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Abstract This paper brings together two fundamental topics: polyhedral projection
and parametric linear programming. First, it is shown that, given a parametric lin-
ear program (PLP), a polyhedron exists whose projection provides the solution to
the PLP. Second, the converse is tackled and it is shown how to formulate a PLP
whose solution is the projection of an appropriately defined polyhedron described as
the intersection of a finite number of halfspaces. The input to one operation can be
converted to an input of the other operation and the resulting output can be converted
back to the desired form in polynomial time—this implies that algorithms for com-
puting projections or methods for solving parametric linear programs can be applied
to either problem class.
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1 Introduction

In this paper, we discuss the close relationship between the projection of polyhedra
described as the intersection of a finite number of halfspaces and parametric linear
programming. It is shown that an algorithm for one can be used to compute the solu-
tion to the other, and vice versa.

The calculation of the orthogonal projection of a polyhedron is a fundamental op-
eration that arises in many applications. For example, in control theory, projection
is required for reachability analysis [1] and in decision theory for the elimination
of existential quantifiers [2]. It can be shown that the calculation of affine maps or
Minkowski sums of polyhedra are both polynomially equivalent to orthogonal projec-
tion [3, Sect. 7.2], making a projection algorithm a useful and basic tool for working
with polyhedra.

In recent years, there has been a surge of interest in the control community in para-
metric programming with vector-valued parameters. This interest has been motivated
from the model predictive control (MPC) literature, since it can be shown that cer-
tain constrained, finite-horizon optimal control problems can be posed as parametric
linear programs (PLPs) with the measured state as the parameter [4, 5]. The use of
PLPs allows the control action to be pre-computed off-line for every possible value
of the parameter, which can drastically speed up the on-line implementation.

Beside the theoretical interest of linking these two operations, the importance of
the work presented in this paper is clear: advances in projection algorithms are im-
provements in PLP algorithms and vice versa. Many problems have a specific struc-
ture that results in some algorithms being significantly faster than others. As a result
of the material given here, a much larger range of both projection and PLP methods
can be searched to find an approach that is efficient for a given problem.

There are currently four classes of algorithms for solving PLPs. The original in [6]
enumerates all optimal bases of the problem using a method derived from the simplex
algorithm. A similar algorithm was proposed in [7] in which all of the bases of the
dual-constraints are enumerated. A geometric approach has been proposed [4, 5] that
directly explores the set of admissible parameters in a recursive manner, subdividing
the admissible parameter space into so-called critical regions, in which the set of
active constraints at the optimizer does not change. This method can introduce a large
number of artificial cuts in the parameter space and an extension of this algorithm
in [8–10] partially addresses this problem. Finally, a new approach has been proposed
in [11] that combines the efficient pivoting methods of [6] with the geometrically
inspired algorithms of [8–10], resulting in a significantly faster approach.

Current projection methods that can operate in general dimensions can be grouped
into four classes: Fourier elimination, block elimination, vertex enumeration and
gift-wrapping approaches. Fourier-Motzkin elimination was originally described by
Fourier in 1824 and can be thought of as the analogue of Gaussian elimination for lin-
ear inequalities. Several versions and improvements to Fourier’s method have been
proposed ([12, 13] to name a few), although the primary contribution was due to
Černikov [14] in 1963. In block elimination a polyhedron called the projection cone
is defined whose extreme rays can then be used to find the defining halfspaces of
the projection [15]. While there exist efficient methods for computing these extreme
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rays, (e.g. [16–18]), this approach may generate a large, and possibly exponential,
number of redundant inequalities. It is also possible to enumerate the vertices of the
polytope, compute their projection and then calculate the convex hull of the result.
This approach can be efficient if there is a very small number of vertices, although it
is possible that there may be an exponential number of vertices. The final approach
enumerates the facets of the projection directly using a gift-wrapping approach [19,
20] and has been shown to be very efficient for a large class of polyhedra.

