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Introduction

1. A frequency function A(x), i.e., a non-negative measurable function

satisfying the inequalities

/.
0 <   I    Aix)dx < ao,

J -oo

is called a Pólya frequency function provided(2) it satisfies the following

condition : For every two sets o/ increasing numbers

(1) X! < x2 < ■ ■ ■ < x„,        yy < y2 < ■ ■ ■ < yn, n = 1, 2, • ■ ■ ,

we have the inequality

(2) D m det ||A(«f - y,)||ui ¡Ï 0.

For« = l, (2) amounts to A(x) 2ï0; for n = 2, (2) is equivalent to the con-

vexity of —log A(x).

It was shown in [6] that the following two functions are Pólya frequency

functions: 1. The normal frequency function whose Laplace transform is

1 Cx

(3) - I    e-s'e-^-^'^dx = e1""-8*.
2(x7)I/2J-oo

2. The "one-sided" exponential function

(er*   if    x > 0,
(4) X(*) =  \10      if   * < 0,

of transform
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(2) In this paper we use the term "provided" in the sense of "if and only if."
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/.

1
e-'x\(x)dx =-) (Rs > - 1).

1 + s

If ôs^O, we obtain the formula

(5>      T¡\fy"x(7 + l)d"TT7/     (-iV*fc<l»h.

giving the transform of the one-sided exponential, of mean zero and vari-

ance S2, which is descending if 5>0 and ascending if 5<0.

It was also shown in [ó] that the convolution of Pólya frequency functions

again leads to such functions. Moreover, that the most general Pólya fre-

quency function A(x) is obtained, up to a multiplicative positive constant,

by convoluting the normal function (3) with a finite or infinite sequence of

one-sided exponentials (5) which are such that the sum Z^ of their vari-

ances converges. In other terms: the Laplace transform of a Pólya frequency

function A(x) converges in a vertical strip containing the origin and has there

the form

/l e~xsA(x)dx = -«
*(s)

where ^(s) is an entire function of the form

CO

(7) ¥(s) = Ce-»2+s»Jl (1 + 8vs)e~s"

(0 0,7^0, 8, 8y real, 0 < 7 + Z ^ < °° )•

We single out the special case when 7 = 0 and Zl^l < °°- Except for a

trivial exponential factor which can be absorbed into the integral by means

of a shift in the variable x, our function ^ is of genus zero. We may therefore

assume A(x) to have the transform

(8)
/OS                                                         00                   1

e~xsA(x)dx = IX -> (5„ real, Z I ô-1 < °°)-
-«o v=i  1 + 8,s

These two types of transforms, (8) and (6), (7), will be referred to below as

Case 1 and Case 2, respectively.

The present paper is divided into two sections. In §1 we answer (Theorem

1 below) the following question: Given a Pólya frequency function A(x) and a

set of 2n numbers (1), how can we decide when the determinant D, defined by

(2), is actually positive! As an application of our answer to this question we

solve in §2 the general problem of interpolation by so-called spline curves

which were introduced in 1946 by one of us [5] for the purpose of approxima-

tion of infinitely many equidistant data.
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248 I. J. SCHOENBERG AND ANNE WHITNEY [March

1. The positivity of translation determinants

2. The following theorem answers our question.

Theorem 1. Let A(x) be a Pôlya Srequency Sanction oS transSorm (8) iCase

1), or (6), (7) iwhere y>Q, or y = 0 and £| 5„| = ■») iCase 2). Let the numbers

il) be given and let

(1.1) Z? = det ||A(*¿ - yy)||lin.

Case 1(3). Let k be the number o¡ positive 8, and h the number oS negative

8, (O^^^oo, O^Ä^oo, k+h>l). Then D>0 iS and only if we have the

inequalities

(1.2) x,_jt < y, < x,+h, for v = 1, ■ ■ • , n,

with the convention that

I— oo    if    — oo ^ r < 1,

(1.3) Xr=    \ J
1+  oo      if «<r^  +  oo.

