
J
H
E
P
1
1
(
2
0
1
9
)
0
8
7

Published for SISSA by Springer

Received: August 31, 2019

Accepted: October 24, 2019

Published: November 14, 2019

On polarized scattering equations for superamplitudes

of 11D supergravity and ambitwistor superstring

Igor Bandos

Department of Theoretical Physics, University of the Basque Country UPV/EHU,

P.O. Box 644, 48080 Bilbao, Spain

IKERBASQUE, Basque Foundation for Science,

48011 Bilbao, Spain

E-mail: igor.bandos@ehu.eus

Abstract: We revisited the formalism of 11D polarized scattering equation by Geyer and

Mason from the perspective of spinor frame approach and spinor moving frame formulation

of the 11D ambitwistor superstring action. In particular, we rigorously obtain the equation

for the spinor function on Riemann sphere from the supertwistor form of the ambitwistor

superstring action, write its general solution and use it to derive the polarized scattering

equation. We show that the expression used by Geyer and Mason to motivate their ansatz

for the solution of polarized scattering equation can be obtained from our solution after

a suitable gauge fixing. To this end we use the hidden gauge symmetries of the 11D

ambitwistor superstring, including SO(16), and the description of ambitwistor superstring

as a dynamical system in an 11D superspace enlarged by bosonic directions parametrized

by 517 tensorial central charge coordinates Zµν and Zµνρσκ.

We have also found the fermionic superpartner of the polarized scattering equation.

This happens to be a differential equation in fermionic variables imposed on the super-

amplitude, rather then just a condition on the scattering data as the bosonic polarized

scattering equation is.

D=10 case is also discussed stressing the similarities and differences with 11D systems.

The useful formulation of 10D ambitwistor superstring considers it as a dynamical system

in superspace enlarged with 126 tensorial central charge coordinates Zµνρσκ.

Keywords: Field Theories in Higher Dimensions, Scattering Amplitudes, Supergravity

Models, Supersymmetric Gauge Theory

ArXiv ePrint: 1908.07482

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2019)087

mailto:igor.bandos@ehu.eus
https://arxiv.org/abs/1908.07482
https://doi.org/10.1007/JHEP11(2019)087


J
H
E
P
1
1
(
2
0
1
9
)
0
8
7

Contents

1 Introduction 2

2 Spinor frame approach to the 11D spinor helicity formalism 4

2.1 Scattering data in D=11 4

2.2 Complex spinor frame variables and complex helicity spinors 6

3 Polarized scattering equation of 11D supergravity 8

3.1 Scattering equations 8

3.2 Constrained spinor function on Riemann sphere 8

3.3 Preliminaries on SO(16) gauge symmetry, its naturalness and Stückelberg

realization 10

3.4 Polarized scattering equation 11

4 Supersymmetry generator and supersymmetric invariant amplitudes 13

5 Polarized scattering equation and spinor moving frame formulation of

ambitwistor superstring in D=11 15

5.1 Supertwistor formulation of the 11D ambitwistor superstring 16

5.2 11D ambitwistor superstring and polarized scattering equation 18

6 Fermionic superpartner of the polarized scattering equation 21

7 Spinor helicity formalism, polarized scattering equations and ambitwistor

superstring in D=10 22

7.1 Spinor frame approach to 10D spinor helicity formalism I. Real helicity

spinors 22

7.2 Spinor frame approach to 10D spinor helicity formalism II. Internal frame

and complex helicity spinors 24

7.3 10D polarized scattering equation 25

7.4 10D ambitwistor superstring and polarized scattering equation 27

7.5 10D supersymmetry generator and supersymmetric invariants 29

8 Conclusion and discussion 30

A Some properties of 11D spinor frame variables and helicity spinors 32

A.1 Spinor frame and vector frame variables (Lorentz harmonics) in D=11 32

A.2 Internal frame variables/internal harmonics 33

B An interesting nilpotent matrix 34

– 1 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
7

C Some properties of 10D spinor frame variables and helicity spinors 34

C.1 Complex spinor frame variables in D=10 35

C.2 Cartan forms and derivatives of spinor frame variables/Lorentz harmonics 35

1 Introduction

Recent years an impressive progress in calculation of scattering amplitudes of maximally

supersymmetric theories was reached [1–8]. It is related mainly with the use of on-shell

methods, in particular of spinor helicity formalism (closely related to twistor approach [9–

11]) and its superfield generalization [12–18] which is especially simple and efficient in the

case of 4 spacetime dimensions.

The development of this twisor-like formalism for the case of higher dimensional theo-

ries and its applications were discussed in [19–28]. In particular, in [25, 27] the observation

that 10D spinor helicity formalism of [20] can be understood as spinor moving frame ap-

proach to supersymmetric particles extended to the description of amplitudes1 allowed us

to develop the spinor helicity formalism for 11D supergravity and a new constrained super-

field formalism for 10D SYM and 11D supergravity amplitudes, to find the Ward identities

for these amplitudes and to discuss a candidate for generalization of the BCFW recurrent

relations [12] for the constrained tree superamplitudes. In [26] an alternative analytic su-

perfield formalism for superamplitudes was proposed. It was also oriented on the use of

BCFW-type recurrent relations which are still to be found in this case.

More recently an apparently different approach to 11D supergravity and 10D SYM

amplitudes was proposed in [28]. It is based on the so-called polarized scattering equation

which can be considered as a kind of square root of the CHY scattering equations [35, 36]

(actually present already in [37–39]; see [40] for recent development and more references).

The polarized scattering equation for 6D amplitudes was proposed in [41] while the 11D

and 10D polarized scattering equations are among the beautiful findings of [28]. Its relation

with ambitwistor string models [42, 43, 45–51], the 11D and 10D versions of which were

considered for the first time in [45], was discussed and especially stressed in [28].

In this paper we revisit the 11D polarized scattering equation formalism of [28] and its

ambitwistor superstring origin using the spinor frame approach. We show how the under-

standing of the spinor frame nature of the 11D spinor helicity formalism allows to clarify

the origin of basic equations imposed in [28] and the ambitwistor superstring derivation of

these equations. We show that the correct basis for this is provided by the 11D ambitwistor

superstring of [45] rather then by its modification suggested in [28]. In the derivation of

the basic equations the solution of which provides us with the expression for the meromor-

phic spinor function, which was employed to formulated the polarized scattering equation

1See [29] for similar observation in 5d context. The above references deal mainly with the case of flat

spacetime/superspace. Twistor methods for AdS5 and AdS5 × S
5 were addressed e.g. in [30] and [31].

Spinor helicity formalism for AdS scattering amplitudes [32] (see also ref. [33] and references therein) was

the subject of recent [34].
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in its most suggestive form, we have used essentially the possibility to formulate the 11D

ambitwistor superstring as a system in an enlarged superspace with 528 bosonic coordi-

nates [45] as well as the SO(16) gauge symmetry of the 11D ambitwistor superstring.2

In the ambitwistor superstring approach the above mentioned meromorphic spinor

function on Riemann sphere, which satisfies the polarized scattering equation, appears

accompanied by 16 component fermionic meromorphic function. The expression for this in

terms of scattering data is supersymmetric invariant after the expression for meromorphic

bosonic spinor function is taken into account and thus can be considered as a superpartner

of this latter. This observation suggests the existence of a fermionic superpartner of the

polarized scattering equations. We show that such a superpartner (spolarized scattering

equation) does exist but is a differential equation satisfied by 11D superamplitudes rather

than a condition on scattering data (as the bosonic polarized scattering equation is itself).

We also consider 10D polarized scattering equation formalism and its ambitwistor

superstring origin especially stressing the stages where the differences with 11D case occur.

We begin in section 2 by reviewing the spinor frame description of the 11D spinor he-

licity formalism [26]. In section 3, after reviewing the scattering equation [35] (section 3.1),

we revisit the 11D polarized scattering equation of [28] with the use of the spinor frame

version of the spinor helicity formalism [25–27]. We show there how the polarized scattering

equation appears as consistency condition of the constraints for the meromorphic spinor

function and scattering equation for the meromorphic vector function involved in these

constraints. In section 4 we reconsider the supersymmetry generator and supersymmetric

amplitude proposed in [28] from the perspective of spinor frame approach. In section 5

we turn to the ambitwistor superstring origin of the polarized scattering equation. We be-

gin there by briefly reviewing the standard Green-Schwarz/Brink-Schwarz like formulation

of the ambitwistor superstring and its reformulation in term of constrained supertwistor

(µ
α
q , λαq, ηq). We show that the fact that 11D ambitwistor superstring of [45] can be for-

mulated as a dynamical system in an enlarged superspace can be used to relax the second

class constraints restricting µ
α
q . Then, applying the Lagrange multiplier method we can in-

troduce the first class constraints generating SO(16) gauge symmetry into the supertwistor

form of the ambitwistor superstring action and consider the supertwistor component µ
α
q as

unconstrained variable. The variation of this first order action with respect to µ
α
q (σ) be-

comes straightforward and is used to obtain the dynamical equation for highly constrained

bosonic fields, the spinor functions λαq(σ). The solution of these equations provides us

with the SO(16) gauge covariant generalization of the meromorphic spinor functions used

as an ansatz for the solution of the polarized scattering equation in [28].

In section 6 we find the fermionic superpartner of the polarized scattering equation

which is a differential equation imposed on superamplitudes. Finally, in section 7 we

describe briefly the D=10 spinor helicity formalism, polarized scattering equation and

ambitwistor superstring origin of this, especially stressing the points where the 10D case

differs from 11D one. We conclude in section 8. Some useful equations of the spinor frame

formalism can be found in the appendices.

2The authors of [28] proposed a modification of the twistor form of the ambitwistor superstring action

of [45] by reducing this SO(16) to SO(13) gauge symmetry.
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Our notation are that of [25, 27] and [26], up to the use of underlined Greek symbols

from the beginning/middle of the alphabet for the 11D Majorana spinors/vectors and

underlined Latin symbols for the SO(9) vector (I, J, . . .) and spinor indices (q, p, . . .). In

some places q, p, . . . are also considered to be SO(16) vector indices, which is related to the

hidden SO(16) symmetry of 11D superparticle (see [52] and refs. therein).

2 Spinor frame approach to the 11D spinor helicity formalism

2.1 Scattering data in D=11

Light-like momentum kµi of a massless particle (consider it to be i-th particle of a scattering

process),

kµik
µ

i = 0 , (2.1)

is expressed in terms of helicity spinors by

kµiδqp = λαqiΓ̃
αβ
µ λβpi , Γ

µ

αβkµi = 2λαqiλβqi . (2.2)

Here

µ, ν = 0, 1, . . . , 10 , α, β = 1, . . . , 32 , q, p = 1, . . . , 16

and we have used the contractions of the 11D Dirac matrices with charge conjugation

matrix and its inverse, Γµαβ := γµα
γCγβ and Γ̃µ

αβ := Cαγγµγ
β , which are real, symmetric

and obey

ΓµΓ̃ν + Γν Γ̃µ = ηµνI32×32 . (2.3)

Eqs. (2.2) also describe the essential constraints obeyed by the helicity spinors λαq

(denoted by κaα in [28]) which can be solved by expressing them in terms of spinor frame

variables (spinor harmonics)3

V
(β)
α =

(

v +
αq, v

−
αq

)

∈ Spin(1, 10) (2.4)

by [25]

λαqi =

√

ρ#i v
−
αqi . (2.5)

To clarify this statement, we have to introduce a vector frame described by SO↑(1, 10)

valued matrix

u(a)µ =

(
1

2

(

u=µ + u#µ

)

, uIµ ,
1

2

(

u#µ − u=µ

))

∈ SO↑(1, 10) , (2.6)

3See [27, 52] and refs. therein for details on 11D spinor frame variables; some useful equations can

be found in appendix A of the present paper. The 11D Lorentz harmonics (which is another name for

spinor moving frame variables giving credit to the N = 2, 3 harmonic superspace approach of [53]) which

are appropriate for the description of 11D massless superparticle were introduced for the first time in [54];

the 11D harmonics appropriate for the description of 11D supermembrane were introduced and used a bit

earlier in [55, 56].
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and to adapt it to our light-like momentum kµi by assuming that one of its light-like

vectors, say u=µi = u0µi − u10µi , is proportional to kµi (see [27, 52] and refs. therein, in

particular [57, 58])

kµi = ρ#i u
=
µi . (2.7)

The spinor frame variables v−αqi can be considered as a kind of square root of the

light-like frame vector u=µ in the sense that the following constraints hold

u=µΓ
µ

αβ = 2vαq
−vβq

− , v−αqΓ̃µ
αβv−βp = u=µ δqp. (2.8)

This implies (2.2) after (2.7) and (2.5) are taken into account. See appendix A (particu-

larly eqs. (A.1)–(A.3)) for the complete set of relations between vector and spinor frame

variables, (2.6) and (2.4). The possibility of using these and some other well known prop-

erties of spinorial harmonics makes the understanding of spinor frame nature of the helicity

spinors very useful for the work of [25–27] as well as for our study in this paper.