While a great deal has been published on projection and (vector-valued) paramet-
ric linear programming individually, to the best of the authors’ knowledge, nothing
has been published directly relating these two topics before. However, in a private
communication with D. Klatte1 it was suggested that Fourier elimination was used to
solve rudimentary PLPs in the 1970s, although no literature could be found on this
topic. The interpretation of one dimensional parametric programming as projection
appears in several texts [21, 22], although the multi-dimensional case has not been
covered in the literature.

The remaining sections of this paper are organized as follows. Section 2 demon-
strates the computation of parametric linear programs using a projection algorithm.
Section 3 deals with the converse: a PLP is formulated whose output provides a de-
sired projection. An example is given in Sect. 4 and final conclusions can be found in
Sect. 5.

1.1 Definitions and Notation

A polyhedron is the intersection of a finite number of closed halfspaces,

P � {x ∈ R
n | Ax ≤ b}.

A polytope is a bounded polyhedron. If A ∈ R
m×n is a matrix and E ⊆ {1, . . . ,m} is

a set of row indices, then AE is the matrix formed by the rows of A whose indices
are in E. If E = {i} is a singleton, then we will write Ai for A{i}. Let

P � {x | Ax ≤ b}
be a polyhedron where b ∈ R

m and E = {1, . . . ,m}. The inequality Aix ≤ bi is re-
dundant for some i ∈ {1, . . . ,m} if {x | AE\{i}x ≤ bE\{i}} = P and irredundant oth-
erwise. If the set of inequalities Ax ≤ b that describe a polytope are irredundant, then
we call this description irredundant. Given a polyhedron P ⊆ X × Y, where X and Y

are subspaces, the projection of P onto X is defined as

πXP = {x ∈ X | ∃y ∈ Y, (x, y) ∈ P }.
Let g : U → R, where U ⊆ R

n. The epigraph of g is

epi(g) � {(u,w) ∈ R
n × R | u ∈ U, g(u) ≥ w}.

1Prof. Dr. D. Klatte, Institut für Operations Research, Universität Zürich, Moussonstrasse 15, 8044 Zürich,
klatte@ior.unizh.ch.
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2 Solving Parametric Linear Programs via Projection

In this section, we aim to solve the following parametric linear program:

V �(θ) = min
u

bT u (1a)

s.t. (θ, u) ∈ P, (1b)

where b ∈ R
n is a vector, θ ∈ Θ is the parameter and the constraints are defined by

the polyhedron P ⊆ Θ × U, where U = R
n and Θ = R

d . By ‘solving’ the PLP, we
mean computing an expression for the value function V �(·) and of an optimizer u�(·)
for each value of the parameter θ as well as a description of the admissible set πΘP .

Throughout this section we will make the assumption that the admissible set πΘP

is full-dimensional and that the PLP (1) has a finite optimizer for every admissible
value of the parameter θ ∈ Θ .

The availability of an algorithm to compute projections of polyhedra is assumed,
and this section will show how to use such an algorithm to solve PLP (1). Given
the matrices C and D and the vector b that define a polytope

Q � {(x, y) ∈ X × Y | Cx + Dy ≤ b},
the projection algorithm returns a matrix G and a vector g such that

πXQ = {x ∈ X | Gx ≤ g}.
The value function V �(·) is known to be continuous, piecewise affine and defined

over a union of d-dimensional polyhedral regions, which form a cover of the set of
admissible parameters πΘP [4]. In each region, the value function V �(·) is an affine
function of θ , and the optimizer is a set-valued function u�(·) : Θ → 2U [4]. Solving
a PLP therefore comes down to enumerating all such regions, as well as computing an
expression for V �(·) and u�(·) in each region. The following theorem demonstrates
that a projection operation can be used to solve a given PLP.