Case 2. We always have D>0.

Examples. 1. It is clear from (1.3) that some of the inequalities (1.2) are

automatically satisfied. Thus, if k^n and h^n, then again D>0, no matter

what the numbers (1) are. This is true for all n if k = h = 0. U k> 0 and h>0

we obtain, for n = 1, the fact that A(x) >0, for all x.

2. The function A(x) = exp ( — | x| ) of transform

£
e-X8e-\X\dx   =   - (-    1    <   Rj    <    1)

1  - 52

illustrates Case 1 with k = h = l. From (1.2) we learn that £>>(), provided

x„_i<y^<x,+i (i»«"l, •••,»), or

yi < x2, Xi < y2 < x3, x2 < y3 < x\, • ■ ■ , xn-2 < y„_i < x„, xB_i < y„.

In this particular case we mention as a curiosity that D may be evaluated

explicitly by the following formula, valid for any set (1),

n

det ||e_l*i_I'í|||i,,l = e-s*<-2»íTJ[ [e2min(xi-yi) — e2max (*<•-!• »••-!>} + ,

where the subscript " + " indicates the truncated function

(x   if    x ^ 0,
(1.4) *+=  \
_ (O    if    x < 0.

(3) The Case 1 of Theorem 1 is related, without inclusion either way, to a theorem of M.

Krein and G. Finkelstein [4], concerning the Green's function of linear differential operators.

Concerning this subject see the comprehensive treatise [l] by Gantmakher and Krein.
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3. The function

(1.5) A (a;) = e~xx+,

of transform

ft!
(1.6) J    e-xse~xxkdx =

J o (l + s)*+1

corresponds to Case 1 with A = 0 and £ + 1 positive 8„ all unity. Cancellation

of (positive) exponential factors from the rows and columns of D leads to

the following:

Corollary 1. Let k be a natural integer. If xi<x2< • ■ ■ <xn, yi<y2

< • ■ ■ <yn, then

(1.7) D = det||(*i-y,)+|| >0

if and only if the inequalities

(1.8) a;,-.*-! < y, < x„ v - 1, • • • , n,

hold(*).

This is our special result to be applied in §2.

A proof of Theorem 1, Case 1

3. We begin by noticing that the simplest of all cases, namely £+A = l,

is not covered by Theorem 1. Although almost trivial and unimportant by

itself, it happens to be fundamental for what follows. So let us assume that

k = l, A = 0, in (8), hence A(x) to be the one-sided exponential

(1.9) a^ = 7x(t)' 8 > 0.

Now \(x)=e-*-x°+, where x+ = l if x^O, =0 if x<0. Thus D

= det ||A(x,--yy)||>0 provided 7>' = det ||(a-,--y)+|| >0. A moment's reflec-

tion will show that D'>0, provided all elements of D' are =1, except those

above its main diagonal which are =0. By the definition of x°+ these conditions

amount to the inequalities

yi Ú xi < y2 ¿i x2 < ■ ■ ■ < yn-i =á x„_i < yn Ú x„,

or

(1.10) x,-\ < y, is x, for v = 1, • • • , n.

(4) The nonvanishing of determinants of the form (1.7) appears explicitly as an assumption

in some of the theorems of Chapter 9 in S. Mandelbrojt's Dirichlet series, Rice Institute Pam-

phlet, vol. 31, No. 4, October, 1944.
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250 I. J. SCHOENBERG AND ANNE WHITNEY [March

We prove next a special case of Case 1 (A = 0, Kfe< °o) which, for con-

venience, we state as:

Lemma 1. IS A(x) has the transSorm

/«,                        *         1
e~"Aix)dx = Il -' s- > °J°r aU v; k> 1,

-» »=1     1 + 8yS

then

(1.12) £> = det||A(x,-- yj)\\ > 0

if and only if

(1.13) x,-k < y„ < xv, v = 1, • • • , n.