Of course, eq. (2.5) describes the real Majorana helicity spinors for the case of mo-

mentum with positive energy, k0 > 0, in which case also ρ#i > 0 and

√

ρ#i is well defined.

When describing the scattering processes one usually arranges to consider all the particles

as, say outcoming, and assign a momentum with negative energy to incoming particles.

Then, if j-th particle is incoming, ρ#j < 0 and one can write λαqj =
√

|ρ#j |v
−
αqj for real λαqj

and introduce the minus sign in the right hand sides of eqs. (2.2). Alternatively, one can

maintain these equations and (2.5) as they are also for incoming particles with ρ#j < 0, so

that
√

ρ#j = i
√

ρ#j and λαqj are just imaginary. We prefer this latter way of proceeding.

The helicity spinors (2.5) also carry the information about polarizations of the particles,

but to make it transparent we need to supply their space by an additional complex structure

(see [26] for the discussion). This can be encoded in the complex polarization vector.

Polarization 11-vector Uµi of i-th particle (denoted by eµ in [28]) obeys

kµiU
µ

i = 0 , UµiU
µ

i = 0 (2.9)

and can be decomposed (see [26]) on the spacelike vectors of the moving frame (2.6) asso-

ciated to the momentum by (2.7):

Uµi = u
I
µiU

I
i , U

I
i U

I
i = 0 . (2.10)

Using the constraint obeyed by vector and spinor frame variables (see [26, 27] and refs

therein as well as (A.1)–(A.3) in appendix A) we find that

/Uαβ := UµΓ
µ

αβ = 2v−(α|qγ
I
qpv

+
|β)pU

I
i . (2.11)

As it was discussed in [26], the (complex null) polarization nine-vector U I in (2.10)

can be related by

/U qpi := U
I
i γ

I
qp = 2w̄qAiw̄pAi (2.12)

to the complex 16× 8 matrices obeying ‘purity conditions’ (in terminology of [28])

w̄qAw̄qB = 0 , A,B = 1, . . . , 8 (2.13)

– 5 –
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(for shortness, here and below we omit the index i enumerated scattering particles when

this cannot lead to a confusion).

Actually, w̄qA are internal frame variables [26] or SO(9)/SO(7) × SO(2) harmonics

(in the sense of [53], see [26] and refs therein). This is to say they are 8 complex linear

combinations of columns of an SO(9) valued matrix, schematically

(w̄qA, wq
A) ∈ SO(9) (2.14)

with wq
A = (w̄qA)

∗, defined up to SO(7)×SO(2) gauge transformations. Eq. (2.14) implies

that w̄qA and wq
A obey

wq
Aw̄pA + w̄qAwp

A = δqp , (2.15)

w̄qBwq
A = δB

A , wq
Awq

B = 0 , w̄qAw̄qB = 0 (2.16)

(the set of which includes (2.13)) as well as (2.12) and a few similar relations with other

vectors of SO(9) vector frame which can be found in [26] and in appendix A.2.4

2.2 Complex spinor frame variables and complex helicity spinors

As in [26], it will be convenient to introduce the set of complex spinor harmonics (complex

spinor frame variables) composed of the real spinor frame variables (2.4) and internal

harmonics (2.14) according to

v−αA := v−αqw̄qA , v̄−A
α := v−αqw

A
q , v+αA := v+αqw̄qA , v̄+A

α := v+αqw
A
q . (2.17)

By construction,

v−αAv
−α
B = 0 , v−αAv̄

−αB = 0 , v+αAv
−α
B = 0 , v+αAv̄

−αB = δA
B , . . . . (2.18)

With this notation, eqs. (2.11), (2.12) imply

/Uαβ := UµΓ
µ

αβ = 4v−(α|Av
+
|β)A . (2.19)

Below we find convenient to use the SO(1, 1) invariant complex helicity spinors

λαA =
√

ρ#v−αA , λ̄ A
α =

√

ρ#v̄−A
α (2.20)

instead of v−αA and v̄
−A
α so that the second equation in (2.2) can be written in an equivalent

form

/̃k
αβ

= 4ρ#v
−(α
A v̄−β)A = 4λ

(α
A λ̄β)A ⇔ /kαβ = 4ρ#v̄

−A

(α v −
β)A = 4λ̄

A

(αλβ)A . (2.21)

However, we do not find practical to introduce also SO(1, 1) invariant counterparts of the

complementary spinors v+αA and v̄
+A
α from the spinor frame. Of course, if we wish to

4In 10D case the counterparts of eqs. (2.15) and (2.16) with q 7→ q = 1, . . . , 8 and A 7→ A = 1, . . . , 4

guarantee that the matrix (w̄qA, wq
A) ∈ SO(8). In our 11D case eqs. (2.15) and (2.16) imply

only (w̄qA, wq
A) ∈ SO(16) while the reduction to SO(9) is achieved by imposing additional rela-

tions (A.10), (A.11) and (A.12).

– 6 –
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present e.g. eq. (2.19) literally but in terms of the helicity spinors, we obtain not so elegant

/Uαβ = 4λ(α|Av
+
|β)A/

√

ρ#. However, instead we can write the following equivalent set of

relations involving /Uαβ and the constrained spinors (2.20) only:

/̃U
αβ

i λβAi = 0 , /̃U
αβ

i λ̄βi
A = −2λAi

α . (2.22)

Using (2.18) it is not difficult to check that

/̃k
αβ

i λβAi = 0 , /̃k
αβ

i λ̄
A
βi = 0 . (2.23)

The first equations in (2.22) and (2.23) together with simple counting arguments imply

that λαAi (or v
−
αAi) provide a basis for the common kernel space of /kαβi and /Uαβi

5

/̃k
αβ

i χβi = 0 = /̃U
αβ

i χβi ⇒ χβi = χAλβAi ≡ χ+Av−βAi . (2.24)

Then the second equations in (2.23) and (2.22) indicate that the set of constrained

spinors λ̄
A
αi complete λαAi till the basis of the space of solutions of the massless Dirac

equation, while the matrix /̃U
αβ

maps these into λαAi,

/̃k
αβ

i λβi
A = 0 , /Uαβiλ̄

βA
i = −2λαAi . (2.25)

This allows us to state that λ
A
αi provide the basis of the complementary to the space of

common zero modes of /kαβi and /Uαβi in the space of the solutions of 11D massless Dirac

equation.

With eqs. (2.18) we also find

λαAλB
α = 0 , (2.26)

λαAλA
β := ρ#v−αAv

−β

A = −
1

4
kµUνΓ

µν
α
β (2.27)

and

λAΓµνλB = ρ#v−AΓµνv
−
B = +k[µUν]δAB . (2.28)

One can recognize in (2.27) and (2.28) the relations from (2.5) of [28]. Our spinor frame

approach is very efficient in derivation of such type relations.

Notice that the indices of, say, λαAi and v−αAi are transformed by the rigid Spin(1, 10)

group, common for all values of i, and by Spin(7)i transformations, specific for each of the

scattered particles. The internal harmonics w̄qAi are transformed by Spin(9)i ⊗ Spin(7)i,

where Spin(9)i is also specific for i-th particle.

5The elements of this basis, λαAi, were denoted by ǫaa = κaαǫαa in [28] where ǫαa is the notation for

w̄qA.
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3 Polarized scattering equation of 11D supergravity

3.1 Scattering equations

Scattering equations [35–38] establishing the relation between scattered particles and points

σi on Riemann sphere read
n∑

j=1

kµi kjµ
σi − σj

= 0 . (3.1)

In this subsection we omit underlining of 11D indices to stress that the equations are valued

for arbitrary D.

As in [28] (see also refs. therein) we can introduce the meromorphic D-vector function

Pµ(σ) =
∑

i

kiµ
σ − σi

(3.2)

and to write the scattering equation (3.1) in the form

kµi Pµ(σi) =
∑

j 6=i

kµi kjµ
σi − σj

= 0 . (3.3)

Notice that, while Pµ(σi) diverges, its contraction with kµi is well defined (if no one of σj 6=i

coincide with σi, as usually assumed) due to the mass-shell conditions (2.1).

One can also write the scattering equation (3.1) as equation on the meromorphic vector

function (3.2) only:

Resσ=σi

1

2
P 2(σ) = 0 . (3.4)

This equation actually implies (see e.g. [28] and refs. therein) the light-likeness of the

meromorphic D-vector function (3.2),

Pµ(σ)Pµ(σ) = 0 (3.5)

for any σ. Thus we consider (3.5) with (3.2) as the third equivalent form of the scattering

equation.

The constraint (3.5) can be generated from the so-called ambitwistor string action [42]

and eq. (3.2) can be obtained from the deformation of this action obtained by incorporating

the contribution of the suitable vertex operators to the path integral measure. Below we will

describe 11D supersymmetric generalization of the ambitwistor superstring action proposed

in [45] (see [59, 60] for earlier discussion in the context of twistor string). In [28] a modified

version of this action is discussed; this paper gives the arguments in favour of the original

action.

3.2 Constrained spinor function on Riemann sphere

Eq. (3.5) suggests the existence of a meromorphic function carrying 11D spinor index which

plays the role of square root of the above meromorphic vector function in the same sence

as helicity spinors can be associated with square roots of the light-like momentum, (2.2),

Pµ(σ)δqp = λq(σ)Γ̃µλp(σ) , 2λαq(σ)λβq(σ) = Γ
µ

αβPµ(σ) . (3.6)

– 8 –
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Furthermore, then it is convenient to introduce a spinor frame field v−αq(σ) [45] and a

(purely gauge or Stückelberg) density ρ#(σ) and to use this to write the general solution

of the constraints (3.6) in the form

λαq(σ) =
√

ρ#(σ)v−αp(σ)Spq(σ) , SprSqr = δpq . (3.7)

Indeed, substituting (3.7) into (3.6) we find

Pµ(σ)δqp = ρ#(σ)v−q (σ)Γ̃µv
−
p (σ) , 2ρ#(σ)v−αq(σ)v

−
βq(σ) = Γ

µ

αβPµ(σ) . (3.8)

which describe the essential constraints on the spinor frame functions and their relation

with the meromorphic vector function,

Pµ(σ) = ρ#(σ)u=µ (σ) . (3.9)

Notice that the algebraic relations between spinor functions, spinor frame fields and the

meromorphic vector function obeying (3.5) are the same as (2.2), (2.7), (2.8) relating the

helicity spinors, spinor frame variables and light-like momentum of i-th scattered particle.

This is why we use essentially the same symbols in both cases (distinguishing them by

indicating explicitly the dependence on σ in the case of functions and putting the index i

in the case of variables corresponding to i-th scattered particle).

The presence of SO(16) valued matrix field S(σ) ∈ SO(16) (SST = I) in (3.7) reflects

the invariance of (3.6) under the SO(16) gauge transformations. One might wonder why

we have not introduced such a matrix in the relation (2.5) between polarization spinors

corresponding to i-th of scattering particles and the i-th spinor frame. The reason is that

the helicity spinors should also carry the information about particle polarizations. This

is encoded in the polarization vector which is represented by complex SO(9) vector with

vanishing square. Its relation with the complex helicity spinors described by eq. (2.19)

requires the identification of the 16 component index q of the real helicity spinor as SO(9)

spinor index thus breaking SO(16) symmetry of eqs. (2.2) down to SO(9) and prohibiting

the inclusion of SO(16) matrix in the common solution (2.5) of (2.2) and (2.19). In contrast,

the spinorial functions should obey, at present stage, only the constraints (3.6) which are

invariant under SO(16) gauge symmetry, so that its general solution is given by (3.7).