Theorem 2.1 Let the matrix G ∈ R
Nr×d and the vector g ∈ R

Nr define the following
irredundant description of the polyhedron:

{(θ, J ) ∈ Θ × J | 1J ≥ Gθ + g, θ ∈ πΘP }
= πΘ×J{(θ, J,u) ∈ Θ × J × U | J ≥ bT u, (θ,u) ∈ P }, (2)

where 1 = [ 1 · · · 1 ]T is the vector of all ones, the set J is the real line R and the
vector b and the polyhedron P are as defined in PLP (1). The solution of PLP (1) is
defined over the following polyhedral regions:

Ri = {θ ∈ Θ | 1(Giθ + gi) ≥ Gθ + g, θ ∈ πΘP }, ∀i ∈ {1, . . . ,Nr}.
In the region Ri , the value function V �(·) and the optimizer u�(·) are

V �(θ) = Giθ + gi, ∀θ ∈ Ri,

u�(θ) = {u | bT u = Giθ + gi, (θ, u) ∈ P }, ∀θ ∈ Ri.
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Fig. 1 Illustration of calculating a PLP using a projection operation

Proof We will proceed as in [23, Proposition 1.18] by constructing the epigraph of
the function V �(·) using the projection operation. Second, we will show that the value
function V �(·) and the polyhedral regions can be read directly from the epigraph and
that the optimizer u�(·) can be readily computed from the expression for V �(·). The
proposed procedure is illustrated in Fig. 1.

We begin by introducing an auxiliary variable J ∈ J, where J = R, and rewriting
the PLP (1) as

V �(θ) = min
u,J

J, (3a)

s.t. (θ, J,u) ∈ P̃ , (3b)

where

P̃ � {(θ, J,u) ∈ Θ × J × U | J ≥ bT u, (θ,u) ∈ P }.
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The dependence on the decision variable u can now be removed through a projec-
tion operation,

V �(θ) = min
J

J, (4a)

s.t. (θ, J ) ∈ πΘ×JP̃ . (4b)

The polyhedron πΘ×JP̃ is clearly the epigraph of V �(·) and is unbounded above
in the variable J , bounded below by V �(·) and bounded by the admissible region
πΘP in the variable θ . It follows that the epigraph can be written as

epi(V �) = πΘ×JP̃ = {(θ, J ) ∈ Θ × J | 1J ≥ Gθ + g, θ ∈ πΘP } (5)

for some matrix G ∈ R
Nr×d and vector g ∈ R

Nr , which are returned by the projection
algorithm.

The goal is now to use the epigraph epi(V �) to compute the critical regions and
the functions V �(·) and u�(·) for a given admissible parameter θ ∈ πΘP .

From (4)–(5), the value function is given by

V �(θ) = max
i∈{1,...,Nr }

Giθ + gi. (6)

The value function is clearly piecewise affine and each of the m polyhedral regions
in which it is affine is given by

Ri � πΘ({(θ, J ) ∈ Θ × J | Giθ + gi = J } ∩ πΘ×JP̃ )

= {θ ∈ Θ | 1(Giθ + gi) ≥ Gθ + g, θ ∈ πΘP }, ∀i ∈ {1, . . . ,Nr}.
By definition, the optimizer in the ith region is then given by the points u ∈ U that
achieve the value function

u�(θ) = {u ∈ U | bT u = V �(θ), (θ, u) ∈ P }
= {u ∈ U | bT u = Giθ + gi, (θ, u) ∈ P }, ∀θ ∈ Ri, i ∈ {1, . . . ,Nr}. (7)

�

Remark 2.1 The assumption is not made that the projection algorithm returns an irre-
dundant description of the projection. However, the regions resulting from redundant
inequalities of the projection will be empty in Theorem 2.1 and so in general an irre-
dundant description would be preferred.

Note that the optimizer u� : Θ → 2U is in general a set-valued function. From (7)
and (6), one can see that it is also continuous, since the value function V � is single-
valued and continuous. Section 2.1 shows how to modify the problem formula-
tion such that a single-valued, continuous selection is made from the set of opti-
mizers. i.e. a function û�(θ) : Θ → U is computed such that û�(θ) ∈ u�(θ) for all
θ ∈ Θ .
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Remark 2.2 If the optimizer is single-valued in a given region, it is often desir-
able to write it as an affine function of θ . This can easily be achieved by solving
the PLP (1) once for each region for a fixed value of the parameter that has been
selected from the interior of the given region. If the constraint polyhedron P is de-
fined as

P = {(θ, u) ∈ Θ × U | Cu + Dθ ≤ b}
and if the active constraints at the optimum are E, then the optimizer in the region Ri

is given by [24]

u�(θ) = C
†
E(bE − DEθ), ∀θ ∈ Ri,

where † denotes the Moore-Penrose pseudoinverse.

