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Abstract
Answering a question posed by Joseph Malkevitch, we prove that there exists a poly-

hedral graph, with triangular faces, such that every realization of it as the graph of a

convex polyhedron includes at least one face that is a scalene triangle. Our construction

is based on Kleetopes, and shows that there exists an integer i such that all convex i-
iterated Kleetopes have a scalene face. However, we also show that all Kleetopes of

triangulated polyhedral graphs have non-convex non-self-crossing realizations in which

all faces are isosceles. We answer another question of Malkevitch by observing that a

spherical tiling of Dawson (Renaissance Banff, Bridges Conference, pp. 489–496, 2005)

leads to a fourth infinite family of convex polyhedra in which all faces are congruent

isosceles triangles, adding one to the three families previously known to Malkevitch. We

prove that the graphs of convex polyhedra with congruent isosceles faces have bounded

diameter and have dominating sets of bounded size.

Keywords Convex polyhedron � Simplicial polytope � Polyhedral graph � Isosceles

triangle � Monohedral polyhedron

1 Introduction

By Steinitz’s theorem, the graphs of three-dimensional convex polyhedra are exactly

the 3-vertex-connected planar graphs [14]. The faces of the polyhedron are uniquely

determined as the peripheral cycles of the graph: simple cycles such that every two

edges that are not in the cycle can be connected by a path whose interior vertices are

disjoint from the cycle [17]. We call such a graph a polyhedral graph, and if in addition

all faces are triangles we call it a triangulation. If G is the graph of a polyhedron P, we

call P a realization of G; here, P is required only to be non-self-intersecting, not

necessarily convex, but if it is convex we callP a convex realization. We may ask: what

constraints are possible on the shapes of the faces of P [2]?
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We call a realization or polyhedron isosceles if all faces are isosceles triangles,

and monohedral if all faces are congruent.1 Monohedral isosceles convex polyhedra

were investigated by Goldberg in 1936, who observed the existence of an infinite

family of these polyhedra (beyond the obvious example of the bipyramids), obtained

by gluing pyramids to the non-triangular faces of antiprisms [8] (Fig. 1, left). In

2001, Joseph Malkevitch described a triangulation that has no monohedral isosceles

convex realization [11]; in response, Branko Grünbaum described a triangulation

that has no monohedral realization, regardless of convexity of the realization and

regardless of face shape [10]. However, Grünbaum’s triangulation can be realized

with all faces isosceles or equilateral (Fig. 1, right). More recently, Malkevitch has

asked again which triangulations have isosceles convex realizations, not required to

be congruent, and whether all triangulations have such a realization [12]. Isosceles

polyhedra have also been studied in connection with unfolding polyhedra into nets:

there exist non-convex isosceles polyhedra with all faces acute that have no such

unfolding, while it remains open whether all convex polyhedra have an

unfolding [3, 6].

In this work, we provide the following results:

• We prove that some triangulations have no convex isosceles realization. We use

the idea of a Kleetope, a construction named after Victor Klee in which a

polyhedron or polyhedral graph is modified by gluing a pyramid onto each

face [9]. We show that repeating the Kleetope construction a bounded number of

times, starting from any polyhedral graph, will produce a triangulation that has

no convex isosceles realization.

• We prove that the triangulations produced by this construction, and more

generally all the Kleetopes of triangulations, have non-convex isosceles

realizations.

• We answer an open question posed by Malkevitch [12] by finding a fourth

infinite family of monohedral isosceles convex polyhedra, different from three

previously known infinite families.

• We investigate the structure of monohedral isosceles convex polyhedra with

many faces, proving that they must have very sharp apex angles, bounded graph

diameter, and bounded dominating set size.

2 Preliminaries

2.1 Kleetopes and Shortness

If G is a polyhedral graph, then its Kleetope is another polyhedral graph, obtained

by adding to G a vertex for each face of P, adjacent to every vertex of the face. We

denote the Kleetope by KG, and we denote the result of repeating the Kleetope

operation i times by KiG. For instance, Fig. 2 (left) shows a convex realization of

1 This terminology should be distinguished from isohedral polyhedra, in which every two faces are

symmetric to each other.