The meromorphic spinor function λαq(σ) which would correspond to the vector mero-

morphic function of eq. (3.2) in the sense of eqs. (3.6) should have the structure similar

to (3.2), but with the use of helicity spinors (or spinor frame variables) related to light-

like momenta by (2.21) instead of the momenta itself. The expression of such a type was

proposed in [28]. However, the moving frame treatment of the 11D helicity spinors makes

manifest that this was the gauge fixing description.

The complete gauge covariant form of such relation reads

λαq(σ) =
n∑

i=1

√

ρ#i

v −
αAiW

A
qi (σ)

σ − σi
=

n∑

i=1

λαAiW
A
qi (σ)

σ − σi
, (3.10)
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where the function W
A
qi (σ) has no poles and obeys the ‘purity’ conditions

W
A
qi (σ)W

B
qi (σ) = 0 . (3.11)

This is necessary to obey the constraints (3.6) with meromorphic 11-vector (3.2). Indeed,

taking into account (3.10), (3.2) and (2.21), we can write eq. (3.6) in the form

∑

i

λαAi

σ − σi

∑

j

λβBj

σ − σj
W

B
qj (σ)W

A
qi (σ) =

∑

i

2λ(α|Ai
λ
A

|β)i

σ − σi
. (3.12)

When all σi’s are different, the r.h.s. of this equation has first order poles at σ = σi with

residues 2λ(α|Aiλ
A

|β)i = 2ρ#i v
−

(α|Ai
v
A−
|β)i ≡ ρ#i v

−
αqiv

−
βqi. In contrast, the l.h.s. generically has

second order poles. These vanish if we requireW
A
qi (σ) to obey the ‘purity’ conditions (3.11).

Notice that the r.h.s. of eq. (3.10) is clearly complex, as meromorphic function should

be, so that our spinor functions λαq(σ) are not real. Such a complexification is characteristic

for the ambitwistor string and CHY scattering equation approaches, as well as e.g. for the

pure spinor description of quantum 10D superstrings [69–72]. Already the form of the

vector function (3.2) indicates that it is complex and hance complex are its square roots in

the sense of eqs. (3.6) and (3.8). Thus also the spinor moving frame field v −
αqi(σ), moving

frame field u=µ (σ) and density ρ#(σ) in (3.7), (3.8) and (3.9) are complexification of the

functions used e.g. in [52] and [59]. The matrix S in (3.7) should be also considered as

complex so that, strictly speaking, it takes values in SO(16,C). As far as the counting

of degrees of freedom is concerned, the usual strategy in the models with complexified

variables is to substitute reality by analyticity, i.e. to allow for the dependence on, say,

complex λαq(σ) but not on its complex conjugate.

3.3 Preliminaries on SO(16) gauge symmetry, its naturalness and Stückelberg

realization

The appearance of the matrix functions W
A
qi (σ) and not just constant matrix in the r.h.s.

of (3.10) is necessary to make equations gauge invariant. To motivate the requirement

of gauge invariance we can turn to the ambitwistor superstring origin of the spinorial

function λαq(σ) providing the square root of the meromorphic vector function (3.2) in the

sense of (3.6).

Even in the case if the relations of constrained spinor functions λαq(σ) with spinor

frame field in (3.7) were not including the SO(16) matrix field and were just λαq(σ) =
√

ρ#(σ)v−αq(σ) (the counterpart of this situation we will observe in 10D case), the r.h.s.

of (3.10) should include the matrix field anyway. This is because the spinor frame field

v−αq(σ) suitable for the description of 11D ambitwistor string (and tensionless superstring) is

defined up to SO(9) gauge symmetry transformations with σ-dependent parameters which

should act also on W
A
qi (σ) to leave eq. (3.10) gauge invariant.

In D=11 the relation of the spinor function and spinor frame functions (3.7) includes

SO(16) valued matrix S ∈ SO(16), so that the reference on defining gauge symmetry of the

spinor moving frame field is not valid and the arguments should be different. A way which is
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more straightforward, although probably not so convincing by itself, consists in just stating

that the matrix field S(σ) should not carry additional degrees of freedom which can be

provided by imposing the requirement of SO(16) gauge symmetry acting on λαq(σ) as

λαq(σ) 7→ λαp(σ)Opq(σ) with O(σ)OT (σ) = I (3.13)

and leaving invariant (3.7). The real argument in favour of this requirement is that, as we

will see below, SO(16) is also a gauge symmetry of the 11D ambitwistor superstring action

in its supertwistor form.

To leave invariant eq. (3.10), this gauge symmetry should also act on the matrix

function W
A
qi (σ),

W
A
qi (σ) 7→ W

A
pi (σ)Opq(σ) . (3.14)

Thus the requirement of SO(16) gauge covariance do not allow us to write a constant matrix

W
A
qi in the r.h.s. of eq. (3.10), as it was written in its counterpart presented in [28]. On the

other hand, as we are going to show, after imposing on W
A
qi (σ) some additional conditions,

one can fix a gauge with respect to the SO(16) gauge symmetry in which W
A
qi (σ) for a

given i coincides with some W
A
qi . This implies

W
A
qi (σ) = W

A
pi Õipq(σ) . (3.15)

Furthermore, in section 5.2 we will derive eq. (3.10) from 11D ambitwistor superstring

model and show that the stronger version of eq. (3.15), which includes the same SO(16)

valued matrix field Õipq(σ) = Õpq(σ) for all values of i, holds:

W
A
qi (σ) = W

A
pi Õpq(σ) . (3.16)

This makes manifest the existence of the gauge in which the expression similar to the one

proposed in [28] appears.6

On the other hand, (3.16) implies that this SO(16) is realized as a Stückelberg gauge

symmetry. The reason for this will be clarified below. What happens is that, while the

SO(16) is a true gauge symmetry of the ambitwistor superstring action, which is originally

hidden but can be made manifest in its supertwistor formulation, it is broken by the vertex

operators of physical states. To preserve it in the ambitwistor superstring action deformed

by a term accounting for the contribution of the vertex operator to the path integral,

SO(16) valued Stückelberg field, Õpq(σ) ∈ SO(16) in (3.16), must be introduced.

3.4 Polarized scattering equation

Now let us observe that the residues of the poles of l.h.s. and r.h.s. of eq. (3.12) coincide

if the spinor frames and polarization data associated to the scattered particles are related

6A derivation of the gauge fixed expression was discussed schematically in [28], but a number of issues

were obscure in this discussion. Here we will present a clean derivation which requires, in particular, the

use of an embedding of the 11D ambitwistor superstring model into an enlarged superspace.
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by the condition

∑

j

√

ρ#j

v−αBjW
B
qjW

A
qi

σi − σj
=

√

ρ#i v̄
−A
αi (3.17)

or
∑

j

λαBjW
B
qjW

A
qi

σi − σj
= λ̄αi

A . (3.18)

Using (3.10) we can write this equation in a bit more compact equivalent form

λαq(σi)W
A
qi (σi) =

√

ρ#i v̄
−A
αi = λ̄αi

A . (3.19)

This relation basically coincides with the one first introduced in [28] and called there 11D

polarized scattering equation. Our study revealed the moving frame nature of both the

constrained spinors and constrained spinor functions involved in it. Furthermore, the dif-

ference with [28] is that the l.h.s. of our version of the polarized scattering equation includes

a value of a(n analytic) matrix function (3.16) at σ = σi, W
A
qi (σi) = Wpi

A Õpq(σi), rather

than just a constant matrix Wqi
A. The reason for this is that in such a way we make the

polarized scattering equation invariant under the SO(16) gauge symmetry characteristic,

as we will see below, for ambitwistor superstring. Furthermore, just our SO(16) covariant

version of the expression for the meromorphic spinor function (3.10) can be obtained natu-

rally from the ambitwistor superstring action deformed by an appropriate vertex operator

contribution.

Eq. (3.18) also can (or rather must) be called polarized scattering equation. This

is a ‘polarized’ counterpart of the scattering equation (3.1) while (3.19) is a polarized

counterpart of the scattering equation in its form of eq. (3.3).

When obtaining (3.19) from (3.18) we have used the fact that, as a consequence

of (3.16),

W
B
qj (σ)W

A
qi (σ) = W

B
qj (σi)W

A
qi (σi) = W

B
qjW

A
qi . (3.20)

Thus the presence of constant matrices W
A
qi in (3.18) does not contradict the statement of

SO(16) gauge invariance of the polarized scattering equation (3.19).

It is not difficult to observe that j = i contribution to the l.h.s. of eq. (3.18), which

might produce a singularity, vanishes due to the ‘purity’ conditions (3.11), so that an

equivalent form of that equation is

∑

j 6=i

λαBjW
B
qjW

A
qi

σi − σj
= λ̄αi

A . (3.21)

The polarized scattering equation is expected to be a condition on the scattering data:

momenta and polarizations of the scattered particle. Then WA
qi entering (3.21) should

describe the data related to i-th of the scattered particle. This suggests to identify it with

the internal frame matrix variable wA
qi (2.14)

WA
qi = wA

pi . (3.22)
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We however, restrain ourselves from fixing this identification rigidly at this stage of devel-

opment of the formalism and, keeping in mind (3.22), keep below a separate notation WA
qi

for the matrix entering the scattering equation.

Resuming, the polarized scattering equation (3.18) guarantees that λαq(σ) of (3.10)

obeys Resσ=σi
2λαq(σ)λβq(σ) = 4ρ#i v

−
αAiv

−A
βi = 2ρ#i v

−
αqiv

−
βqi = /ki αβ and thus that eq. (3.6)

with (3.2) is satisfied. This is to say, the scattering equation (3.18) follows from eqs. (3.6)

with (3.2) and (3.10), (3.16).

Notice that while the scattering equation (3.1) is homogeneous, the polarized scattering

equation (3.19) is not. As it is seen from its equivalent form (3.21), the scattering equation

provides a decomposition of i− th helicity spinors λ̄αi
A (or complex spinor frame variables

v̄
−A
αi ), which provide the basis of the complementary to the space of common zero modes

of /ki and /U i in the space of solutions of the massless Dirac equation, on the set of the

variables λαBj (or v −
αBj) providing the basis of the spaces of common eigenfunctions of /kj

and /U j with j 6= i.

4 Supersymmetry generator and supersymmetric invariant amplitudes

The supersymmetry generator can be realized as a differential operator in superspace with

11D Majorana spinor fermionic coordinate θα as well as in the real analytic superspace

with 16 component Majorana spinor

θ−q = θαv −
αq

(see [25, 27] and refs. therein). To this end the introduction of spinor frame variables

v −
αq (2.4) is necessary. Furthermore, introducing also the internal frame variables (2.14)

parametrizing the coset SO(9)/(SO(7)×SO(2)), one can construct a complex 8-component

fermionic coordinates

η−A = θ−q w̄qA

(see [26]) and realize the supersymmetry generator as

Qα = 4ρ#v−A
α η−A + v −

αA

∂

∂η−A
=: v −

αqQ
+
q . (4.1)

We refer to [26] and refs. therein for more details.

It is not difficult to check that (4.1) obeys the superalgebra

{Qα, Qβ} = 8ρ#v̄
−A

(α v −
β)A = 4ρ#v −

αqv
−
βq = 2ρ#u=µΓ

µ

αβ

= 2kµΓ
µ

αβ . (4.2)

This is the standard 11D supersymmetry algebra with the translation generator realized

as 11D light-like momentum (2.7). Such a representation of the supersymmetry algebra

was used in [28] so that our discussion here just clarifies the meaning of the bosonic and

fermionic variables used there and their relation with the ones used in [25–27].
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For the scattering problem the complete supersymmetry generator is given by the

sum of ‘partial’ supersymmetry generators acting on the fermionic variables associated to

different particles

Qα =
∑

i

Qαi =
∑

i

(

4ρ#i v̄
−A
αi η−Ai + v −

αAi

∂

∂η−Ai

)

. (4.3)

It is nilpotent: {Qα, Qβ} = 0 due to the momentum conservation.