2.1 Degeneracy

A region Ri is called dual-degenerate if the optimizer u�(θ) is set-valued for some θ

in the relative interior of Ri . Some applications require that there be a single, unique
optimizer such as in many control problems, where the optimizer is the control input
[5, 24]. Methods for obtaining a unique optimizer for PLPs were presented in [11, 25].
The solution in [25] is similar to that proposed here in that the author solves in the
degenerate region Ri , a parametric quadratic program with a positive definite cost,
which guarantees a unique solution. In [11] the problem is symbolically perturbed
such that the perturbed problem is no longer dual degenerate. It should be noted that
both of these approaches guarantee that the selected optimizer will be continuous,
which is a valuable property in many applications.

A unique solution can also be guaranteed through the recursive application of
the procedure introduced in this paper, as detailed in the following. If Ri is a dual
degenerate region and V �(θ) = Giθ + gi is the value function in the region Ri , then
we solve the following parametric linear program over the set of optimizers in that
region:

f (θ) = min
u

b̌T u, (8a)

s.t. (θ, u) ∈ P, (8b)

bT u = Giθ + gi, (8c)

θ ∈ Ri, (8d)

where b̌ is any nonzero vector, different from b.
The parametric linear program (8) is defined only for θ ∈ Ri and the solution

is clearly optimal for PLP (1). Further, if b̌ is selected such that it is not perpen-
dicular to any edge of P , then PLP (8) will not be dual-degenerate and the so-
lution will be single-valued. This assumption can normally be met by choosing
b̌ randomly, or can be guaranteed by treating it as a symbolic perturbation vec-
tor [11].
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3 Solving Projection via Parametric Linear Programming

In this section we further investigate the relationship between projection and para-
metric programming by developing a method of computing projections given any
parametric linear programming algorithm that takes as input the data of PLP (1) and
returns a piecewise-affine description of the value function V �. Specifically, given a
polyhedron P ⊆ X × Y, we aim to compute an irredundant description of the projec-
tion πXP using an algorithm that can compute the solution to a PLP. In this section,
we will define the polyhedron P using the matrices C ∈ R

n×d and D ∈ R
n×k and the

vector b ∈ R
n as

P � {(x, y) ∈ X × Y | Cx + Dy ≤ b},
where X = R

d and Y = R
k .

We begin with the projection lemma, which is often attributed to Černikov [14]
and can be derived directly from Farkas lemma (see for example [3]).

Lemma 3.1 (Projection Lemma) If P = {(x, y) ∈ X × Y | Cx + Dy ≤ b} is a poly-
hedron, then the projection of P onto X is

πXP = {x ∈ X | wT Cx ≤ wT b, ∀w ∈ W }, (9)

where W is called the projection cone and is defined as

W � {w ∈ R
n | DT w = 0, w ≥ 0}.

One standard approach to computing the projection is to first enumerate the ex-
treme rays of the projection cone W using any number of standard tools (for exam-
ple [16, 17]), write down the projection πXP from (9), and then to remove redun-
dancies. This approach is often inefficient because many of the extreme rays of W

can generate redundant inequalities of the projection and for many problems there is
an exponential number of redundant inequalities generated. The procedure described
here uses a PLP to enumerate only those rays of the projection cone that generate
irredundant inequalities of πXP .