123

1248 Graphs and Combinatorics (2021) 37:1247–1269



K2O, where O ¼ K2;2;2 is the graph of an octahedron. Geometrically, a realization of

a Kleetope can be obtained from a realization of G by attaching a pyramid to each

face of G. When G is a triangulation, every convex realization of KG leads to a

convex realization of G, obtained by removing the added vertices of KG. (In the

non-convex case, this removal may lead to self-intersections. The property that G is

a triangulation and not just an arbitrary polyhedral graph is needed to ensure that

each pyramid has a flat base.)

Kleetopes are closely related to stacked polytopes, the polytopes generated by

gluing tetrahedra or higher-dimensional simplices face-to-face. The Kleetope of a

tetrahedron, and the Kleetope of a stacked polytope, is another stacked polytope.

However Kleetopes of other polyhedra such as octahedra are not stacked, and gluing

Fig. 1 Left: a polyhedron of Goldberg [8], with 100 congruent isosceles triangle faces. Right: a
triangulation of Grünbaum that cannot be realized with all faces congruent [10], realized as a convex
polyhedron with edges of two lengths, and with isosceles and equilateral triangle faces

Fig. 2 Left: iterated Kleetope K2O of an octahedron O. Right: its non-convex isosceles realization

123

Graphs and Combinatorics (2021) 37:1247–1269 1249



tetrahedra to some but not all faces of a stacked polytope produces another stacked

polytope that is not in general a Kleetope.

One of the earliest applications of Kleetopes was in the construction of

triangulations in which all paths or cycles are short. If G is a triangulation with n
vertices, then it has 2n� 4 triangles and KG has 3n� 4 vertices. However, in a

simple cycle of KG, no two vertices of KG n G can be adjacent, and replacing each

such vertex by the edge between its two neighbors in G produces a simple cycle of

G. Therefore, if the longest simple cycle in G has length c, then the longest simple

cycle in KG has length 2c. Thus, the cycle length only increases by a factor of two,

while the number of vertices increases by a factor converging (for large n) to three.

Iterating this process produces n-vertex triangulations in which the longest path or

cycle has length Oðnlog3 2Þ [13], and iterating it a bounded number of times produces

the following result in the form that we need it:

Lemma 1 For every e there is an i such that, for all polyhedral graphs G, the

longest simple cycle in KiG includes a fraction of the vertices of KiG that is less
than e.

Proof If G is a polyhedral graph, KG is simplicial and has at least 8 vertices. Each

subsequent iteration of the Kleetope operation multiplies the number of vertices by

at least 5/2 and multiples the longest cycle length by at most 2, so we may take i to

be 1 þ log5=4 1=e. h

2.2 Discrete Gauss Map

The discrete Gauss map of a polyhedron (in a fixed position in R3) maps each feature

of the polyhedron to a set of three-dimensional unit vectors, the outward-pointing

perpendicular vectors of supporting planes of the polyhedron (planes that intersect its

boundary but not its interior) that are tangent to the polyhedron at that feature. The set

of all unit vectors forms a unit sphere, the Gauss sphere, on which each face of the

polyhedron is mapped to a single point, each edge of the polyhedron is mapped to an

arc of a great circle, and each vertex of the polyhedron is mapped to a convex region

bounded by arcs of great circles. That is, the Gauss map is a dimension-reversing map

from the features of the given polyhedron to features of a polygonal subdivision of the

sphere, sometimes called the spherical dual of the polyhedron [15].

We refer to distances along the surface of the Gauss sphere as geodesic distance,

and the maximum distance between any two points in a given set of unit vectors on

the sphere as geodesic diameter. If the Gauss map takes two adjacent faces of the

polyhedron to points whose geodesic distance is d, then the dihedral angle of the

faces is exactly p� d.