Below we find convenient to use also the SO(1, 1) invariant fermionic variables

ηAi :=

√

ρ#i η
−
Ai (4.4)

which is the supersymmetry partner of the complex helicity spinor λαAi =

√

ρ#i v
−
αAi (2.20),

δǫηAi = ǫαλαAi . (4.5)

In terms of these and the helicity spinor variables the supersymmetry generator has the

form of

Qα =
∑

i

Qαi =
∑

i

(

4λ̄
A

αi ηAi + λαAi
∂

∂ηAi

)

. (4.6)

The supersymmetric invariant eF found in [28]

Qαe
F = 0 (4.7)

is the exponent of

F = 2
∑

i

∑

j

√

ρ#j ρ
#
i

W
A
qjW

B
qi

σj − σi
η−Ajη

−
Bi

= 2
∑

i

∑

j

W
A
qjW

B
qi

σj − σi
ηAjηBi . (4.8)

The proof of the supersymmetric invariance of eF (4.7) passes through (cf. [28],

see (4.6))

∑

i

λαAi
∂

∂ηAi
F = 4

∑

i

∑

j

W
A
qjλαAj

σj − σi
W

B
qi ηBi =

= 4
∑

i

∑

j

W
A
qj(σi)λαAj

σj − σi
W

B
qi (σi)ηBi =

= −4
∑

i

λαq(σi)W
B
qi (σi)ηBi =

= −4
∑

i

λ
B
αiηBi . (4.9)
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Here the derivation of the first equality is straightforward, to pass to the second line we

have used (3.20) (which is equivalent to (3.16)), to arrive at the third line we have used the

expression (3.10) for the meromorphic spinor function and the fourth line is derived with

the use of the polarized scattering equation (3.19).

The factor eF determines the fermionic contribution to the superamplitude or S-matrix

element. In [28] it was proposed that this is given essentially by CHY expression [35] but

with the factor eF included into the integrand,

An =

∫
1

vol(SL(2,C))

n∏

i=1

dσi

n∏

i=1

′ δ(ki · P (σi)) det
′
M eF . (4.10)

In this expression ki · P (σi) = ki
µPµ(σi),

n∏

i=1

′ δ(ki · P (σi)) = σjkσklσlj

n∏

i=1,i 6=j,k,l

δ(ki · P (σi)) (4.11)

is independent on choice of j, k, l, σij = σi − σj , M is 2n× 2n CHY matrix

M =






ki·kj
σij

Ui·kj
σij

− Ui · P (σi)δij

−
Uj ·ki
σji

+ Uj · P (σj)δij
Ui·Uj

σij




 , (4.12)

and

det ′M =
4

σ2
ij

detMij
ij , (4.13)

where detMij
ij is the determinant of 2(n − 1) × 2(n − 1) matrix M

ij
ij obtained from (4.12)

by removing rows i, j and columns i, j. Again, this latter is independent on choice of i and

j [35].

5 Polarized scattering equation and spinor moving frame formulation of

ambitwistor superstring in D=11

The Green-Schwarz (or Brink-Schwarz) formulation of the ambitwistor superstring action

is reached by considering the Brink-Schwarz superparticle Lagrangian, allowing in it all the

fields to be dependent on two worldsheet coordinates, replacing the proper time derivatives

d/dτ with holomorphic partial derivatives ∂̄, and integrating it over the two dimensional

worldsheet [45]. In such a way we arrive at

S =

∫

W2

d2σ
(

Pµ

(
∂̄Xµ − i∂̄θΓµθ

)
−

e

2
P 2

)

, (5.1)

where Pµ(σ) is a vector density playing the role of the momentum conjugate to the bosonic

coordinate function Xµ(σ), θα(σ) are fermionic 32-component Majorana spinor coordi-

nate function, ∂̄θΓµθ = ∂̄θαΓ
µ

αβθ
β , and e(σ) is a Lagrange multiplier producing the con-

straint (3.5). Solving this constraint with the use of spinor frame fields related to Pµ(σ)
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by (3.8), or (3.6) and (3.7), we arrive at the action of the spinor moving frame formulation

of the 11D ambitwistor string [45].

This action can be written in an equivalent form [45]

S =

∫

W2

d2σλαq(σ)λβq(σ)
(

∂̄Xαβ(σ)− i∂̄θ(α θβ)(σ)
)

≡

∫

W2

d2σρ#(σ)v −
αq(σ)v

−
βq(σ)

(

∂̄Xαβ − i∂̄θ(α θβ)
)

(5.2)

with an arbitrary symmetric spin tensor bosonic coordinate functions

Xαβ(σ) = Xβα(σ) ≡
1

32
Γ̃µ

αβXµ(σ)−
1

64
iZµν(σ)Γ̃µν

αβ +
1

32 · 5!
Zµ

1
...µ

5(σ)Γ̃µ
1
...µ

5

αβ

.

(5.3)

The properties of the spinor frame variables/helicity spinors concentrated in (3.8)/(3.6)

guarantee that the arbitrary variation of the Zµν(σ) and Zµ
1
...µ

5(σ) do not change the

action (see [61] for the discussion in the context of massless superparticle model). This

is the statement of gauge symmetry which can be fixed just by setting Zµν(σ) = 0 and

Zµ
1
...µ

5(σ) = 0 thus reducing (5.3) to

Xαβ(σ) =
1

32
Γ̃
αβ
µ Xµ(σ) . (5.4)

Just this gauge fixed form of the action (5.2), with (5.4), is related to (5.1) by the procedure

described above. However, as we will see in a moment, it is sometimes convenient to treat

the ambitwistor superstring as a dynamical system in the enlarged superspace Σ(528|32)

with 528 bosonic coordinates (Xµ, Zµν , Zµ
1
...µ

5) and 32 fermionic coordinates θα.

5.1 Supertwistor formulation of the 11D ambitwistor superstring

The action (5.2) can be written as

S =

∫

W2

d2σ
(

λαq ∂̄µ
α
q − ∂̄λαq µ

α
q − i∂̄ηq ηq

)

, (5.5)

where

λαq(σ) =
√

ρ#(σ)v −
αp(σ)Spq(σ) , (5.6)

(see (3.7)) and

µα
q (σ) := Xαβ(σ)λβq(σ)−

i

2
θα(σ) θβ(σ)λβq(σ) , (5.7)

ηq(σ) := θβ(σ)λβq(σ) . (5.8)

These are the 11D generalizations of the four dimensional Penrose incidence relations. They

are imposed on the set of 16 constrained 11D supertwistors

ZΛq =
(

λαq , µ
α
q , ηq

)

(see [61] and refs. therein for more discussion on these).
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Eqs. (5.8) and (5.7) with (5.3) describe the general solution of 120 constraints

Jpq := 2λα[pµq]
α + iηpηq = 0 (5.9)

which can be identified with generator of SO(16) gauge symmetry in the Hamiltonian

formalism.

The rigid supersymmetry living invariant the action (5.2)

δǫX
αβ = iθ(αǫβ) , δǫθ

α = ǫα , (5.10)

is realized on our constrained supertwistor by

δǫλαq = 0 , δǫµq
α = −iǫαηq , δǫηq = ǫαλαq . (5.11)

Eq. (5.7) with (5.4) provides, together with (5.8), the general solution of a bigger set

of constraints including, besides (5.9), the set of 135 constraints

Kpq = Kqp := λα(p µ
α

q) −
1

16
δpq λαp′ µ

α
p′ = 0 . (5.12)

From the perspective of the system in enlarged superspace Σ(528|32), these are gauge fixing

conditions for a gauge symmetry which will be described below.

Thus, keeping in mind the generic form of spin-tensorial coordinate (5.3) in (5.7) we

can describe the 11D ambitwistor superstring by the action (5.5) with variables restricted

by the constraints (5.9) and (3.6).7

Furthermore, we can introduce the constraint (5.9) with Lagrange multiplier into the

action,

S =

∫

W2

d2σ
(

λαq ∂̄µ
α
q − ∂̄λαq µ

α
q − i∂̄ηq ηq

)

+

∫

W2

d2σĀpq
(

2λα[pµ
α

q] + iη[pηq]

)

(5.13)

and consider the variables µ
α
q as unconstrained. It is important that the action (5.13) is

invariant under SO(16) gauge symmetry (3.13) provided

µα
q (σ) 7→ µα

p (σ)Opq(σ) (5.14)

and the Lagrange multiplier Āpq = Ā[pq] is transformed as a gauge field under this symme-

try,

Āpq 7→
(
O−1∂̄O +O−1ĀO

)pq
. (5.15)

The action (5.5) is also invariant under the following gauge symmetry transformations

δµα
q = −

1

64
iδZν1ν2(σ)Γ̃

αβ
ν1ν2

λβq +
1

32 · 5!
δZν1...ν5(σ)Γ̃ν1...ν5

αβ

λβq (5.16)

7Here we mean that the light-like vector Pµ(σ) is defined by eqs. (3.6) themselves. Alternatively one

can state that λαq(σ) is restricted by the (reducible) set of the constraints

λpΓ
µν

λp = 0 , λpΓ
µνρσκ

λp = 0 , λqΓ
µ
λp =

1

16
δqp λrΓ

µν
λr .
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with arbitrary δZµν(σ) and δZν1...ν5(σ). This symmetry allows for the gauge fixing condi-

tions reducing the general solution (5.7) of the constraints to

µα
q :=

1

32
Xν Γ̃

αβ
ν λβq −

i

2
θα θβλβq . (5.17)

This gauge is not preserved by supersymmetry transformations (5.10) along so that to

reach the simple transformation of supertwistor (5.11) and to preserve the gauge (5.17)

one needs to supplement (5.10) by the gauge transformations of the supertwistor (5.16).

Of course, the fields λαq(σ) are constrained by algebraic relation which follows from

their expression in terms of spinor moving frame variables (5.6) (these are actually collected

in (3.6), see footnote 7). However, the fact that µ
α
q (σ) in the action (5.13) can be treated

as unconsrained will be very useful in our discussion below.

5.2 11D ambitwistor superstring and polarized scattering equation

In the spinor frame formalism the SO(16) gauge invariant generalization of the vertex

operator proposed in [28] reads

V =

∫

d2σiδ(ki ·P (σi))Wexp

(

2iµα
q (σi)

√

ρ#i v
−
αAiW

A
qi (σi)+

√

ρ#(σi)θ
−
q (σi)

√

ρ#i η
−
AiW

A
qi (σi)

)

=:

∫

d2σiδ(ki ·P (σi))Wexp
(

2iµα
q (σi)λαAiW

A
qi (σi)+2ηq(σi)ηAiW

A
qi (σi)

)

(5.18)

where W denotes a possible additional worldsheet operator depending on polarization data

the explicit form of which will not be essential for our discussion (see [28] for further

references describing its explicit form). Besides this, the vertex operator (5.18) is expressed

in terms of fermionic and spinorial bosonic functions describing the ambitwistor string,

ηq(σ) and µ
α
q (σ), λαq(σ) (the latter entering δ(ki · P (σi)) where Pµ(σ) is assumed to be

taken from (3.6)), and the scattering data of i-th particle. These latter are described by

λαAi, which defines ki through (2.21) and polarization vector through (2.22), fermionic

ηAi =

√

ρ#i η
−
Ai and bosonic matrix function WA

qi (σ).

Despite of the entrance of this latter into the set of scattering data, we consider it as

a function of σi to do not break explicitly the local SO(16) symmetry characteristic for

the ambitwistor superstring action (5.13). On the other hand, the entrance of WA
qi (σi)

into the set of scattering data suggests its identification with a constant matrices WA
qi

up to the universal (i-independent) local SO(16) transformations, as described by (3.16).

Furthermore, it also suggests the identification (3.22) of the constant matrices WA
qi in (3.16)

with the internal frame matrix variable (2.14) describing the polarization of the scattering

particle through (2.12), so that (3.16) becomes

WA
qi (σ) = wA

piÕpq(σ) , ÕT Õ = I16×16 . (5.19)

As Õpq(σ) = Õ−1
qp (σ) is SO(16) valued, (5.19) would imply that WA

qi (σ) obeys, besides the

purity conditions, also

Wqi
A(σ)W̄pAi(σ) + W̄qAi(σ)Wpi

A(σ) = δqp , (5.20)

W̄qBi(σ)Wqi
A(σ) = δB

A , Wqi
A(σ)Wqi

B(σ) = 0 , W̄qAi(σ)W̄qBi(σ) = 0 (5.21)
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and thus describes an SO(16) valued matrix field. Thus in the presence of vertex operators

the SO(16) symmetry is realized by Stückelberg mechanism.

