
jK̂(ë)j � m . 0:

Gaussian and Cauchy densities are the simplest examples of kernels K satisfying Assumption

K3.

Fix a positive integer number s, and choose a function j satisfying the following

assumptions:

Assumption A3. ĵ is a symmetric function, supported on [ÿ1, 1], and�1
ÿ1
jj(t)j dt � kjk1 ,1,

�1
ÿ1
jj(t)j jtjs�1 dt � B ,1:

Assumption A4.

ĵ(0) � 1, ĵ9(0) � . . . � ĵ(s)(0) � 0:

Note that Assumption A4 is equivalent to the moment conditions (7).

For ä. 0, let f̂ä(t0) denote the estimate given by (2)±(3). The following lemma shows

that under Assumptions K1, K3 and A3 the estimate f̂ä(t0) is well de®ned.

Lemma 2. Let Assumptions K1, K3 and A3 hold; then for any ä. 0 one has jä 2R(K�),
and

khäk2
2 <

2Akjk2
1

m2
� 2kjk2

1

c2
0ä

exp(2ãäÿá), if Aä, 1,

2Akjk2
1

m2
, otherwise:

8>>><>>>:
The proof of the lemma resembles that of Lemma 1 and is therefore omitted. We note only

that in this case the integral
�
jëj.Ajĵ(äë)j2jK̂(ë)jÿ2 dë vanishes if Aä > 1.

Let us set

ä� � ãÿ1 ln
1

å
ÿ (s� 2)

áã
ln ãÿ1 ln

1

å

� �" #ÿ1=á

, (16)

and let f̂ �(t0) stand for the estimate f̂ä(t0) associated with the choice ä � ä�. Note that this

choice of ä� does not require any a priori information on the smoothness of f to be

estimated; only the `order' s is a `design' parameter for the estimate f̂ä(t0).
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Theorem 2. Let Assumptions K1, K3, A3, A4 and F hold; let, in addition,

j f (t)j < M , 8t 2 R: (17)

De®ne â � 1� l=(s� 1ÿ l � 1=p) and assume that å is small enough so that

ln
1

å
> 2ãmax 1,

2(s� 2)2

á2ã2
, dÿá, dÿáâ

( )
: (18)

Then for the estimate f̂ �(t0) associated with the bandwidth ä� one has

[Ej f̂ �(t0)ÿ f (t0)j2]1=2 < O(1) ~B(~LjDj1= p � cÿ1
0 )

1

2ã
ln

1

å

� �ÿ( lÿ1= p)=á

�kjk1

����
A
p

m
å

" #
, (19)

where O(1) is an absolute constant, ~L � maxfL, Mg and ~B � B� kjk1.

A proof of the theorem is given in Section 4.

In the case of known smoothness for the density deconvolution problem it was proved

(Carrol and Hall 1988; Fan 1991b) that the minimax pointwise rate of convergence is

logarithmic in the number of observations. In particular, for p � 1 it equals O([ln n]ÿ l=á),

where n is the number of observations. These results are compatible with the upper bound

(19) with the usual calibration å � nÿ1=2. In a recent paper Efromovich (1997) shows that

for the white noise model with p � 2 the pointwise minimax rate of convergence is equal

to O([(2ã)ÿ1 ln(1=å)]ÿ( lÿ1=2)=á): Theorem 2 shows that in this case adaptation to unknown

smoothness can be achieved by `direct tuning' of the bandwidth, without any additional

adaptation rule. In Efromovich (1997) a similar result was obtained for an estimator based

on orthogonal series. In fact, the rate of convergence given by Theorem 2 is optimal for

every p 2 [1, 1], as Theorem 3 asserts.

Without loss of generality, we assume that t0 � 0, and replace K3 with the following:

Assumption K39. There exist real numbers c0, c1, ã, á such that

c0 exp(ÿãjëjá) < jK̂(ë)j < c1 exp(ÿãjëjá), 8ë:

The function f is assumed to satisfy�1
ÿ1
j f ( l)(t)j p dt

� �1= p

< L, pl . 1, p 2 [1, 1]:

For such functions we write f 2 W l
p(L).