Proof. Let Ax(x) and A2(x) have the transforms

W        1 1XI -    and
=i   1 + 5,s 1 + 8ks

respectively. Thus A(x) is the convolution of Ai(x) with A2(x). From   [6,

Lemma 5], we recall the identity

det ||A(*i - ys)\\ = — f    ■ • •   fdet \\Afa - t,)\\
nlJ _w J

■det ||A2(«i - y,)\\dh • ■ ■ dt„,

which, in view of the symmetry of the integrand in the variables h, • • • , t„,

we may write as

det ||A(x< - yj)\\ =  f ■ ■ ■   fdet \\AiÍXí - t¡)\\

(1.14) -det ||A»(íí — yi)\\dh- •■ dtn

■/■•7s*dt\ • • • dt„.

Notice that Z>i^0 and X>2^0, for all it), Ai and A2 being Pólya frequency

functions. D2 is continuous in (/) except possibly on the hyperplanes ti = y¡.

D\ is continuous in (/) if k>2 and possibly discontinuous on /, = x,- if k — \.

We conclude that the integral (1.14) is positive if and only if there exists a

point it), with h< ■ • • <t„, in a neighborhood of which both factors Dlt D2

are positive. By (1.10), this is the case for D2 provided

(1.15) ¿y_i < y, < U, v = 1, • • • , n.

Using induction by k and assuming Lemma 1 to hold for k— 1, rather than k,

we see that Z>i>0, at (¿) and near it, provided
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(1.16) Xv-k+i < U < xy, v = 1, • • • , n.

Thus (1.14) is positive provided (1.15) and (1.16) have a common solution

of increasing t's. Inspecting the bounds imposed on t, by (1.15) and (1.16),

we find the necessary inequalities

(1.17) max (xr_k+i, y,) < min (x„, y,+i), v = 1, ■ ■ ■ , n.

These, however, are also sufficient, for then the open intervals of the /-axis

(1.18) I,:   max (x,-k+i, yv) < t < min (x„ y,+i), v = 1, • ■ • , n,

form a sequence of nonoverlapping and advancing intervals, for increasing v,

in view of the obvious inequalities min (x„ 3>»+i) ámax (x,_k+2, y,+i).

Choose ¿„G7, and both (1.15), (1.16) will be satisfied. By (1), the inequalities

(1.17) are equivalent to

x,-k+i < >+i,        y, < x„        or        ay-» < y„        y, < xr,

which are identical with (1.13). As the same argument applies if k = 2, the

proof by induction is complete.

Remark. If we replace in Lemma 1 the assumption S„>0, for all v, by

(1.19) 8, < 0, v = 1, • ■ • , n,

we have a problem which reduces to the previous case as follows: Replacing

s by —s in (1.11) we obtain

1 f00 C"
II -j-r— =   I    e,xA(x)dx =   |    e-'xA(-x)dx.

1 + I 5» | s      J _«, J -„

This interchanges the roles of x,- and y,-, and (1.12) holds now provided

(1.20) y,-k < Xy < y„ v = 1, • • ■ , n.

4. We may now complete a proof of Case 1 by a brief discussion of a few

subcases:

Proof of Case 1 for finite positive k and h. Let the transform (8) be rational,

there being k positive and h negative 5,. Let Ai and A2 have the transforms

n ,,   ' s> > °-   n ,,.  > «*■> < o,
»_1        1    +   OyS y=l      1    +    0k+yS

respectively. Then A=Ai *A2 and (1.14) holds. By Lemma 1 and its counter-

part (1.19), (1.20), a point (t) and its neighborhood will produce a positive

integrand in (1.14) provided we have

(1.21) Xy-k    <    ty    <    Xy, y,-h    </„<>, V    =     1,    •    '    "    ,   ».