The simplest calculations of the path integral with vertex operator insertions can

be done by searching for a saddle point of the exponent of the action multiplied by the

exponential factors from vertex operators. This is to say, the main contribution to the

path integral will come from the extrema of the action with the source terms coming from

vertex operator. The essential for our purposes part of such an effective action reads

S + SV =

∫

W2

d2σ
(

λαq ∂̄µ
α
q − ∂̄λαq µ

α
q − 2i∂̄ηq ηq

)

+

∫

W2

d2σĀpq
(

2λα[pµ
α

q] + iη[pηq]

)

+

+
∑

i

(

2µα
q (σi)

√

ρ#i v
−
αAiW

A
qi (σi)− i

√

ρ#(σi)θ
−
q (σi)

√

ρ#i η
−
AiW

A
qi (σi)

)

=

∫

W2

d2σ
(

λαq ∂̄µ
α
q − ∂̄λαq µ

α
q − i∂̄ηq ηq

)

+

∫

W2

d2σĀ[pq]
(

2λα[pµ
α

q] + iη[pηq]

)

+

+
∑

i

∫

W2

d2σδ(σ − σi)
(

2µα
q (σ)λαAiW

A
qi (σ)− 2iηq(σ)ηAiW

A
qi (σ)

)

. (5.22)

It is invariant under the SO(16) gauge symmetry and contains WA
qi (σ) which obeys (3.11)

and is assumed to be of the form (3.16); moreover the fact that WA
qi (σ) describes the

scattering data suggests a more specific expresion (5.19). Clearly, no independent equation

can be obtained by varying this Stückelberg field.

Equations of motion which follow from the variation of the action (5.22) with respect

to the unconstrained bosonic and fermionic fields, µ
α
q (σ) and ηq(σ), have the form

D̄λαq(σ) =
∑

i

δ(σ − σi)λαAiW
A
qi (σi) , (5.23)

D̄ηq(σ) =
∑

i

δ(σ − σi)ηAiW
A
qi (σi) , (5.24)

where

D̄λαq = ∂̄λαq − λαpĀ
pq , D̄ηq = ∂̄ηq − ηpĀ

pq (5.25)

are SO(16) covariant derivatives constructed with the use of Lagrange multiplier Āpq as

SO(16) gauge field. Furthermore, this is a one component gauge field associated to the

derivative in one (anti-holomorphic) complex direction and, as such, it can always be gauged

away. In the gauge

Āpq = 0 (5.26)

the equations (5.23) and (5.24) simplify to

∂̄λαq(σ) =
∑

i

δ(σ − σi)λαAiW
A
qi , (5.27)

∂̄ηq(σ) =
∑

i

δ(σ − σi)ηAiW
A
qi , (5.28)

where we have assumed that

W
A
qi = Õqp(σi)W

A
pi (σi) (5.29)
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is independent on σi. This assumption is equivalent to (3.16); we also keep in mind the

identification (3.22) of this constant matrix with the internal harmonics providing the

square root of (the conjugate to) the polarization vector (2.12), /̄U qpi := Ū
I
i γ

I
qp = 2w

A
qi w

A
pi .

In (5.29) Õpq(σ) is SO(16) valued matrix field trivializing the connection given by the

Lagrange multiplier in the action (5.13),

Āpq =
(

Õ−1∂̄Õ
)

pq . (5.30)

Clearly, this matrix field corresponds to the gauge transformation which is used to fix the

gauge (5.26).

The solutions of the equations (5.27) and (5.28) are given by

λαq(σ) =
n∑

i=1

λαAiW
A
qi

σ − σi
, (5.31)

ηq(σ) =
n∑

i=1

ηAiW
A
qi

σ − σi
. (5.32)

These equations, which essentially coincide with ones presented in [28], are invariant under

the rigid SO(16) symmetry only.

The solution of the gauge covariant equations (5.23) and (5.24) can be obtained by

performing the local SO(16) transformations of (5.31) and (5.32) with matrices Õpq(σ)

related to the antiholomorphic component of the gauge field by (5.30). This solution reads

λαq(σ) =
n∑

i=1

λαAiW
A
qi (σ)

σ − σi
, (5.33)

ηq(σ) =
n∑

i=1

ηAiW
A
qi (σ)

σ − σi
, (5.34)

where (see eq. (3.16))

Wqi
A(σ) = W

A
pi Õpq(σ) . (5.35)

If accepting the identification (3.22), which implies (5.19), substituting that into (5.33)

and (5.34) and using (2.12) we obtain the expression for the bosonic spinor and fermionic

functions in terms of real helicity spinors and polarization vectors

λαq(σ) =
n∑

i=1

λαpi(/U i
/̄U i)pq′

4(σ − σi)
Õq′q(σ) , (5.36)

ηq(σ) =
n∑

i=1

ηαpi(/U i
/̄U i)pq′

4(σ − σi)
Õq′q(σ) (5.37)

with the same Õpq(σ) as in (5.19).

The polarized scattering equation (3.18) should be imposed on the scattering data thus

producing its equivalent form (3.19) when the solution (5.33) of the ambitwistor string
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equations of motion is taken into account. Other way arround is to say that, as we have

already discussed, the polarized scattering equation (3.18) can be obtained as consistency

conditions of the constraints (3.6) with (5.33) and (3.2).

The first of two equations which we have obtained from the ambitwistor superstring

action, eq. (5.33), coincides with the SO(16) covariant ansatz (3.10) for the solution of

the polarized scattering equation (3.19) which generalizes the ansatz of [28]. The second

equation, (5.34), provides the fermionic superpartner of (5.33).

Indeed, taking into account (4.5) and (5.11), one can check that the supersymmetry

variation of eq. (5.34) is proportional to eq. (5.33),

δǫ



ηq(σ)−
n∑

i=1

√

ρ#i

η −
AiW

A
qi (σ)

σ − σi



 = ǫα



λαq(σ)−
n∑

i=1

λαAiW
A
qi (σ)

σ − σi



 , (5.38)

and hence vanishes due to this equation. As a result the system of equations (5.33)

and (5.34) is supersymmetric invariant.

6 Fermionic superpartner of the polarized scattering equation

Thus, interestingly enough, in the ambitwistor superstring approach the meromorphic

spinor function (5.31) appears accompanied by its fermionic superpartner (5.32). This

makes tempting to search also for the fermionic superpartner of the polarized scatter-

ing equation. Just formally, the structure of the bosonic polarized scattering equation

considered together with the knowledge on the origin of the complex fermionic variables

ηA = ηqw̄qA = θαλαqw̄qA (see [26]) suggests to propose on this rôle

ηq(σi)W
A
qi (σi) = η

A
i , (6.1)

where η
A
i = ηqiw

A
qi = θ

α
i λαqiw

A
qi. Indeed, it is easy to check that

δǫ(ηq(σi)W
A
qi (σi)− η

A
i ) = ǫα

(

λαq(σi)W
A
qi (σi)− λ

A
αi

)

so that eq. (6.1) is supersymmetric invariant if the polarized scattering equation (3.19)

holds.

However, literally (6.1) does not feet in the polarized scattering equation formalism as

far as in it the fermionic variables of i-th particle are described by complex ηiA while its

complex conjugate η
A
i should be realized as differential operator (see the expression for

supersymmetry generators in section 4 and [26] for more details). Then, schematically, the

proposed fermionic superpartner of the polarized scattering equation should read

ηq(σi)W
A
qi (σi) =

1

4

∂

∂ηiA
(6.2)

and might be realizable as an equation imposed on the superamplitude (the value of the

coefficient in the r.h.s. will become clear in no time).
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This is indeed the case. Taking into account the expression for the fermionic meromor-

phic function (5.34), we can easily find that F from (4.8) satisfies ∂
∂ηiA

F = 4ηq(σi)W
A
qi (σi)

so that the supersymmetric invariant expF obeys

(
∂

∂ηiA
− 4ηq(σi)W

A
qi (σi)

)

eF = 0 . (6.3)

We can use (5.34) to write (6.3) in an equivalent form




∂

∂ηiA
− 4

n∑

j=1,j 6=i

ηjBW
B
qjW

A
qi

σi − σj



 eF = 0 .

Such a form is convenient to search for the equation obeyed by the tree amplitude of 11D

supergravity: it is not difficult to check that (4.10) satisfies




∂

∂ηiA
− 4

n∑

j=1,j 6=i

ηjBW
B
qjW

A
qi

σi − σj



A11D
n = 0 . (6.4)

Thus we have found the superpartner of the polarized scattering equation (3.18) which

happens to be an equation imposed on the supergravity amplitude, eq. (6.4).

7 Spinor helicity formalism, polarized scattering equations and ambi-

twistor superstring in D=10

In this section we will describe the spinor frame approach to 10D polarized scattering

equation and its ambitwistor superstring origin. The similarity with 11D case will allow

us to be brief; we will especially notice the stages where the differences between 10D and

11D cases appear.

7.1 Spinor frame approach to 10D spinor helicity formalism I. Real helicity

spinors

Ten dimensional Lorentz harmonics v +
αq̇, v

−
αq were introduced in [62, 63] and used to con-

struct the spinor moving frame formulation of 10D Green-Schwarz superstring in [64–66]

and superembedding approach in [67] (see [68] for a nice review). They are rectangular

16× 8 blocks of the 16× 16 spinor frame matrix

V (β)
α =

(

v +
αq̇, v

−
αq

)

∈ Spin(1, 9) (7.1)

carrying different SO(1, 1) weights (±) and the indices of different (c- and s-spinor) rep-

resentations of the SO(8) subgroup, q̇ = 1, . . . , 8 and q = 1, . . . , 8. They also carry the

Majorana-Weyl spinor index α = 1, . . . , 16 of the 10D Lorentz group.

As there is no charge conjugation matrix in 10D Majorana-Weyl spinor representation,

there is no Lorentz covariant manner to rise and to lower Spin(1, 9) indices. The position

of spinor index of a field carries the physical information on its chirality. In our case this
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fact implies that it is impossible to construct (in a Lorentz covariant manner) the elements

of the inverse of the spinor moving frame matrix

V α
(β) =

(

v+α
q

v−α
q̇

)

∈ Spin(1, 9) (7.2)

from the above moving frame variables (7.1) (cf. 11D case in (A.6)). Hence we have to

introduce them as independent variables and subject these to the constraints8

v+α
q v −

αp = δqp , v+α
q v +

αṗ = 0 ,

v−α
q̇ v −

αq = 0 , v−α
q̇ v +

αṗ = δq̇ṗ (7.3)

which are tantamount to V(β)
γV

(α)
γ = δ(β)

(α). The equation V
(β)
α V(β)

γ := v −
αq̇v

+γ
q̇ +

v−α
q v−γ

q = δγα is also valid as a consequence of (7.3).

Both the spinor frame and inverse spinor frame variables (spinor harmonics) can be

considered as square roots of the same vector frame variables (vector harmonics) defined

as elements of the SO(1, 9) valued matrix

u(a)µ =

(
1

2

(

u=µ + u#µ

)

, uIµ ,
1

2

(

u#µ − u=µ

))

∈ SO↑(1, 9)

⇔

{

u=µ u
µ= = 0 , u=µ u

µ# = 2 , u#µ uµ# = 0 ,

u=µ u
µI = 0 , u#µ uµI = 0 , uIµu

µJ = −δIJ .
(7.4)

In particular both vαq
− and v−α

q̇ can be considered as square roots of the same light-like

vector u=µ of the associated vector frame in the sense of

u=µ σ
µ
αβ = 2vαq

−vβq
− , v−q σ̃µv

−
p = u=µ δqp, (7.5)

u=µ σ̃
µαβ = 2v−α

q̇ v−β
q̇ , v−q̇ σµv

−
ṗ = u=µ δq̇ṗ . (7.6)

Here σa
αβ and σ̃aαβ are 10D generalized Pauli matrices which obey

σµσ̃ν + σν σ̃µ = ηµνI16×16 . (7.7)

Relations (7.5) and (7.6) also contain all the essential constraints obeyed by the spinor

frame variables with negative SO(1, 1) weight, vαq
− and v−α

q̇ . More details on 10D spinor

frame variables suitable for the description of massless superparticle can be found e.g.

in [26, 27] and in appendix C.