Theorem 3. Let Assumptions K1 and K39 hold, and p 2 [1, 1]. Then there exist constants

C1( p, l, L, K) and C2( p, l, L, K) depending on p, l, L, and on the kernel K only such that

for å satisfying

ln
1

å
> C1( p, l, L, K) (20)
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one has

inf
f̂

sup
f 2W l

p(L)

E f

�
j f̂ (0)ÿ f (0)j2

�1=2

> C2( p, l, L, K) ãÿ1 ln
1

å

� �ÿ( lÿ1= p)=á

,

where the in®mum is taken over all possible estimators.

A proof of the theorem is given in Section 4.

Theorem 3, along with Theorem 2, implies that for every p 2 [1, 1] our estimator is the

best possible for pointwise adaptation. Thus, in the case of exponentially decaying tails of

K̂(ë) adaptation to unknown smoothness can be achieved at the same `cost' in the terms of

rates of convergence.

4. Proofs

4.1. Proof of Theorem 1

The main idea of the proof is the following. Let

çh(ä, t0) �
�1
ÿ1

hä(t) dW (t),

where hä is de®ned in (3). Lemma 1 implies that hä 2 L2(R), and therefore çh(ä, t0) is the

Gaussian random variable N (0, khäk2
2): By the de®nition of f̂ä(t0), for any ä. 0 the

estimation accuracy can be bounded from above as follows:

j f̂ä(t0)ÿ f (t0)j < j f (t0)ÿ h f , jäij � åjçh(ä, t0)j, (21)

where the ®rst term on the right-hand side of (21) is the deterministic bias and the second is

the stochastic error. First, we obtain the upper bound given in (15) on the set where the

stochastic error behaves `typically'. Then we prove that the aforementioned set is of `large'

probability, so that the in¯uence of the complementary `bad' event is negligible.

We start with some notation. Given k > 1, de®ne the event

Ùk(t0) � ù 2 Ù : max
ä2Ä

[r(ä)]ÿ1jçh(ä, t0)j < k
n o

:

Let d� � minfd, äg, and

b f (ä, t0) � ä lÿ1= p

�1

ÿ1

jj(ô)j
� t0�äô

t0ÿäô
j f ( l)(æ)j p dæ

 !1= p

dô:

We de®ne the ideal bandwidth ä�(t0) as follows. If the solution ä to the balance equation

kåB

c0äá�1=2
� b f (ä, t0) (22)

does not exceed d�, then we set ä�(t0) � ä; otherwise we set ä�(t0) � d�. The ideal
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bandwidth ä�(t0) de®ned in such a manner balances the bias and stochastic error of the

estimate. For brevity, we will write ä� instead of ä�(t0). Assumption F implies that, for any

ä < d,

b f (ä, t0) < ä lÿ1= p LjDj1= pkjk1: (23)

By de®nition ä� < ä; let us verify now that under the premise of the theorem ä� > ä.

Assume that ä�, d�; then

ä� >
kåB

c0 LjDj1= pkjk1

� �1=( l�á�1=2ÿ1= p)

(24)

and ä� > ä due to the ®rst inequality in (14). If ä� � d�, then either ä� � ä or ä� � d. In

the former case ä� > ä by de®nition, while in the latter ä� > ä due to the second inequality

in (14).

We bound from above the ®rst term on the right-hand side of (21):

j f (t0)ÿ h f , jäij �
���� f (t0)ÿ

�1

ÿ1

f (t0 � äô)j(ô) dô

����
�
�����1

ÿ1

j(ô)

� t0�äô

t0

f ( l)(æ)
(æÿ t0) lÿ1

(l ÿ 1)!
dæ

" #
dô

����
< ä lÿ1= p

�1

ÿ1

jj(ô)j
� t0�äô

t0

j f ( l)(æ)j p dæ

" #1= p

dô < b f (ä, t0)

(here we have applied the HoÈlder inequality to the reminder of the (l ÿ 1)th-order Taylor

expansion of f at t0, and taken into account the moment conditions (7)). Observe that

b f (ä, t0) is a monotone increasing function of ä. By the de®nition of the ideal bandwidth, if