These require that
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(1.22) max (x„_*, y„_A) < min (x„ y,), v = 1, • ■ • , n,

which again are also sufficient. Indeed, if (1.22) hold, the intervals

I,:   max (x,-k, y,-k) < t < min (xv, yv)        v = 1, • ■ ■ , n,

which may well overlap, have advancing right-hand end points (by (1)),

hence an increasing sequence {¿»} with /„£/„' is assured. Finally (1.22)

amount to x„_i<yv, yv_K<xr, which in turn are equivalent to (1.2).

Proof of Case 1 for k= <x>, A = 0. Let the transform of A(x) be (8) with all

5„>0. We are to show that £>=det ||A(x¿ — yf)\\ >0 if and only if

(1.23) y, < x„ v = 1, • ■ ■ , n.

The necessity of these inequalities is seen directly as follows: In the present

case of positive 5„'s, (8) is an ordinary Laplace integral (see [6, Art. 11]),

i.e., A(x) =0 if x^O. But then x„^y„, for some p, implies x.-^yy for all (i, j)

such that i^p, j^p. Hence A(x — y¡) =0, for such (i, j), and D vanishes, for

instance by Laplace's expansion theorem.

In order to prove the sufficiency of (1.23), we choose a number k'>n

and write A=Ai * A2, where Ai corresponds to the first k' factors of the prod-

uct (8) and A2 to all remaining ones. In (1.14), Z>i>0 at (/) provided x,^k>

<t,<x„ or

(1.24) t, < x„ v = 1, • ■ • , n,

since k'>n implies that x„_*< = — oo. On the other hand we certainly have

£>2 = det ||A2(/,—y,-)||>0if

(1.25) yi < h < y2 < t2 < ■ ■ ■ < yn < t„.

Indeed A2(x) >0 if x>0 and A2(x) =0 if x<0, so that D2 has positive elements

on the main diagonal and only zero elements above it. Now if (1.23) hold,

it is clear that increasing /„ can be found satisfying (1.24) and (1.25), which

completes the proof. The case when &=0, h= <», may be reduced to the

previous one and leads to the reverse of (1.23), namely

(1.26) x, < y„ v = 1, • ■ ■ , n.

Proof of Case 1 for k = h= ». Let again A=Ai * A2, where Ai corresponds

to the negative 8, and A2 to the positive ones. In (1.14), Di>0 provided

x„<f„ by (1.26), and D2>0 provided y,<t„ by (1.23). Thus D>0 always,

as was to be shown.

Proof of Case 1 for h= =°, k finite. With the same decomposition as be-

fore the positivity of (1.14) requiresxy<t„ by (1.26), and/,_t<y,</,,,by(1.13).

Increasing t, will satisfy both conditions provided X,<y,+t, or

x„_jt < y„ v = 1, • • • , w,
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which agree with (1.2). This completes a proof of Case 1 of our theorem.

A proof of Theorem 1, Case 2

5. This case requires some information on the behavior of Pólya fre-

quency functions X(x) of small variance. We know that X(x) attains its

maximal value at just one point(6) x = p. and that X(x) is nonincreasing for

x=> and nondecreasing for x^p..

Lemma 2. Let {Xm(x)} be an infinite sequence of Pólya frequency functions

such that

I    \m(x)dx = 1, x\m(x)dx = 0,

2      r°° 2
<rm =   I     x \m(x)dx —> 0 as m —> °o.

J -CO

If x =ßm denotes the point where Xm(x) attains its maximal value, then

(1.28) limpm = 0,

(1.29) limXm(pm) = + oo,

(1.30) lim Xro(x) = 0, uniform in x, for \ x\ sí r¡, for every rj > 0.

Proof. Clearly, for a fixed 17 > 0,

2    f 2 r      2 2 r
cm «■  I  x \mdx ^1 x \mdx è v   I        Xmax,

hence by the last relation (1.27):

(1.31) Xmáx—>0    as    m—>°o, for every r¡ > 0.

By the first relation (1.27) we conclude that

' 1

:

\mdx -*1    as   «-»no, for every 77 > 0.

But then clearly

(1.32) max   \m(x) —> °o     as    m—» 00, for every 77 > 0.