Adapting the vector frame to the light-like momentum kµ by orienting in its direction

one of the light-like vectors of the frame, say u=µ ,

kµi = ρ#i u
=
µi , (7.8)

we can then relate this kµ to left- and to right-handed helicity spinors

λαqi =

√

ρ#i v
−
αqi , λ α

q̇i =

√

ρ#i v
−α
q̇i (7.9)

8This is similar to introduction of the inverse tetrade in general relativity.
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by

kµσ
µ
αβ = 2λαqλβq , λqσ̃µλp = kµδqp, (7.10)

kµσ̃
µαβ = 2λ α

q̇ λ β
q̇ , λq̇σµλṗ = kµδq̇ṗ . (7.11)

We can reverse the line of arguing and define the helicity spinors by eqs. (7.10) and (7.11).

Then for instance,

λ α
ṗiλαqi = 0 (7.12)

follows from the light-likeness of the momentum, kµik
µ
i = 0 and the general solution

of (7.10) and (7.11) can be written in the form of (7.9).

7.2 Spinor frame approach to 10D spinor helicity formalism II. Internal frame

and complex helicity spinors

The state of a scattered vector particle can be characterized by the momentum and a

complex polarization vector Uµi which obeys

kµiU
µ
i = 0 , UµiU

µ
i = 0 . (7.13)

As in 11D case we can decompose this on the spacelike vectors of the moving frame (7.4)

Uµi = uIµiU
I
i , U I

i U
I
i = 0 . (7.14)

The coefficient U I
i is a complex null SO(8) vector the presence of which breaks little group

of the D=10 massless particle SO(8) down to tiny group SU(4) (more precisely, to SO(2)⊗

SO(6) = U(1) ⊗ SU(4); see [20] and [27] for more discussion). This null vector can be

considered as a part of internal SO(8) vector frame and factorized as follows

/U qṗ := γIqṗUI = 2w̄qAw
A
ṗ , w̄pAγ

I
pq̇wq̇

B = U IδA
B (7.15)

in terms of the elements of associated s-spinor and c-spinor frames [26]

(

w̄qA , wA
q

)

∈ SO(8) ,
(

w̄ṗB , wB
ṗ

)

∈ SO(8) . (7.16)

These can be used also to form the complex helicity spinors

λαA := λαqw̄qA =
√

ρ#v−αqw̄qA , λ̄ A
α := λαpw

A
p =

√

ρ#v−αpw
A
p , (7.17)

λ α
A := λ α

q̇ w̄q̇A =
√

ρ#v−α
q̇ w̄q̇A, λ̄ Aα := λ α

q̇ w A
q̇ =

√

ρ#v−α
q̇ w A

q̇ (7.18)

which encode more explicitly the information about polarization of massless 10D particles.

These complex spinors solve the left- and right-chiral versions of the Dirac-Weyl equa-

tion

/̃k
αβ

i λβAi = 0 , /̃k
αβ

i λ̄ A
βi = 0 , (7.19)

/kαβ iλ
β
Ai = 0 , /kαβ iλ̄

βA
i = 0 , (7.20)
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while only a half of them are in the kernel of the matrices constructed from the polarization

vector
/̃U
αβ

:= Uµσ̃
µαβ = −4v

+(α
A v−β)A , /Uαβ := Uµσ

µ
αβ = 4v −

(α|Av
+A
|β) . (7.21)

Namely,

/̃U
αβ

i λβAi = 0 , /̃U
αβ

i λ̄ A
βi = −2λ̄ αA

i , (7.22)

/Uαβ iλ
β
Ai = −2λαAi , /Uαβ iλ̄

βA
i = 0 , (7.23)

Thus λαAi provide a basis of common zero modes of /̃k
αβ

i and /̃U
αβ

i matrices while λ̄ A
βi is

the basis of complementary to the above space in the space of solutions of left-chiral Dirac

equation. In the case of /kαβ i and /Uαβ i matrices the same roles are played by λ̄ αA
i and

λ α
Ai, respectively.

From (7.10) and (7.11) one finds the following factorization of the Dirac-Weyl matrices

of different chirality in terms of complex helicity spinors

/kαβ i := kµσ
µ
αβ = 4λ(α|Aλ̄

A
|β) ,

/̃k
αβ

i := kµσ̃
µαβ = 4λ

(α
A λ̄β)A . (7.24)

The other constraints on the complex spinors following from (7.10) and (7.11) read

λAσ̃µλ̄
B = kµδA

B, λAσ̃µλB = 0, λ̄Aσ̃µλ̄
B = 0, (7.25)

λAσµλ̄
B = kµδA

B , λAσµλB = 0, λ̄Aσµλ̄
B = 0. (7.26)

These indicate, in particular, that both the left chiral and right chiral complex helicity

spinors are pure spinors (which are further constrained by a number of orthogonality and

normalization conditions).

7.3 10D polarized scattering equation

The polarized scattering equations in D=10 is also doubled. The equations imposed on

left-chiral and right-chiral helicity spinors corresponding to the scattered particles read

∑

j 6=i

λαBjW
B
qjW

A
qi

σi − σj
= 2λ̄ A

αi , (7.27)

∑

j 6=i

λα
BjW

B
q̇jW

A
q̇i

σi − σj
= 2λ̄αA

i , (7.28)

where the 4× 8 matrices WA
qi and WA

q̇i obeys the purity conditions

W A
qi W

B
qi = 0 , WA

q̇iW
B
q̇i = 0 . (7.29)

Similar to 11D case, it is tempting to identify these with the blocks of the i-th internal

frame matrices (7.16),

W A
qi = w A

qi , W A
q̇i = w A

q̇i . (7.30)

We restrain ourselves from fixing rigidly such an identification at the present stage of the

development of the formalism keeping in mind the identification (7.30) but keeping the

notation of W A
qi and W A

q̇i in the equations below.

– 25 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
7

Eqs. (7.27) and (7.28) are the counterparts of the 11D polarized scattering equations

in the form of (3.18). To find the 10D counterpart of the polarized scattering equation

in the form of eq. (3.19) we have to introduce two sets of constrained spinorial functions,

λαq(σ) and λα
q̇ (σ), which obey

2λαq(σ)λβq(σ) = σµ
αβPµ(σ) , Pµ(σ)δqp = λq(σ)σ̃µλp(σ) , (7.31)

2λα
q̇ (σ)λ

β
q̇ (σ) = σ̃µαβPµ(σ) , Pµ(σ)δq̇ṗ = λq̇(σ)σµλṗ(σ) , (7.32)

where Pµ(σ) is the meromorphic 10-vector function (3.2). One can check that the above

constraints are satisfied if:

i) the spinor functions are meromorphic functions of the form

λαq(σ) =
n∑

i=1

√

ρ#i
v −
αAiW

A
qi (σ)

σ − σi
=

n∑

i=1

λαAiW
A
qi (σ)

σ − σi
, (7.33)

λα
q̇ (σ) =

n∑

i=1

√

ρ#i
vα−Ai W

A
q̇i (σ)

σ − σi
=

n∑

i=1

λα
AiW

A
q̇i (σ)

σ − σi
, (7.34)

where

W A
qi (σ) = W A

pi Õpq(σ) , W A
q̇i (σ) = W A

ṗi Õṗq̇(σ) (7.35)

with SO(8) valued matrices Õpq(σ) and Õpq(σ),

ÕÕT = I8×8 ; (7.36)

ii) the polarized scattering equations (7.27) and (7.28) hold,

iii) W A
pi and W A

q̇i obey (7.29); this is automatic when (7.30) holds.

In terms of the meromorphic functions (7.33) and (7.34) the polrized scattering equa-

tions (7.27) and (7.28) can be written in the form of

λαq(σi)W
A
qi (σi) = 2

√

ρ#i v̄
A
αi = 2λ̄ A

αi , (7.37)

λα
q̇ (σi)W

A
q̇i (σi) = 2

√

ρ#i v̄
αA
i = 2λ̄αA

i . (7.38)

Some comments are in order. First of all, (7.29) and (7.35) imply

WA
qi (σ)W

B
qi (σ) = 0 , WA

q̇i (σ)W
B
q̇i (σ) = 0 . (7.39)

Secondly, the constraints (7.31) and (7.32) can be solved by expressing the spinor fields in

terms of spinor moving frame field and compensator field ρ#(σ) by

λαq(σ) = 2
√

ρ#(σ)v −
αq(σ) , λα

q̇ (σ) = 2
√

ρ#(σ)vα−q̇ (σ) . (7.40)

This is the place to stress that, according to (7.33) and (7.34), λαq(σ) and λα
q̇ (σ) are

complex so that v −
αq(σ), v

α−
q̇ (σ) and ρ#(σ) should be considered as complexifications of

the spinor moving frame variables and densities used e.g. in [64–66]. We refer to the last

paragraph of section 3.2 for the discussion on such a complexification in 11D context.
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Notice that (3.7), the 11D counterpart of (7.40), contains an additional SO(16) matrix.

Absence of the counterpart of this in (7.40) is explained by the fact that, if included, this

should be SO(8) valued matrix and the spinor frame variables which differ by SO(8) gauge

transformations are considered to be identical (see [62, 63] and [26, 27] for more details). In

contrast, in 11D the harmonics are identified modulo SO(9) gauge symmetry while (3.6) is

invariant under a bigger SO(16) group so that SO(16) matrix enters naturally the general

solution of (3.6).

7.4 10D ambitwistor superstring and polarized scattering equation

The spinor moving frame or twistor-like formulation of the simplestN = 1 10D ambitwistor

superstring, suitable for the description of 10D SYM and N = 1 D = 10 supergravity

amplitudes, can be based on the action quite similar to its 11D counterpart (5.2) [45]

S =

∫

W2

d2σλαq(σ)λβq(σ)
(

∂̄Xαβ(σ)− i∂̄θ(α θβ)(σ)
)

≡

∫

W2

d2σρ#(σ)v −
αq(σ)v

−
βq(σ)

(

∂̄Xαβ − i∂̄θ(α θβ)
)

. (7.41)

It is written in terms of constrained bosonic spinor functions obeying (7.31), 16-component

fermionic spinor field θα(σ) and arbitrary symmetric spin tensor bosonic field

Xαβ(σ) = Xβα(σ) ≡
1

16
σ̃µ

αβXµ(σ) +
1

2 · 16 · 5!
Zµ1...µ5(σ)σ̃µ1...µ5

αβ . (7.42)

The second form of the action (7.41), which is obtained by substituting (7.40), makes man-

ifest the spinor moving frame nature of this twistor-like formulation of the 10D ambitwistor

superstring.

Again, the properties of the spinor moving frame and spinorial functions (7.40), which

are concenrated in (7.31) and (7.32), guarantee that the arbitrary variation of Zµ1...µ5(σ)

live the action invariant. The gauge fixing condition for this local symmetry can be chosen

to be Zµ1...µ5(σ) = 0 so that

Xαβ(σ) =
1

16
σ̃αβ
µ Xµ(σ) . (7.43)

However, for our purposes it is more convenient to treat the 10D ambitwistor superstring

as a dynamical system in the enlarged superspace Σ(136|32) with 10 + 126 = 136 bosonic

coordinates (Xµ, Zµ1...µ5) and 16 fermionic coordinates θα.

The constrained twistor form of the 10D ambitwistor superstring action and 10D

generalization of the Penrose incidence relations look quite similar to their 11D coun-

terparts (5.5)–(5.8):

S10D =

∫

W2

d2σ
(
λαq ∂̄µ

α
q − ∂̄λαq µ

α
q − i∂̄ηq ηq

)
(7.44)

and

λαq(σ) =
√

ρ#(σ)v −
αq(σ) , (7.45)

µα
q (σ) = Xαβ(σ)λβq(σ)−

i

2
θα(σ) θβ(σ)λβq(σ) , (7.46)

ηq(σ) = θβ(σ)λβq(σ) . (7.47)
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The most noticed difference is the presence in (5.6) the SO(16) matrix which has no coun-

terpart in 10D equation (7.45). As we have already commented, this is due to the fact

that, if present in 10D, this should be SO(8) valued matrix and SO(8) is the fundamental

gauge symmetry of the 10D spinor moving frame construction.