ä�, d�, then ä� is the solution to the balance equation (22). If ä� � d�, then the solution

to the balance equation (22) is greater than ä� � d�. Thus, for any bandwidth ä < ä� we

have

b f (ä, t0) <
kåB

c0äá�1=2
< kår(ä): (25)

Assume now that the event Ùk(t0) holds; then for ä < ä� one has

j f̂ä(t0)ÿ f (t0)j < b f (ä, t0)� kår(ä) <
kåB

c0äá�1=2
� kår(ä) < 2kår(ä) (26)

(here we have taken into account (21), the de®nition of Ùk(t0), and (25)). Thus, all segments

Iä � [ f̂ä(t0)ÿ 2kår(ä), f̂ä(t0)� 2kår(ä)]

associated with ä < ä� have at least one point in common, namely f (t0), and thereforeT
ä2Ä,ä<ä� Iä 6� Æ. This implies that on the set Ùk(t0) the bandwidth ä�, given by (12), will

be greater than or equal to ä�. Therefore, we have
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j f̂ �(t0)ÿ f (t0)j < j f̂ �(t0)ÿ f̂ä�(t0)j � j f̂ä� (t0)ÿ f (t0)j
< 2kår(ä�)� 2kår(ä�)� 2kår(ä�) < 6kår(ä�):

The second and the third inequalities follow from (26), and the fact that Iä� \ Iä� 6� Æ by

de®nition of ä� (the distance between centres of the overlapping intervals Iä� and Iä� is

smaller than sum of their half-widths). The third inequality is an immediate consequence of

the fact that ä� < ä� on the set Ùk(t0). Thus, if the event Ùk(t0) holds then

j f̂ �(t0)ÿ f (t0)j < 6kår(ä�) � 6kå
2Akjk2

1

m2
� B2

c2
0ä

2á�1
�

 !1=2

: (27)

Now consider the case of ù 2 Ùc
k(t0). Observe that, for any ä < ä�, ä 2 Ä and

independently of the event Ùk(t0), one has

j f̂ �(t0)ÿ f (t0)j < j f̂ �(t0)ÿ f̂ä(t0)j � j f̂ä(t0)ÿ f (t0)j

< 4kår(ä)� j f̂ä(t0)ÿ f (t0)j: (28)

This follows from the fact that intersection of Iä� and Iä is not empty. By construction, the

minimal bandwidth ä � ä is smaller than or equal to the bandwidth ä� given by our rule.

Therefore applying (28) to ä � ä, we can write

j f̂ �(t0)ÿ f (t0)j < 4kår(ä)� j f̂ä(t0)ÿ f (t0)j

<
8
����
A
p kjk1

m
k� b f (ä, t0)� åmax

ä2Ä
jçh(ä, t0)j

(here we have used (21), (10) and (11)). Further, due to the second inequality in (14) we have

ä < d, so that b f (ä, t0) < b f (d�, t0), and, in view of (23),

j f̂ �(t0)ÿ f (t0)j < 8
����
A
p kjk1

m
k� ä lÿ1= p LjDj1= pkjk1 � åmax

ä2Ä
jçh(ä, t0)j: (29)

De®ne

è(t0) � max
ä2Ä

[khäkÿ1
2 jçh(ä, t0)j]: (30)

Since khäkÿ1
2 çh(ä, t0) is the standard Gaussian random variable, and the cardinality of the set

Ä does not exceed N � 2(ln a)ÿ1 ln(åÿ1), we can write

P(è(t0) . ô) < N

�1
ô

exp(ÿx2=2) dx, 8ô. 0: (31)

Due to Lemma 1, for any ä > ä we have

khäk2 <
2Akjk2

1

m2
� B2

c2
0ä

2á�1

 !1=2

<
2
����
A
p kjk1

åm
:

918 A. Goldenshluger



Therefore we obtain from (29) and (30) that

j f̂ �(t0)ÿ f (t0)j < 8
����
A
p kjk1

m
k� ä lÿ1= p LjDj1= pkjk1 � 2

����
A
p kjk1

m
è(t0): (32)

Now observe that è(t0) . k on the set Ùc
k(t0). Indeed, since khäk2 < r(ä), we have