We may now prove (1.28): If x = £m is a point where Xm(x) attains its

maximum in [ — r\, 17], then by (1.32)

(6) This follows easily from Theorem 10, page 154, of Hirschman and Widder in [3]. Their

\(x) =Gm(jc) are not the most general Pólya frequency functions, since 7 =0 in their case. How-

ever, in Art. 6 below we are applying Lemma 2 to a case where 7 happens to vanish.
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(1.33) -vèèmèv, lim \m(U) = + ».

If (1.28) does not hold, then we would have p.m>2r\, say, for arbitrarily large

values of m = m,. Since Xm(x) is nondecreasing in the range [£m, p.m] we

conclude that

/2i| rt 2i|
\m(x)dx S   I     dx-\m(Çm) i= »A« (£■»),

'im

hence, by (1.33), that

/. 2,

\m(x)dx oo     as    w = OTV —» »,

which is absurd. This proves (1.28), and (1.29) follows from (1.32).

To prove (1.30), we use (1.28) and choose M=M(r¡) such that \ßm\ <~n/2

if m>M. But then, Xm(x) being nonincreasing in [p,m, r¡], we have

— Xm(r;) ^   I     \m(x)dx,
2 J ,/2

where the last integral converges to zero by (1.31). Thus lim Xm(7?)=0 and

(1.30) is established since Xm(x) is nonincreasing for x^rj.

6. Proof of Case 2 if 7 = 0, 5„>0 (p = l, 2, • ■ •). Let the transform be

/CO                                                                CO                   „hyS COe~x'A(x)dx = II -'      s> > °i Z 5* = °°-
-co                                     y-1    1 + S»S 1

We are to show that

(1.35) D = det||A(x,-- yj)\\ > 0

always holds. Let A=Ai*A2 where Ai corresponds to the product of the first

m factors of (1.34) and A2 to the remainder. Setting

m

0m =   Z ^»>
1

(1.34)

we have that

(1.36)     II -=  I    eri"+*-i'Ai(x)dx =  (    e~,xAi(x - 4>m)dx.
_1       1   +   8yS J -x •/_„

Now

det ]|Ai(x,- — /y)|| = det ||Ai(x,- + <pm — t, — 0m)||

and the transform (1.36) shows that Ai(x—0m) is a function to which Lemma 1

applies. Thus
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(1.37) Z>! = det ||Ait*,- - h)\\ > 0

provided xp^m+<f>m<tv<x,+(f>m, v=l, ■ ■ ■ , n. If m^n, these conditions re-

duce to

(1.38) t, < x, + <pm, v = 1, • • • , n.

Since <pm= 2™ 8v—*<x>, we see that (1.38) are satisfied in an arbitrarily large

cube of the /-space, if only m is sufficiently large.

The transform of A2(x) is

/.

o oo e8„» j2    oo

e~*>A2(x)dx =   ¡I    - = 1 + — Z 5- + • • *
s »=m+l     1  T 8,S 2   m+l

showing that Xm(x) =A2(x) is a sequence of Pólya frequency functions satisfy-

ing the assumptions of Lemma 2, with

00

Cm   =      / ,    Ov   ■

y=m+l

In order to prove (1.35), we turn again to (1.14). Choose a fixed r¡ such

that

1
0 < r\ < — min (y„+1 — y,)

¿     v

and let ti = yi+pm, i=l, ■ • ■ , n, where {pm} is the sequence of maximum

points in Lemma 2. We claim that for these values

(1.39) D2 = det \\A2(ti - yy)|| > 0 if m > M.

Indeed, if iy¿j and m is sufficiently large, we have

I U - y i I ~ I y i - y i + v™. I
^ I y» — y i I — I Pm I > I y i — y i \ — v > 2r¡ — r¡ = r¡,

so that

lim A2(/¿ — y,) = 0

by (1.30). On the other hand

A2(í,- - y<) = Aiipm) -* «, as m —»• »,

by (1.29). Thus Z)2—>oo, as wî—»oo, which amply proves (1.39). Now the /„

as defined above, are bounded, in view of (1.28). Therefore the inequalities

(1.38) are also satisfied by our tit if only m is sufficiently large. Now (1.37),

(1.39), and (1.14) imply (1.35), which completes the proof.