3 Nonexistence of Convex Isosceles Realizations

In this section we prove that iterated Kleetopes (with a sufficiently large number of

iterations) do not have a convex realization with all faces isosceles. Our proof

proceeds in stages, where each stage adds more iterations to the Kleetope and
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proves the existence of a face whose shape and neighborhood is more strongly

constrained, until the constraints are sufficient to rule out isosceles triangles as

faces. We will eventually show that in the final stage of the Kleetope construction

process, it will be necessary to glue on a triangular pyramid with an obtuse base

triangle, isosceles faces other than the base, and small (very sharp) dihedral angles

at the base edges of the pyramid. However, pyramids with these properties do not

exist, as the next subsection shows.

3.1 Isosceles Pyramids with Obtuse Bases

Every vertex of every convex polyhedron has an incident edge with dihedral angle

[ p=3, but in some polyhedra (for instance flattened pyramids) these large dihedral

angles avoid one of the faces. The main result of this section is that in tetrahedra

with one face obtuse and the rest isosceles, the obtuse face cannot be avoided by the

large dihedrals:

Lemma 2 Let T be a tetrahedron in which one face F is obtuse, and the other three
faces are isosceles. Then at least one of the dihedral angles on an edge of F is
greater than p=3.

Proof We divide into cases according to how the base and apex of each isosceles

triangle are arranged relative to F.

Two bases on

F.

If at least two of the isosceles triangles have their base on an edge

of F, then the three edges of T that are disjoint from F have equal

length, and the vertex of T where these edges meet lies on a line

perpendicular to F through the circumcenter of F. Because F is

obtuse, its long side separates the circumcenter from F, so the

dihedral of T on the long side of F is at least p=2. (See Fig. 3, left.

This case requires F to be obtuse.)

Two shared

bases.

If two of the three isosceles triangles share a base edge with each

other, then in each of them one of the two equal sides is an edge of

F. The third isosceles triangle has edges of these lengths, equal to

the lengths of two edges of F, so it is congruent with F, and rotated

from F around the edge e that it shares with F. Figure 3 (right)

depicts the case where the shared edge is the base of the isosceles

triangle, but it could also be one of the sides. Because the two

triangles on e are congruent, the vertex figure of T at either end-

point of e (the intersection of T with a sufficiently small sphere

centered on that point) is a spherical isosceles triangle. Like any

spherical triangle its angles sum to greater than p so one angle is at

least p=3. This large angle is either the dihedral at e (the apex of

the spherical isosceles triangle) or is the equal dihedral at the other

two edges meeting at the same vertex of T, one of which is an edge

of F. (This case does not require F to be obtuse, and can produce

dihedral angles arbitrarily close to p=3.)
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Long side. If the long edge e of F is one of the two equal sides of one of the

isosceles triangles, consider the tetrahedron T 0 formed as the

convex hull of F and a rotated copy of F by an angle of p=3

around e (on the same side of the plane through F as T). As in the

case of two shared bases, the vertex figures at the endpoints of e
are spherical isosceles triangles, and the choice of p=3 as rotation

angle implies that, in T 0, all the dihedrals at the endpoints of e
(which include all three dihedrals on the edges of F) are at least

p=3.

The two endpoints of e are the unique farthest pair of points in T 0,
so the edge of T of equal length to e must end at a point outside T 0.
This point is separated from T 0 by one of the face planes of T 0,
which meets F at one of its edges. The dihedral of T on that edge is

greater than the dihedral of T 0, which is in turn at least p=3.

Two shared

apexes.

If two of the isosceles faces of T both have their apex at the same

vertex v of F, then the three edges of T meeting at that vertex all

have the same length ‘. As two of them are edges of F, F must be

isosceles, with these edges as its sides. We can view this case in

projection onto a plane perpendicular to F through its center line.

Of the three equal shared edges, the edge g that is disjoint from

F lies in this plane, while the other two lie in symmetric positions

on either side of it, and project to a point p at the midpoint of the

base of F. Triangle F itself projects to a line segment s connecting

v to p. Let q be the non-shared endpoint of edge g (Fig. 4, left).