Ùc
k(t0) � ù : max

ä2Ä
[r(ä)]ÿ1jçh(ä, t0)j. k

n o
� ù : max

ä2Ä
khäkÿ1

2 jçh(ä, t0)j. k
n o

� fù : è(t0) . kg: (33)

Therefore, it follows from (32) that, on the set Ùc
k(t0),

j f̂ �(t0)ÿ f (t0)j < 10
����
A
p kjk1

m
è(t0)� ä lÿ1= p LjDj1= pkjk1: (34)

In addition, (31) and (33) imply that

P(Ùc
k(t0)) < N

�1
k

exp(ÿx2=2) dx: (35)

Now we complete proof of the theorem. It follows from (31) that

E[è(t0)]4 < O(1)(ln N )2 (36)

with an absolute constant O(1). Indeed, using (31) and integrating by parts, we have for every

c . 0

E[è(t0)]4 �
�1

0

4x3 Pfè(t0) . xg dx < c4 � 4N

�1
c

x2 exp(ÿx2=2) dx

< c4 � 4N c exp(ÿc2=2)�
�1

c

exp(ÿx2=2) dx

� �
:

Setting c � ������������
2 ln N
p

we come to (36). Let ÷f�g be the indicator function of a set. Then taking

into account (34), the de®nition of ä, and the ®rst inequality in (14), we obtain

[Ej f̂ �(t0)ÿ f (t0)j2÷fÙc
k(t0)g]1=2

< O(1)
Akjk2

1

m2
fE[è(t0)]4 P(Ùc

k(t0))g1=2 � (ä lÿ1= p LjDj1= pkjk1)2 P(Ùc
k(t0))

� �1=2

< O(1)

����
A
p kjk1

m

���������
ln N
p

[P(Ùc
k(t0))]1=4 � åÿ( lÿ1= p)=(á�1=2)

����
A
p kjk1

m
[P(Ùc

k(t0))]1=2

� �

< O(1)

����
A
p kjk1

m
[
���������
ln N
p

[P(Ùc
k(t0))]1=4 � åÿ2(s�1)[P(Ùc

k(t0))]1=2]:

Due to (35), we can choose the constant C(a, s), depending on a and s only, in such a way

that for k � C(a, s)
���������������
ln (åÿ1)

p
one has
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���������
ln N
p

[P(Ùc
k(t0))]1=4 � åÿ2(s�1)[P(Ùc

k(t0))]1=2 < å

��������
ln

1

å

r
:

With the C(a, s) in question we have

[Ej f̂ �(t0)ÿ f (t0)j2÷fÙc
k(t0)g]1=2 < O(1)

����
A
p kjk1

m
å

��������
ln

1

å

r
, (37)

where O(1) depends on a and s only. On the other hand, due to (27), we have

[Ej f̂ �(t0)ÿ f (t0)j2÷fÙk(t0)g]1=2 < O(1) å

��������
ln

1

å

r
Akjk2

1

m2
� B2

c2
0ä

2á�1
�

 !1=2
24 35: (38)

Substituting the lower bound (24) on ä� into (38), and combining (37) and (38), we come to

(15).

4.2. Proof of Theorem 2

First we show that, under the premise of the theorem, ä� given in (16) is well de®ned. Due to

the ®rst inequality in (18) we have å < exp(ÿ2ã), and therefore ãÿ1 ln(åÿ1) > 2. Using this

fact and the second inequality in (18), we obtain

s� 2

áã
ln ãÿ1 ln

1

å

� �
<

s� 2

áã

����������������
ãÿ1 ln

1

å

r
<

1

2
ãÿ1 ln

1

å
:

Thus, ä� is positive for å obeying (18) and

ãÿ1 ln
1

å

� �ÿ1=á

< ä� <
1

2
ãÿ1 ln

1

å

� �ÿ1=á

: (39)

We have

E(j f̂ �(t0)ÿ f (t0)j2)1=2 <
���
2
p

[j f (t0)ÿ h f , jä�ij � å(Ejçh(ä�, t0)j2)1=2�, (40)

where çh(ä�, t0) � �1ÿ1hä� (t) dW (t) is a well-de®ned Gaussian random variable (see Lemma

2). Now we bound from above the bias and the stochastic error of our estimate.