Lemma 3.2 If S is the set

S �
{
(α,β) ∈ R

d × R

∣∣∣∣ ∃w ∈ W,

[
α

β

]
=

[
CT

bT

]
w

}
(10)

and if P � {(x, y) ∈ X × Y | Cx + Dy ≤ b}, then

{x | αx ≤ b, (α,β) ∈ extrS, ‖[αT β ]‖2 = 1}
is an irredundant description of πXP , where extrS is the set of extreme rays of S.

Proof From Lemma 3.1 we can see that for every (α,β) ∈ S, the inequality αT x ≤ β

is satisfied for all x in the projection πXP , or in other words, it is valid. Furthermore,
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the set of coefficients of the irredundant inequalities of πXP is a subset of S. We
note that an inequality αT x ≤ β of πXP is irredundant if it cannot be written as the
positive combination of valid inequalities [27]. Equivalently, {t[αT β ]T | t ≥ 0} is an
extreme ray of S if and only if it cannot be written as a positive combination of other
elements of S. It follows that the extreme rays of S define the irredundant halfspaces
of πXP up to scaling of the ray. Finally, the constraint

‖[αT β ]‖2 = 1

simply chooses a particular scaling. �

The goal of computing all irredundant inequalities of πXP is now reduced to find-
ing all extreme rays of S. As will be seen shortly, the problem of finding all vertices
of a polytope (bounded polyhedron) can be posed as a parametric linear program and
therefore, if we wish to use a PLP, we must first bound the cone S. We assume a
vector a such that for every point (α,β) �= (0,0) in S we have 0 < [αT β ]a < ∞.
The existence of such a vector a is proven by the following lemma.

Lemma 3.3 If S is as defined in (10), then there exists a vector a such that 0 <

[αT β ]a < ∞ for all (α,β) �= (0,0) in S if a is in the set

{a ∈ R
d+1 | ‖a‖2 < ∞, ∃y ∈ Y, Dy ≤ [C b ]a}.

Proof Let a be in the set {a ∈ R
d+1 | ∃y ∈ Y, ‖a‖2 < ∞, let Dy ≤ [C b ]a} and let

w be in the projection cone W . Since w is positive, the inequality

wDy ≤ w[C b ]a
holds for all w. We have that wD = 0 for all w in W and recalling that

[αT β ] = w[C b ]
gives the desired result. �

Remark 3.1 An appropriate vector a� can be found by, for example, computing the
Chebychev center of the cone from Lemma 3.3, while restricting the radius to one,

(u�, a�, t�) = argmax
u,a,t

t, (11a)

s.t. Du − [C b ]a + ‖[D −C −b ]‖2
2t ≤ 0, 0 ≤ t ≤ 1, (11b)

where the 2-norm is taken row-wise and an appropriate a exists if and only if t > 0.

Remark 3.2 Note that the set S is the homogenization of the polar dual of πXP . As
such, if the polyhedron P is bounded, then a suitable vector a is given by

a = [0 . . . 0 1 ]T .

See [3] for a discussion on homogenizations and polar duals.
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The set S can now be bounded by the inclusion of the constraint [αT β ]a = 1,

S̄ �
{
(α,β)

∣∣∣∣ aT

[
α

β

]
= 1

}
∩ S. (12)

Since S is a cone, each ray of S intersects the hyperplane [αT β ]a = 1 exactly once,
and it is clear that there is a one-to-one correspondence between vertices of S̄ and
rays of S.

Before stating the main result of this section, the following standard result is
needed.

Theorem 3.1 x0 ∈ R
n is an extreme point of a polytope P if and only if, for some

vector c ∈ R
n, we have max{cT x | x ∈ P } = cT x0 > cT x for all x ∈ P, x �= x0.

Proof See for example [28, Sect. 7.2(d)]. �

The following theorem will allow the irredundant inequalities of the projection to
be computed using a parametric linear program.

Theorem 3.2 Let P � {(x, y) ∈ X × Y | Cx + Dy ≤ b} be a polyhedron. Consider
the following PLP:

V �(θ) = max
α,β

θT

[
α

β

]
, (13a)

s.t. (α,β) ∈ S̄, (13b)

where S̄ is as defined in (12). If the piecewise linear function V �(·) is defined over Nr

polyhedral regions and the cost in the ith region is given by V �(θ) = [Fi fi ]θ , then
an irredundant description of the projection of P onto X is given by

πXP = {x ∈ X | Fx ≤ f }.