Then, in triangle vpq, edge vq is longer than edge vp, because vp is

the perpendicular projection onto a plane of a three-dimensional

line segment of equal length to vq. Let h ¼ maxð\qvp;\qpvÞ, the

larger of the two angles on side s of this triangle. Then h� h�

where h� is the base angle of the isosceles triangle obtained by

rotating g so that q lies on the perpendicular bisector of s (keeping

the length of edge vq the same). Because vq is longer than vp,

h� h� [ p=3. If h ¼ \qpv, it is also the dihedral angle on the base

of F, which is therefore greater than p=3. If h ¼ \qvp, it is less

than the dihedral angles on the two sides of F (because these sides

are not perpendicular to the plane of projection), which are

therefore both greater than p=3. (This case does not require F to be

obtuse.)
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None of the

above.

In the remaining case, let a, b, and c be the sides of F, with c being

the longest side, and let d, e, and f be the other three sides of T,

with d opposite a, e opposite b, and f opposite c. In order to avoid

the case of a long side, isosceles triangle cde must have c as its

base, so d and e must have equal length. In order to avoid the cases

of a shared base or a shared basis, exactly one of the other two

triangles must have d or e as its base; by symmetry, we may

assume without loss of generality that isosceles triangle aef has

e as its base (so a and f are equal) and that isosceles triangle bdf
has f as its base (so b, d, and e are equal). Figure 4 (right) shows

this case schematically (not to scale), with edges that in T have

equal lengths depicted as having equal colors and textures. We

divide into sub-cases according to the comparison between these

lengths:

• If a and f have the same length as b, d, and e, then we would be in the case of two

shared bases (shared at f).
• If a and f are shorter than b, d, and e, then consider the tetrahedron T 0 formed

from T by lengthening a and f to have the same length as b, d, and e, but keeping

all other edge lengths the same. To see that a tetrahedron T 0 with these lengths

exists, consider Fig. 5, in which the two isosceles triangles cde and aef have

been folded onto the same plane. In this plane, in order for triangle aef to be

isosceles, its apex must lie on e?, the perpendicular bisector of its base edge e. In

order for a to be shorter than e, the apex must lie within the left circle, with e as

radius. And in order for these two triangles to be realizable as faces of a

tetrahedron in which edges b and d have equal length, the apex of triangle aef

e

Fig. 3 Left: the case of Lemma 2 with two bases on triangle F, viewed in projection onto the plane
containing F. The three edges of T disjoint from F (red) have equal lengths, and meet on a line
perpendicular to the plane of F through the circumcenter of F (seen in projection as the small yellow
circle). Right: the convex hull of two congruent isosceles triangles rotated around a shared base edge
(red), used in the ‘‘two shared bases’’ case of the lemma. The obtuse triangle F is the back face of the
tetrahedron, and shares edge e with the congruent front face. At each endpoint of e, either the dihedral on
e or the other two equal dihedrals are greater than p=3
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must also lie within the right circle, with d as radius, for if it did not then this

apex would be too far away from the center of the circle. Thus, the apex lies

within the lens formed by the intersection of the two circles. If we continuously

lengthen a and f, keeping them equal to each other, then the apex of the

lengthened triangle will move along e?, remaining within the lens and moving

rightward, until it reaches the point where e? crosses the right boundary of the

lens from e, which (by the left-right symmetry of the two circles and the lens

they form) is an arc of the left circle. When it reaches this boundary, the

lengthened edges a and f will have the same length as e, as desired, but the apex

of eaf will still be interior to the circle with d as radius. On the other hand, in the

three-dimensional tetrahedron, this same growth of a and f can only be stopped if

it reaches a situation where T 0 becomes completely flat, which can only happen

when the apex reaches an arc of the right circle. Since it reaches the desired

position on an arc of the left circle while remaining entirely within the right

circle, this continuous growth process can always reach a realization T 0 with the

stated edge lengths.

Tetrahedron T 0 has two equilateral triangle faces aef and bdf, and two isosceles

faces with apex angle greater than equilateral, abc and cde (although these faces

need not be obtuse). The same analysis as the case of two shared bases shows

that, in T 0, the dihedrals on a, b, d, and e are all greater than p=3. Lengthening a
and f causes the dihedral on b to decrease (among other changes), so in T as well,

b is greater than p=3.