We have, for any ä. 0,

j f (t0)ÿ h f , jäij �
���� f (t0)ÿ

�1
ÿ1

f (t0 � äô)j(ô) dô

����
<

�����jôj.däÿ1

[ f (t0)ÿ f (t0 � äô)]j(ô) dô

����
�
�����jôj<däÿ1

[ f (t0)ÿ f (t0 � äô)]j(ô) dô

����
� J1 � J2: (41)
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Due to (17) and the second condition in Assumption A3,

J1 < 2M

�
jôj.däÿ1

jj(ô)j dô < 2MB(ä=d)s�1: (42)

Further, by the Taylor expansion formula,

J2 <

����Xlÿ1

j�0

f ( j)(t0)

j!
ä j

�
jôj<däÿ1

j(ô)ô j dô

����� �����jôj<däÿ1

j(ô)

� t0�äô

t0

f ( l)(æ)(æÿ t0) lÿ1

(l ÿ 1)!
dæ dô

����:
� J21 � J22:

First we bound J21 from above. Note that, due to Assumption A4,

J21 �
����Xlÿ1

j�0

f ( j)(t0)

j!
ä j

�
jôj.däÿ1

j(ô)ô j dô

����:
We have

J21 <

����Xlÿ1

j�0

f ( j)(t0)

j!
ä j

�
jôj.däÿ1

j(ô)ô j ôä

d

� �s�1ÿ j

dô

����
� ä

d

� �s�1����Xlÿ1

j�0

f ( j)(t0)

j!
d j

�
jôj.däÿ1

j(ô)ôs�1 dô

����
<

ä

d

� �s�1���� f (t0 � d)ÿ f (t0)ÿ
� t0�d

t0

f ( l)(æ)(æÿ t0) lÿ1

(l ÿ 1)!
dæ

" #�
jôj.däÿ1

j(ô)ôs�1 dô

����
<

ä

d

� �s�1

B 2M �
����� t0�d

t0

f ( l)(æ)(æÿ t0) lÿ1

(l ÿ 1)!
dæ

����
 !

:

Here the second inequality follows from the Taylor expansion formula for f (t0 � d) near t0,

and the third inequality is an immediate consequence of Assumption A3 and inequality (17).

Applying the HoÈlder inequality and using Assumption F, we conclude that

J21 <
ä

d

� �s�1

B(2M � LjDj1= pd lÿ1= p): (43)

To bound J22, we apply the HoÈlder inequality and take into account Assumption A3:
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J22 < ä lÿ1= p

�
jôj<däÿ1

jj(ô)j jôj lÿ1= p

� t0�äô

t0

j f ( l)(æ)j p dæ

" #1= p

dô

< ä lÿ1= p LjDj1= p

�
jôj<1

jj(ô)j dô�
�
jôj>1

jj(ô)j jôj lÿ1= p dô

 !

< ä lÿ1= p LjDj1= p(B� kjk1): (44)

Thus, combining (41)±(44), we obtain, for any ä. 0,

j f (t0)ÿ h f , jäij < 4MB(ä=d)s�1 � LjDj1= p(B� kjk1)[(ä=d)s�1d lÿ1= p � ä lÿ1= p]:

It follows from the third and forth inequalities in (18) and from (39) that

(ä�=d)s�1d lÿ1= p < ä lÿ1= p� and (ä�=d)s�1 < ä lÿ1= p� d1= p, respectively. Therefore, taking into

account (39), we have

j f (t0)ÿ h f , jä�ij < 4MBjDj1= pä lÿ1= p� � 2LjDj1= p(B� kjk1)ä lÿ1= p�

< 6~LjDj1= p(B� kjk1)
1

2
ãÿ1 ln

1

å

� �ÿ( lÿ1= p)=á

, (45)

where ~L � maxfL, Mg. Due to Lemma 2, we have

å(Ejçh(ä�, t0)j2)1=2 � åkhä�k2 <
���
2
p
kjk1å

A

m2
� exp(2ãäÿá� )

c2
0ä�

 !1=2

:

Substituting ä� from (16), we conclude that

å(Ejçh(ä�, t0)j2)1=2 <
���
2
p
kjk1

å
����
A
p

m
� 1

c0

ãÿ1 ln
1

å

� �ÿs�3=2

á

" #
: (46)

Combining (46), (45) and (40), and taking into account that s� 3=2 . l ÿ 1=p, we come to

(19).