Eqs. (7.46) and (7.47) describe the general solution of 28 constraints

Jpq := 2λα[pµq]
α + iηpηq = 0 (7.48)

which can be identified with generators of SO(8) gauge symmetry in the Hamiltonian

formalism.

The action (7.44) is invariant under the gauge symmetry

δµα
q =

1

32 · 5!
δZν1...ν5(σ)σ̃ν1...ν5

αβλβq , (7.49)

with arbitrary δZν1...ν5(σ), which allows for the gauge fixing conditions reducing the general

solution (7.46) of the constraints to

µα
q :=

1

16
Xν σ̃αβ

ν λβq −
i

2
θα θβλβq . (7.50)

But for our purposes it is more convenient to do not fix this gauge symmetry. Then

the only constraint restricting µα
q (σ) is (7.48). Similarly to 11D case, we can included this

in the action with the Lagrange multiplier Āpq = Ā[pq] playing the role of SO(8) gauge

field,

S10D =

∫

W2

d2σ
(
λαq ∂̄µ

α
q − ∂̄λαq µ

α
q − i∂̄ηq ηq

)
+

∫

W2

d2σĀpq
(

2λα[pµ
α
q] + iη[pηq]

)

(7.51)

and consider the variables µα
q as unconstrained.

Supersymmetry transformations leaving invariant the actions (7.41) and (7.51) are

δǫX
αβ = iθ(αǫβ) , δǫθ

α = ǫα , δǫλαq = 0 , (7.52)

and

δǫλαq = 0 , δǫµq
α = −iǫαηq , δǫηq = ǫαλαq . (7.53)

Essentially in the same manner as in 11D case, eq. (7.33) together with its fermionic

superpartner,

λαq(σ) =
n∑

i=1

λαAiW
A
qi (σ)

σ − σi
, (7.54)

and

ηq(σ) =
n∑

i=1

ηAiW
A
qi (σ)

σ − σi
(7.55)

with W A
qi (σ) from eq. (7.35) and ηAi = ηqiw̄qA i, can be obtained as the solutions of

saddle point equations for the path integral with the measure defined by the ambitwistor

superstring action (7.51) and the suitable vertex operator,

V =

∫

d2σiδ(ki · P (σi))W exp
(
2iµα

q (σi)λαAiW
A
qi (σi) + 2ηq(σi)ηAiW

A
qi (σi)

)
(7.56)

(cf. (5.18) and discussion around).
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What is specific for 10D is the problem of how to obtain the corresponding equation

for λα
q̇ (σ) which do not enter (explicitly) the ambitwistor superstring action,

λα
q̇ (σ) =

n∑

i=1

√

ρ#i
vα−Ai W

A
q̇i (σ)

σ − σi
=

n∑

i=1

λα
AiW

A
q̇i (σ)

σ − σi
. (7.57)

Although it is intuitively clear that this should be the case due to that λα
q̇ (σ) and λαq(σ)

are different forms of the square root of the meromorphic ten-vector function (3.2) (in

the sense of constraints (7.31) and (7.32)) the understanding of the spinor moving frame

nature of both the spinorial functions and helicity spinors helps to provide a more explicit

arguments in favour of this. To this end, besides the generic statement that λα
q̇ (σ) and

λαq(σ) represent the same element of the coset space SO(1,9)
SO(8) isomorphic to S

8 ⊗ R+, one

can use the fact that thier derivatives are expressed in terms of the same Cartan forms

(see appendix C.2) or a special parametrization of spinor frame variables found in [27] in

which λα
q̇ (σ) and λαq(σ), as well as Pµ(σ), are expressed in terms of the same parameter

functions K=I(σ) and ρ#(σ) (see eqs. (7.42)-(7.50) in [27]). Then (7.54) and (7.57) provide

equivalent expressions for these parameter functions.

7.5 10D supersymmetry generator and supersymmetric invariants

From (7.53) it is easy to restore the form of the N = 1 supersymmetry generator Qα which

obeys the superalgebra {Qα, Qβ} = 4λαqλβq = 8λ(α|Aλ
A
|β). Its realization on the variables

of i-th of scattered particles reads

Qαi = 4λ A
αiηAi + λαAi

∂

∂ηAi
, {Qαi, Qβj} = 8δijλ(α|Aiλ

A
|β)i = 2δijkµiσ

µ
αβ . (7.58)

The complete supersymmetry generator given by the sum of the partial generators

Qα =
∑

i

Qαi =
∑

i

(

4λ A
αiηAi + λαAi

∂

∂ηAi

)

(7.59)

is nilpotent, {Qα, Qβ} = 0, due to the momentum conservation.

The supersymmetric invariant found in [28] is eF with

F = 2
∑

i

∑

j

WA
qjW

B
qi

σj − σi
ηAjηBi . (7.60)

The superamplitudes of 10D SYM are then essentially described by eqs. (4.10)–(4.13) where

the reduced determinant det′ is replaced by reduced Pfafian Pf ′ and all the variables are

considered to be ten dimensional.

The generalizations of supersymmetric invariants to type II cases is straightfor-

ward [28]. As far as the derivation of the basic equation for spinorial function is concerned,

the generalization of our discussion in section 7.4 is straightforward for IIB case while type

IIA case seems to be problematic. The issue can be seen from the Lagrangian 1-form

associated to the 10D type IIA ambitwistor superstring action,

λαqλβqdX
αβ − iλαqλβqdθ

α
1 θ

β
1 − iλα

q̇ λ
β
q̇ dθα2θβ2
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with Xαβ = 1
16X

µσ̃αβ
µ . It is gauge equivalent to a Lagrangian form in an enlarged super-

space with 10 + 126 bosonic coordinates described by an arbitrary symmetric spin-tensor

Xαβ = Xβα. However, supersymmetry transformations living invariant such a generaliza-

tion of the Lagrangian form,

δXαβ = iθ
(α
1 ǫ

β)
1 +

i

16
σ̃αβ
µ σ̃µγδθγ2ǫδ2 , δθα1 = ǫα1 , δθα2 = ǫα2 ,

are quite asymmetric and it is not clear whether it is possible to introduce a convenient

supertwistor variables providing the basis of (constrained) Darboux coordinates for this

Lagrangian form. Thus it seems that in type IIA case the shortcut through the enlarged

superspace does not work and to obtain equation for the bosonic spinor functions one has to

deal with the action containing supertwistor variables restricted by additional constraints

similar to (5.12).

8 Conclusion and discussion

In this paper we have revisited the formalism of the 11D polarized scattering equation of [28]

from the point of view of spinor frame approach different applications of which to the de-

scription of 11D and 10D amplitudes were searched for in [25–27]. In particular, we have

addressed the problem of rigorous derivation of the equations for spinorial meromorphic

function λαq(σ) and its fermionic superpartner ηq(σ) from the (spinor moving frame formu-

lation) of 11D ambitwistor superstring [45]. We have shown that, to this end, the (gauge

equivalent) formulation of ambitwistor superstring as dynamical system in an enlarged 11D

superspace Σ(528|32) with additional tensor central charge coordinates is very useful.

The polarized scattering equation can be written in two equivalent forms: as eq. (3.19)

for the spinor function on the Riemann sphere, and as eq. (3.18) imposed on the scattering

data. We have found the fermionic superpartner of the polarized scattering equation (3.18).

We call this spolarized scattering equation. It happens to be an equation imposed on the

supergravity amplitude, eq. (6.4), rather then on the scattering data.

We have also revised the 10D polarized scattering equation formalism and its 10D

ambitwistor superstring origin with the use of spinor frame method. In this case a coun-

terpart of hidden SO(16) symmetry of the 11D ambitwistor superstring does not appear,

being replaced by SO(8) symmetry characteristic for the spinor frame formalism. However,

similarly to 11D case, the treatment of the ambitwistor superstring as a dynamical sys-

tem in 10D superspace enlarged by 126 directions parametrized by tensorial central charge

coordinates is also useful to obtain the basic equations for the spinor functions.

An interesting direction for future study is to apply the spinor frame approach to

the construction of 11D and 10D generalization of the 6D rational map and symplectic

Grassmannians approach [73–76]. Its relation to the 6D polarized scattering equation

approach of [41] was discussed in very recent [76].

The rational maps approach introduces a scattering map

Pµ(σ) =
n∑

i=1

kµi
∏

j 6=i

(σ − σj) (8.1)
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instead of the ambitwistor superstring momentum function (3.2). Clearly Pµ(σ) =

Pµ(σ)
∏n

j=1(σ−σj) and the scattering equation can be also obtained from the light-likeness

condition of the scattering map

Pµ(σ)P
µ(σ) = 0 . (8.2)

Extrapolating the 6d results of [74, 76] one might expect that in 11D spacetime this can

be solved in a manner similar to (3.8),

Pµ(σ)Γ
µ

αβ = 2ραq(σ)ρβq(σ) , Pµ(σ)δqp = ρq(σ)Γ̃µρp(σ) , (8.3)

but in terms of rational spinor map ραq(σ) (instead of meromorphic function λαq(σ) (3.10))

which for even n = 2m+ 2 has the form

ραq(σ) =
m∑

k=0

ραq,k σ
k . (8.4)

Of course, in distinction to 6d and 4d cases, the 11D equations (8.3) (and their 10D

counterparts) impose strong constraints on ραq(σ) so that their consistency with (8.4) has

to be checked. We leave this problem for future work and conclude here by observation

that, if this consistency holds, the relation between coefficients of the rational maps and the

helicity spinors, encoding the scattering data through (2.2) and (2.11) with (2.5), should

be described by9

λαqi =
ραp(σi)S̃pq(σi)
√∏

j 6=i(σi − σj)
(8.5)

with some SO(16) valued matrix function S̃pq(σ), S̃S̃T = I16×16 and ραp(σi) given in (8.4).

Notice added. When this paper have been finished and ready for sending to the arXive,

the article [77] appear on the net. There another supertwistor formulation of ambitwistor

superstring was considered, quantized in light cone gauge and compared with the light cone

gauge description of the RNS type formulation of the ambitwistor superstring [42]. The

light cone gauge scattering amplitudes have been also discussed in [77].

The supertwistors used in [77] were introduced in [78] in the context of massless super-

particle model (see also [79]). The components of that supertwistor are an unconstrained

16-component bosonic spinor λα, canonically conjugate to it 16-component bosonic spinor

wα, and fermionic 10-vector ψµ. Thus, on one hand, the fermionic variables of this alter-

native supertwistor formulation of the ambitwistor string are RNS-like and, on the other

hand, it uses essentially the representation of a light-like vector function as a bilinear of

single unconstrained bosonic spinor, Pµ(σ) = λα(σ)σµαβλ
β(σ). This is valid due to the

specific identity for D=10 σ-matrices (having its counterparts also in D = 3, 4, 6) and, in

distinction to our spinor moving frame related constrained supertwistor approach, do not

allow for a straightforward generalization to 11D case.

9To find this one notices that eq. (8.1) [74] implies kµi =
1

2πi

∮

|z−σi|=ǫ

dz
Pµ(z)

∏
j(z−σj)

and uses (2.2) and (8.3).
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A Some properties of 11D spinor frame variables and helicity spinors

In our mostly minus metric conventions the 11D Dirac matrices γµα
β obeying

γµγν + γνγµ = ηµν I32×32 = diag(+1,−1, . . . ,−1
︸ ︷︷ ︸

10

) I32×32

are imaginary. The charge conjugation matrix Cαβ and its inverse Cαβ are imaginary as

well. We use mainly the matrices with both upper and with both lower indices

Γµαβ := γµα
γCγβ = Γµβα , Γ̃µ

αβ := Cαγγµγ
β = Γ̃µ

βα

which are real, symmetric and, by construction, obey (2.3).