• If a and f are longer than b, d, and e, then consider the tetrahedron T 0 formed

from T by lengthening b to equal a and f, keeping all other edge lengths the

same. T 0 can be constructed (and its existence demonstrated) by continuously

rotating triangle aef around edge e, while keeping triangle cde fixed in space. In

the initial position of this rotation (tetrahedron T), the vertex where a, b, and f
meet is closer to the junction of c and d than it is to the junction of c and e. If it

rotated to the point where the two triangles form a flat dihedral angle, then in this

flat configuration (because triangle aef is isosceles) the same vertex would be

closer to the junction of c and e. By the intermediate value theorem there exists a

position within this rotation where it is equally far from the two endpoints of c.

plane of projection

F

p
v

s

g

q

a b

c

f

de

Fig. 4 Left: notation for the case of Lemma 2 of two shared apexes. Right: notation for the final ‘‘none of
the above’’ case, shown schematically with equal-length edges in equal colors
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As one of these two equal distances is the (unchanging) length of edge a and the

other is the (growing) length of edge b, we have found a realization of T 0 where

edge b is the desired length and all other edge lengths are unchanged. Then T 0

falls into the case of two shared apexes, although in T 0 triangle abc may not be

obtuse. From the analysis of that case, T 0 has a dihedral greater than p=3 on at

least one of a and c. Lengthening b causes these two dihedrals to decrease, so in

T as well, at least one of a and c has a dihedral greater than p=3.

h

3.2 Kleetopes Have Faces Without Sharp Dihedrals

We define the sharpness of a face F of a polyhedron to be p� h where h is the

smallest dihedral angle of an edge of F. Equivalently, on the Gaussian sphere, the

sharpness of F is the length of the longest edge connecting the Gaussian image of F
to one of its neighbors. In a face with small sharpness, all dihedrals are close to p. In

terms of this quantity, Lemma 2 from the previous section can be interpreted as

stating that one cannot glue an isosceles pyramid onto an obtuse triangle of

sharpness less than p=3 while preserving the convexity of the resulting polyhedron.

It is possible for a convex polyhedron to have arbitrarily many faces which all

have large sharpness; consider, for instance, the realizations of bipyramids (Fig. 7,

left). As we show now, this is not true of sufficiently-iterated Kleetopes.

Lemma 3 For every e there exists i such that, for all polyhedral graphs G and all

convex realizations of KiG, the realization includes at least one face whose
sharpness is � e.

c

e
d

a

f

e

Fig. 5 Illustration for the existence of tetrahedron T 0 when a ¼ f\b ¼ d ¼ e\c
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Proof Construct an arrangement of c ¼ Oð1=eÞ great circles on the Gauss sphere

that partition the sphere into cells with geodesic diameter at most �, for instance by

choosing two points on the sphere at geodesic distance p=2 and choosing for both

points a collection of great circles crossing each other at equal angles at that point.

By Lemma 1, let i be such that the longest cycle in KiG includes a fraction less than

1/3c of the edges of KiG. We claim that i has the stated property.

To prove this, consider any given choice of G and convex realization of KiG, and

rotate the arrangement of great circles (if necessary) so that none of them passes

through a vertex of the spherical dual of KiG. Then each of the great circles passes

through a sequence of edges and faces of the spherical dual corresponding to a

simple cycle in KiG, the cycle formed as the silhouette of KiG in a perpendicular

projection onto the plane of the great circle. By Lemma 1 and the choice of i, these

silhouette cycles together use a fraction less than 1/3 of the edges of KiG. It follows

that at least one face F of KiG is bounded by edges that are not in any silhouette

cycle, for if all faces had at least one edge in a cycle the total fraction of edges in

cycles would be at least 1/3. The Gaussian images of F and its three neighboring

triangles in KiG are all in the same cell of the arrangement of great circles, of

geodesic diameter at most e. It follows that the edge from the Gaussian image of F
to the farthest of its neighbors has length at most e. h

If we glue a pyramid onto a face F of a convex polyhedron to produce another

convex polyhedron (as happens for realizations of Kleetopes), the faces of the

pyramid that replace F can have greater sharpness than F had. However, the

sharpness cannot increase too much:

Lemma 4 Let P be a triangulation, let Q be a convex realization of KiP for some i,
and let F be a face of P that (in the realization of P derived from Q by removing the
vertices of Q n P) has sharpness e. Then every face of Q formed by subdividing F
has sharpness at most 2e.