The remaining possibilities of Case 2 are now easily taken care of. Let us

assume the transform (1.34), ^| ^»| = °°> DUt allow 5„ of either sign. To fix
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the ideas, let the negative 8, have a divergent sum, and let again A=Ai *A2,

Ai and A2 corresponding to the negative and positive 8, respectively. Then, in

(1.14), we have £>i>0 always. Not so for D2; however, the following is now

clear: To whichever of the previously discussed cases the question of

D2 = ||a,(*< - y/)|| > 0

may belong, given the y„ we can always find such increasing t, as to make

Z>2>0. As A>0, (1.14) shows that 7>>0.
Finally, to treat the last remaining case, let

/CO

e-"A(x)dx = e,"1-F(s), 7 > 0,
-CO

where F(s) is of either of the forms (8) or (1.34). Let for the last time A

=Ai *A2, the transforms of these factors being the two factors of (1.40), re-

spectively. The reasoning of the last paragraph again applies. In (1.14) we

have 7>i>0 for any ¿,(6), while by all previous cases, increasing /,- may be

found as to produce D2>0. Thus D>0 and a proof of Theorem 1 is com-

pleted.

2. Interpolation by spline curves

7. The problem. Let

(2.1) fi<|î< •;• < E.

be n given points and k a natural integer. Let F(x) be defined in each of the

intervals (— °°, &), (¿1, £2), ■ • • , (£n, + °°) by a separate polynomial, of de-

gree not exceeding k, in such a way that the composite function F(x) be

continuous, for all real x, together with its first k — 1 derivatives. F(-V,(x) is a

step-function with possible discontinuities at the points (2.1). A function F(x)

of this kind is called a spline function^) (or curve) of degree k, while the points

(2.1) are referred to as its knots.

The truncated function (1.4) and its powers are well suited for the repre-

sentation of spline functions. Indeed, it is easily seen that

(2.2) F(x) = Pk(x) + Z Mx - £,)+,
>—i

where Pk(x) is an arbitrary polynomial of degree at most k and Ay are

arbitrary parameters, represents uniquely the most general spline curve of

degree k having the knots (2.1). Thus 7"(x) depends on w+A + 1 arbitrary

parameters.

(6) See [6, Art. 3, Example 2].

(7) See [5, p. 67], for the connection with the flexible rod, called a spline, used for fitting

smooth curves to experimental data.
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We may now formulate our problem as follows: Let

(2.3) xi < x2 < ■ ■ • < xn+k+i

be a given set of n + k + l abscissae; when can we interpolate in the points (2.3)

an arbitrary given set of ordinates Y\, F2, • • • , Y„+k+i, by means of our spline

curve (2.2)?

8. Its solution. As a first step we observe the following: If we choose in

any way k + 1 fixed abscissae yi, • • • , y*+i such that

(2.4) yi < y2 < ■ ■ ■ < yk+i < xu yk+i < &,

then the polynomial P*(x), of (2.2), may be uniquely written as

Pk(x) = Z c,(x - y,)k,
»=i

for appropriate values of the c,. But then we also have

JH-i .

(2.5) Pk(x) = X °v(x - y,)+, if x ^ yk+1.

If we now write

(2.6) yk+2 = £i, yk+3 = &,••-, y„+k+i = £„,

and correspondingly define c+k+i=Ar (i' = l, • • • , n), we see that the ar-

bitrary spline curve (2.2) of knots (2.1) may also be written in the form

n+ fc+1 k

(2.7) Fix) =   Z    cÁx — y»)+i in the range * ^ y^+i.