A.1 Spinor frame and vector frame variables (Lorentz harmonics) in D=11

Interrelations between D=11 vector frame and 11D spinor frame variables are described by

u=µΓ
µ

αβ = 2v −
αqv

−
βq , v−q Γ̃µv

−
p = u=µ δqp , (A.1)

u#µ Γ
µ

αβ = 2v +
αqv

+
βq , v+q Γ̃µv

+
p = u#µ δqp , (A.2)

uIµΓ
µ

αβ = 2v(α|q
−γIqpv|β)p

+ , v−q Γ̃v
+
p = uIµγ

I
qp , (A.3)

where q, p = 1, . . . , 16 are spinor indices of SO(9) and γIqp = γIpq are SO(9) gamma matrices.

In addition to the above spinor frame variables (7.1) we have also used the elements

of the inverse of the spinor moving frame matrix

V
α

(β) =

(

v
+α
q

v
−α
q

)

∈ Spin(1, 10) (A.4)

the blocks of which obey V
(β)
α V(β)

γ := v −
αqv

+γ
q + v +

αqv
−γ
q = δ

γ
α and

v+α
q v −

αp = δqp , v+α
q v +

αp = 0 ,

v−α
q v −

αp = 0 , v−α
q v +

αp = δqp . (A.5)

In D=11 the elements of the inverse spinor frame matrix can be constructed from the

elements of (2.4) with the use of charge conjugation matrix

D = 11 : v±α
q = ±iCαβv ±

βq . (A.6)
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The relations between v
−α
q and v −

βq , v
−α
q = −iCαβv −

βq coincide with our conventions for

rising and lowering the 11D Majorana spinor indices which imply, e.g.

λα
q = −iCαβλβq , λαq = iCαβλ

α
q , (A.7)

and Γµαβ = iCαγiCβδΓ̃µ
γδ = CαγΓ̃µ

γδCδβ , while the sign in the relation for complementary

elements of the spinor frame, v
+α
q = iCαβv +

βq, is opposite.

Notice that (A.7) and (A.6) imply that eqs. (2.5) , (2.20) and (3.7) are valid also for

the spinors with upper indices, while e.g. the upper-index version of (2.11) has the opposite

sign,

/̃U
αβ

:= UµΓ̃
µαβ = −2v−(α

q γIqpv
+β)
p U

I
i . (A.8)

The different signs for v+ and v− in (A.6) are also reflected in the following conse-

quences of the above constraints:

(v−q Γ̃µ)
α = u=µ v

+α
q + uIµγ

I
qpv

−α
p , (v−q Γµ)α = u=µ v

+
αq − uIµγ

I
qpv

−
αp ,

which imply

v−q Γµνv
−
p = 2u=[µu

I

ν]γ
I
qp . (A.9)

A.2 Internal frame variables/internal harmonics

The internal frame variables or SO(9)/[SO(2)×SO(7)] harmonics can be described [26] by

complex 16× 8 matrices w̄qA = (wq
A)∗ (2.14) obeying (2.15), (2.16) as well as

/U qp = 2w̄qAw̄pA , w̄qAγ
I
qpw̄pB = U IδAB , (A.10)

/U qp = 2wq
Awp

A , wq
AγIqpwp

B = Ū IδAB , (A.11)

/U
K̂
qp = 2w(q|

A(τ K̂)A
Bw̄|p)B , w̄qAγ

I
qpwp

B = UI
K̂(τ K̂)A

B , (A.12)

where (τ K̂)A
B are SO(7) Dirac matrices, Ĵ , K̂ = 1, . . . , 7 and the vectors UI , ŪI = (UI)

∗,

UI
Ĵ form the SO(9) valued matrix

(

UI
Ĵ ,

1

2

(
UI + ŪI

)
,
1

2i

(
UI − ŪI

)
)

∈ SO(9) (A.13)

which describes the vector internal frame. The condition (A.13) implies

UIUI = 0 , UI ŪI = 2 , ŪI ŪI = 0 ,

UIUI
Ĵ = 0 , ŪIUI

Ĵ = 0 , UI
ĴUI

K̂ = δĴK̂ . (A.14)

Using the above properties of the internal harmonics and (A.9) we can obtain eq. (2.28),

λAΓµνλB = ρ#v−AΓµνv
−
B = 2k[µUν]δAB . (A.15)
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B An interesting nilpotent matrix

Here we present an interesting 16× 16 nilpotent matrix which might happen to be useful

in further development of the formalism.

The scattering equation in the form of (3.3) implies

{/P (σi), /ki} = /Pαγ(σi)/̃k
γβ

i + /ki αγ /̃P
γβ
(σi) = 0. (B.1)

Using (2.2) and (3.8) this equation can be written in the equivalent form of

0 = Wqpi

(

v −
αqiv

−β
p (σi)− v

−β

qi v −
αp(σi)

)

(B.2)

where

Wqpi
1

√

ρ#i ρ
#(σi)

= v −
γqiv

−γ
p (σi) ≡ −v −

γp(σi)v
−γ

qi . (B.3)

Contracting (B.2) with v −
βqi and v −

βq(σi) we find nilpotency conditions for the Wqpi matrix,

WqpiWqp′i = 0 , WqpiWq′pi = 0 . (B.4)

It is not difficult to check that these nilpotency conditions are equivalent to the scattering

equation (3.3).

Using (3.10) we can write the above nilpotent matrix (B.3) in the form

Wqpi = −
n∑

j=1,j 6=i

λ
α
pi

1

σi − σj
λαAjW

A
qj .

C Some properties of 10D spinor frame variables and helicity spinors

10D vector frame and spinor frame variabes are related by

v−q σ̃av
−
p = u=a δqp , u=a σ

a
αβ = 2vαq

−vβq
− , (C.1)

v−q̇ σav
−
ṗ = u=a δq̇ṗ , u=a σ̃

aαβ = 2v−α
q̇ v−β

q̇ , (C.2)

v+q̇ σ̃av
+
ṗ = u#a δq̇ṗ , u#a σ

a
αβ = 2vαq̇

+vβq̇
+ , (C.3)

v+q σav
+
p = u#a δqp , u#a σ̃

aαβ = 2v+α
q v+q

β , (C.4)

v−q σ̃av
+
ṗ = uIaγ

I
qṗ , uIaσ

a
αβ = 2v(α|q

−γIqq̇v|β)q̇
+ , (C.5)

v−q̇ σav
+
p = −uIaγ

I
pq̇ , uIaσ̃

aαβ = −2v
−(α
q̇ γIqq̇v

+
q
β) , (C.6)

where γIpq̇ =: γ̃Iq̇p are Klebsh-Gordan coefficients of SO(8) group, q, p = 1, . . . , 8 are s-spinor

(8s) indices, q̇, ṗ = 1, . . . , 8 are c-spinor (8c) indices and I=1,. . . , 8 is SO(8) vector index

(8v-index). The above relations involve the spinor frame variables and also the elements

of the inverse of the spinor moving frame matrix (7.2) the blocks of which obey (7.3).

Among the consequences of the above constraints, let us notice

(v−q̇ Γµ)α = u=µ v
+
αq̇ − uIµv

−
αpγ

I
pq̇ , (v−q Γ̃µ)

α = u=µ v
+α
q + uIµγ

I
qṗv

−α
ṗ ,

which imply

v−q̇ Γµνv
−
p = 2u=[µu

I
ν]γ

I
pq̇ .
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C.1 Complex spinor frame variables in D=10

The internal vector frame

U
(J)
I =

(

UI
J̌ ,

1

2

(
UI + ŪI

)
,
1

2i

(
UI − ŪI

)
)

∈ SO(8)

⇒

{

UIUI = 0 , ŪI ŪI = 0 , UI ŪI = 2 ,

UIUI
J̌ = 0 , ŪIUI

J̌ = 0 , UI
J̌UI

Ǩ = δJ̌Ǩ
(C.7)

is related to the s-spinor and c-spinor frames (7.16) by

/U qṗ := γIqṗUI = 2w̄qAw
A
ṗ , /̄U qṗ := γIqṗŪI = 2wA

q w̄ṗA , (C.8)

UIδA
B = w̄qAγ

I
qṗw

B
ṗ , ŪIδ

A
B = wA

q γ
I
qṗw̄ṗB (C.9)

and

/U
J̌
qṗ := γIqṗU

J̌
I = iwA

q σ
J̌
ABw

B
ṗ + iw̄qAσ̃

J̌ABw̄ṗB , (C.10)

iσJ̌
ABU

J̌
I = w̄qAγ

I
qṗw̄ṗB , iσ̃J̌ABU J̌

I = wA
q γ

I
qṗw

B
ṗ . (C.11)

Here Ǐ = 1, . . . , 6, A,B,C,D = 1, . . . , 4 and

σǏ
AB = −σǏ

BA = −(σ̃ǏAB)∗ =
1

2
ǫABCDσ̃

Ǐ CD (C.12)

are 6d Clebsch-Gordan coefficients which obey

σǏ σ̃J̌ +σJ̌ σ̃Ǐ = 2δǏJ̌δA
B , σǏ

ABσ̃
ǏCD = −4δ[A

CδB]
D , σǏ

AB σǏ
CD = −2ǫABCD . (C.13)

One can use the internal spinor harmonics (7.16) to form the complex Lorentz har-

monics

v−αA := v−αqw̄qA , v̄−A
α := v−αpw

A
p , v+αA := v+αṗw̄ṗA , v̄+A

α := v+αṗw
A
ṗ , (C.14)

v−α
A := v−α

q̇ w̄q̇A, v̄−Aα := v−α
q̇ w A

q̇ , v+α
A := v+α

q w̄qA, v̄+Aα := v+α
q w A

q . (C.15)

Using the above properties of the internal harmonics, especially w̄pAγ
I
pq̇wq̇

B = U IδA
B,

we find that the above equations imply the 10D counterpart of eq. (2.28) ((A.15))):

v−AαΓµν α
βv−βB = u=[µU

I
ν]δ

A
B .

C.2 Cartan forms and derivatives of spinor frame variables/Lorentz harmonics

The derivatives of the vector frame variables (vector harmonics) which respect the con-

straints (7.4) are expressed in terms of SO(1, D − 1) Cartan forms Ω=I := u=a du
aI ,

Ω#I := u#a duaI , Ω(0) := 1
4u

=
a du

a# and ΩIJ := uIadu
aJ by (see [27] and references therein):

Du=a := du=a + 2u=a Ω
(0) = uIaΩ

=I , (C.16)

Du#a := du#a − 2u#a Ω
(0) = uIaΩ

#I , (C.17)

DuIa := duIa + uJaΩ
JI =

1

2
u#a Ω

=I +
1

2
u=a Ω

#I . (C.18)
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As Spin(1, D − 1), the double covering of the Lorentz group SO(1, D − 1), is locally

isomorphic to it, the tangent space to Spin(1, D − 1) is isomorphic to tangent space to

SO(1, D − 1). Hence the derivatives of spinor frame variables (spinor harmonics) are also

expressed in terms of the above Cartan forms.

For D=10 one finds (see [27] and refs therin)

Dv −
αq := dv −

αq +Ω(0)v −
αq +

1

4
ΩIJv −

αpγ
IJ
pq =

1

2
Ω=IγIqq̇v

+
αq̇ , (C.19)

Dv +
αq̇ := dv +

αq̇ − Ω(0)v +
αq̇ +

1

4
ΩIJv +

αṗγ̃
IJ
ṗq̇ =

1

2
Ω#Iv −

αqγ
I
qq̇ , (C.20)

and

Dv−α
q̇ := dv−α

q̇ +Ω(0)v−α
q̇ +

1

4
ΩIJ γ̃IJq̇ṗ v

−α
ṗ = −

1

2
Ω=Iv+α

q γIqq̇ , (C.21)

Dv+α
q := dv+α

q − Ω(0)v+α
q +

1

4
ΩIJv+α

p γIJpq = −
1

2
Ω#IγIqṗv

−α
ṗ . (C.22)

The above equations can be used also for the case of D = 11 spinor frame variables

(spinor harmonics) if we assume that I, J = 1, . . . , 9, p, q = 1, . . . , 16, identify q̇ with q

and replace the SO(8) Klebsh-Gordan coefficients γIpq̇ by 16× 16 nine dimensional gamma

matrices γIpq = γIqp.
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