Proof From Theorem 3.1, it can be seen that given a polytope Q, if argmax{cT u |
u ∈ Q} is computed for every cost vector c, then all vertices of Q will be enumerated.
One can see therefore that parametric linear program (13) will enumerate the vertices
of the set S̄ from (12).

For every vertex [αT◦ β◦ ]T of S̄ there exists a full-dimensional polyhedral set R

such that for all θ in R, the vertex [αT◦ β◦ ]T is the optimizer of PLP (13). As dis-
cussed in Sect. 2, the solution to a PLP is defined over precisely these regions. The
value function for all θ in region R is clearly

V �(θ) = [αT◦ β◦ ]θ = [Fi fi ]θ
and therefore the theorem follows directly from Lemma 3.1 and Theorem 3.1. �

Remark 3.3 The PLP given in Theorem 3.2 has the parameter in the cost, rather than
on the right hand side of the constraints as in Sect. 2, which is more common in the
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Fig. 2 Epigraph of PLP (15)
and regions Ri

literature. The PLP (13) can be written in a more common form by posing its dual

V �(θ) = min
y,t

t, (14a)

s.t. Dy + [C b ]at ≤ [C b ]θ. (14b)

Note also that the value function V � in (13) is piecewise linear, rather than piecewise
affine since the cost function θT [αT β ]T does not have an affine term.

4 Example

Consider the following PLP, which is motivated by the commonly used control ex-
ample of the double-integrator [29]:

V �(x) = min
u,s

1T s, (15a)

s.t. − γ ≤ Λx + Σu ≤ γ, (15b)

− Ψ s ≤ Λx + Σu ≤ Ψ s, (15c)

s ≥ 0, (15d)

where x ∈ X = R
2 and we have defined the following matrices for simplicity:

γ � [ 10 10 10 10 2 2 ]T Λ �
[

2 0 2 0 0 0
2 2 4 2 0 0

]T

, (16a)

Σ �
[

2 1 3 1 2 0
0 0 2 1 0 2

]T

Ψ �
[1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1

]T

. (16b)
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Fig. 3 Admissible region of
PLP (15), computed using
PLP (18)

(a) Critical regions, which are also the normal fan
of the polar dual of the projection

(b) Admissible region of PLP (15)

Equation (5) can now be used to formulate the PLP as a projection,

epi(V �) = πX×JP̃

= πX×J

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, J,u, s)

∣∣∣∣∣∣∣∣∣

−γ ≤ Λx + Σu ≤ γ

−Ψ s ≤ Λx + Σu ≤ Ψ s

s ≥ 0

J ≥ 1T s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

A plot of epi(V �) is shown in Fig. 2, along with the polyhedral regions Ri of the
PLP (15).
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The admissible region of the PLP (15) is given by the projection

πX{(x,U) | −γ ≤ Λx + ΣU ≤ γ }. (17)

This projection can be computed as in (13) through solving the following parametric
linear program:

V �(x) = max
λ

xT [ΛT −ΛT ]λ, (18a)

s.t. [ΣT −ΣT ]λ = 0, (18b)

λ ≥ 0, (18c)

where we have taken advantage of the admissible region being bounded to select
a = [ 0 1 ]T . Figure 3 shows the regions of the solution, as well as the corresponding
projection.

5 Conclusions

This note has shown how to use a parametric linear programming algorithm to com-
pute polyhedral projections and vice versa. Since many projection and PLP algo-
rithms are particularly suited to problems of a specific structure, this result will allow
a much larger range of both projection and PLP algorithms to be examined to find
one that matches the structure of a given problem. Furthermore, as both the input and
output of the two problems can be transformed from one to the other in polynomial
time, any efficient algorithm for solving PLPs is now an equally efficient algorithm
for solving the projection problem and vice versa.
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