4.3. Proof of Theorem 3

The proof is based on the standard technique for deriving minimax lower bounds in

nonparametric estimation problems; see, for example, Korostelev and Tsybakov (1993,

Chapter 2). In what follows Ci, i � 1, 2, . . . , denote positive constants depending on l, p, L

and K only.

Let S (R) denote the class of in®nitely differentiable rapidly decreasing functions on R,

that is, f belongs to S (R) if t k f (m)(t) tends to zero as jtj ! 1 for every non-negative k

and m. It is well known that the Fourier transform maps S (R) onto itself. Pick a function

ø̂ 2 S (R) such that:

(i) ø̂ is symmetric, ø̂(ÿë) � ø̂(ë);
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(ii) ø̂ is equal to 1 on an interval slightly smaller than [1, 2] (and [ÿ2, ÿ1]), and

vanishes outside [ÿ2, ÿ1] [ [1, 2].

For a real number ä. 0, de®ne fä(t) � èäÿ1ø(t=ä), where è is a positive real constant to be

chosen. Observe that f̂ä(ë) � èø̂(äë), and fä can be recovered from its Fourier transform by

the standard inversion formula

fä(t) � 1

2ð

�1
ÿ1

f̂ä(ë) eië t dë � è

2ðä

�
1<jëj<2

ø̂(ë) eië t=ä dë:

First, we verify that for appropriate choice of è the function fä belongs to the class W l
p(L).

We have

f
( l)

ä (t) � èäÿ lÿ1ø( l)(t=ä),

and, for any p 2 [1, 1],�1
ÿ1
j f ( l)

ä (t)j p dt

� �1= p

< èäÿ lÿ1

�1
ÿ1
jø( l)(t=ä)j p dt

� �
1= p

< C1èä
ÿ lÿ1�1= p

(here we have taken into account that ø 2 S (R)): Thus, if we choose

è � C2 Lä l�1ÿ1= p (47)

then fä 2 W l
p(L).

Now consider two hypotheses H0 : f � f 0 � 0 and H1 : f � f 1 � fä, and let P0 and P1

be the probability measures associated with the corresponding processes

dy0 � å dW (t), t 2 R,

dy1 � (Kf 1)(t) dt � å dW (t), t 2 R:

We have

j f 0(0)ÿ f 1(0)j � j fä(0)j � èäÿ1jø(0)j > èäÿ1 � C2 Lä lÿ1= p � r: (48)

For an arbitrary estimator f̂ (0) of f (0),

sup
f 2W l

p(L)

E f j f̂ (0)ÿ f (0)j2 > max
f� f0, f1

E f j f̂ (0)ÿ f (0)j2

>
r2

4
max
i�0,1

Pifj f̂ (0)ÿ f (0)j > r=2g: (49)

Now we bound from below the last probability using Proposition 2.2.2 from Korostelev and

Tsybakov (1993). Observe that, for any ä. 0,
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kKfäk2
2 �

�1
ÿ1
jK̂(ë)j2j f̂ä(ë)j2 dë

< 2c2
1è

2äÿ1

�2

1

exp(ÿ2ãjëjáäÿá)jø̂(ë)j2 dë

< C3 L2äÿ2 l�1ÿ2= p exp(ÿ2ãäÿá) ,1 (50)

(here we have taken into account Assumption K39 and equation (47)). Therefore the

probability measures P0 and P1 are equivalent, and the likelihood ratio is given by

Ë( f 0, fä; y0) � dP1

dP0

(y0(t), t 2 R)

� exp
1

å

�1
ÿ1

(Kfä)(t) dW (t)ÿ 1

2å2

�1
ÿ1
j(Kfä)(t)j2 dt

� �
(cf. Liptser and Shiryayev 1977, }7.1). If we choose

ä � ä� � C
ÿ1=á
4 ãÿ1 ln

1

å
� (l � 1=2ÿ 1=p)

áã
ln ãÿ1 ln

1

å

� �" #ÿ1=á

, (51)

then, by (50) and (20), åÿ2kKfä�k2
2 remains bounded as å tends to zero. In addition, by

Proposition 2.2.2 of Korostelev and Tsybakov (1993), one can choose C4 in such a way that

the probability in (49) will be greater than, say, 1
4
. Substituting (51) into (49) and taking into

account (48), we complete the proof.