We conclude that the interpolation problem of the previous article has

a solution if and only if the determinant of order n+k + l

det||to-yy)+|| 5*0.

By Corollary 1, §1, this is the case provided

(2.8) x„_ifc_i < y, < xv     iv = 1, 2, • • • , n + k + 1).

In view of (2.4) and (2.3) we see that the first k + 1 inequalities (2.8) are

automatically satisfied. Returning by (2.6) to our old notation we find the

remaining n inequalities (2.8) to be

x\ < £i < xk+2,

,2 9) X2 < & < Xk+*<

%n <  ?n  <   Xn+k+U
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We state the result as

Theorem 2. We can interpolate inn-\-k-\-\ given abscissae (2.3) arbitrarily

given ordinales, by a spline curve of degree k and knots (2.1), if and only if the

inequalities (2.9) are satisfied.

Remark. The inequalities (2.9) may be described in words: The first n

interpolation points Xi, • • • , xn precede the knots &,•••-, £n, respectively,

which in turn precede the last n interpolation points xk+2, • • • , x„+i+i, re-

spectively. Notice that all these conditions are satisfied automatically in case

the knots £i, • • • , £„ are chosen among the n + k — i interpolation points

X2, X3,   *   *  ' , Xn-|-fc.

We rephrase this last result as follows:

Theorem 3. Let there be given a set of N-\-l abscissae

(2.10) xo < xi < • • • < xn,

and iV+1 arbitrary corresponding ordinates yv (v = 0, • • • , N). As is well

known, we may interpolate them, uniquely, by a polynomial of degree at most N.

This corresponds to the classical case n=0 of no knots whatever.

Also we may choose any combination of n (l^n^N—1) among the interior

abscissae

(2.11) Xi, x2, • • ■ , Xtf-i,

to serve as the knots &,••*,{■ of an interpolating spline curve y — F(x), in

which case again we may interpolate uniquely by a spline curve of degree

(2.12) k= N - n.

Remarks. 1. In the extreme case of n = N—\, all points (2.11) are knots

of F(x), which, by (2.12), is a spline curve of degree k = N— (N— 1) = 1.

Therefore y = F(x) is the ordinary polygonal line obtained by linear in-

terpolation between each pair of consecutive points. Theorem 3 furnishes a

sequence of interpolation procedures bridging the gap between the ordinary

polynomial interpolation and the linear polygonal interpolation, each addi-

tional knot lowering the degree of the spline curve by one unit.

2. To each of these procedures there corresponds an interpolation formula

expressing the interpolating spline curve 7"(x) in terms of the ordinates yv,

with coefficients which are the "fundamental functions" of the procedure. In

the case of A7 = 4, w = l and therefore k = 3, with

Xo = — 2, xi = — 1, x2 = 0, x3 = 1, X4 = 2 and £i = 0,

we obtain the formula

(2.13) F(x) = yok(x) + yJi(x) + y2l2(x) + y^h(-x) + y-2h(-x),

with the following expressions for the fundamental functions:
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lo(x) - (1 + *)(l + j)(l - - x\ + - xl,

1 3
h(x) = — x(x + l)(x + 2) — x+,

O

1 1        3
h(x) =-x(x + l)(x + 2) H-x+.

24 4

In (2.13) we have changed our notation for y, in order to exhibit the sym-

metry of this formula.

3. We conclude by raising the following question. Let /(x) be given as

continuous in the range [a, b] which we divide into N equal parts by the

points (2.10). It is well known that the interpolating polynomial of degree N

does not always converge to Fix), as N—>oo(8). However, the polygonal in-

terpolating spline curve (& = 1) always does. Is there a sequence of our new

procedures, with k = N — n—> «> as N—» =°, producing a spline curve E(x) of de-

gree k, which will always converge to fix) in [a, b]? And how strongly may

k—»oo with N, subject to this condition? Similar questions can be raised

concerning the quadrature formulae obtained by integrating our interpolation

formulae. Further problems will undoubtedly occur to the reader.
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