Acknowledgements

The author thanks A. Nemirovski for useful discussions, and the Associate Editor and the

referees for comments which led to substantial improvements in the paper. The research was

supported in part by the Israeli Council for Higher Education Postdoctoral Fellowship.

References

Abramovich, F. and Silverman, B. (1998) Wavelet decomposition approaches to statistical inverse

problems. Biometrika, 85, 115±129.

Anderssen, R.S. (1980) On the use of linear functionals for Abel-type integral equations. In R.

Anderssen, F. De Hoog and M. Lucas (eds), The Application and Numerical Solution of Integral

Equations. Amsterdam: Sijthoff and Noordhof International Publishers.

Carrol, R.J. and Hall, P. (1988) Optimal rates of convergence for deconvolving a density. J. Amer.

Statist. Assoc., 83, 1184±1186.

Donoho, D.L. (1995) Non-linear solution of linear inverse problems by wavelet±vaguelette

decomposition. Appl. Comput. Harmon. Anal., 2, 101±126.

Efromovich, S. (1997) Robust and ef®cient recovery of a signal passed through a ®lter and then

924 A. Goldenshluger



contaminated by non-Gaussian noise. IEEE Trans. Inform. Theory, 43, 1184±1191.

Fan, J. (1991a) Global behavior of deconvolution kernel estimates. Statist. Sinica, 19, 541±551.

Fan, J. (1991b) On the optimal rates of convergence for nonparametric deconvolution problems. Ann.

Statist., 19, 1257±1272.

Goldberg, M. (1979) A method of adjoints for solving some ill-posed equations of the ®rst kind. Appl.

Math. Comput., 5, 123±130.

Goldenshluger, A. and Nemirovski, A. (1997) On spatially adaptive estimation of nonparametric

regression. Math. Methods Statist., 6(2), 135±170.

Hirschmann, I. and Widder, D. (1955) The Convolution Transform. Princeton, NJ: Princeton University

Press.

Korostelev, A. and Tsybakov, A. (1993) Minimax Theory of Image Reconstruction, Lecture Notes in

Statist. 82. New York: Springer-Verlag.

Lepskii, O. (1991) Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive

estimates. Theory Probab. Appl., 36, 682±697.

Lepskii, O. (1992) Asymptotically minimax adaptive estimation II: Schemes without optimal

adaptation. Adaptive estimators. Theory Probab. Appl., 37, 433±448.

Lepskii, O., Mammen, E. and Spokoiny, V. (1997) Optimal spatial adaptation to inhomogeneous

smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann.

Statist., 25(3), 929±947.

Liptser, R. and Shiryayev, A. (1977) Statistics of Random Processes I. New York: Springer-Verlag.

Mair, B. and Ruymgaart, F.H. (1996) Statistical inverse estimation in Hilbert scale. SIAM J. Appl.

Math., 56, 1424±1444.

Masry, E. (1991) Multivariate probability density deconvolution for stationary random processes. IEEE

Trans. Inform. Theory, 37, 1105±1115.

Nychka, D. and Cox, D.D. (1989) Convergence rates for regularized solutions of integral equations

from discrete noisy data. Ann. Statist., 17, 556±572.

O'Sullivan, F. (1986) A statistical perspective on ill-posed inverse problems. Statist. Sci., 1, 502±527.

Stefanski, L. and Carrol, R.J. (1990) Deconvoluting kernel density estimators. Statistics, 21, 169±184.

Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and

Applied Mathematics.

Received January 1997 and revised December 1997

On pointwise adaptive nonparametric deconvolution 925