Proof On the Gaussian sphere, the image of F is a point, incident to three great

circle arcs of length at most e corresponding to the dihedrals along the edges of F.

The spherical triangle T forming the convex hull of these three arcs has geodesic

diameter at most 2e, by the triangle inequality. Subdividing F to form Q replaces the

Gaussian image of F (a single vertex in the spherical dual of P) by a subgraph,

attached to the rest of the graph at three vertices on the same three arcs. The

sharpness of any face of the subdivision equals the length of the longest edge

incident to its Gaussian image, which may either be an edge of this subgraph or one

of the three edges connecting this subgraph to the rest of the graph. All of these

edges lie within spherical triangle T, so their lengths are at most the diameter of T,

which is at most 2e. h

3.3 Kleetopes Have Obtuse Faces

The tetrahedron formed as the convex hull of the origin and the three perpendicular

unit basis vectors of three-dimensional space has the same shape as the truncated
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corner of a cube, with three isosceles right triangle faces and one equilateral face.

When the right triangle faces are projected perpendicularly onto the equilateral face,

their projections are isosceles triangles with apex angle 2p=3 and base angles p=6.

The dihedral angles of this tetrahedron are p=2 between pairs of right-triangle faces,

and 1
2
cos�1ð�1

3
Þ � 0:304 p between the right triangles and the equilateral triangles;

we use u to denote this latter angle. The familiar geometry of this example forms

the extreme case for the following lemma:

Lemma 5 Let T be a triangle in R3, let e be an edge of T, and P be a plane through
e forming an angle less than u with the plane of T. Suppose that the perpendicular
projection T 0 of T onto P is a triangle T 0 whose largest angle is at least 2p=3, at the
vertex opposite e. Then T is obtuse.

Proof Increasing the angle between the plane of T and P can only increase the

largest angle of T 0, so we may assume without loss of generality that the angle

between the plane of T and P is exactly u, and prove that in this case T is either right

or obtuse. In the plane of T, the points p that form an acute vertex of a triangle with

opposite edge e are separated from the points that form an obtuse vertex by a

semicircle having e as its diameter. The midpoint of this semicircle is a point that,

together with e, forms an isosceles right triangle, which can be equated with one of

the right-triangle faces of the truncated cube corner. Because T and P have angle P,

the corresponding equilateral triangle face of the truncated cube corner lies in plane

P, and by the symmetry of this truncated cube corner, the projection of the

semicircle midpoint onto P is the center point c of this equilateral triangle, which

has e as one of its three sides. The projection of the semicircle itself onto P is (like

all projections of semicircles) a semi-ellipse. By symmetry it must be the semi-

ellipse that has e as its diameter and that passes through c (the boundary of the outer

yellow region in Fig. 6).

points that project
from an acute vertex

points that project
to a vertex of angle > 2π/3

e

c

Fig. 6 A semi-ellipse (projected
from a semicircle) and a circular
arc through the same three
points (endpoints of e and the
center c of an equilateral triangle
on edge e) separate points that
project from an acute angle and
points that project to an angle
[ 2p=3 in the proof of
Lemma 5
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In P, the points q that form a vertex of angle [ 2p=3 triangle with opposite side

e are separated from the points that form a vertex of angle \2p=3 by a circular arc

of angle p=3 connecting the two endpoints of e through c (the boundary of the inner

blue region in Fig. 6). This circular arc lies inside the semi-ellipse, except for the

endpoints of e (where the circle and ellipse, if continued, would cross) and the point

c where the two curves are tangent (counting as a double contact and using up all

four possible points of intersection of a circle and ellipse). For T 0 to have angle at

least 2p=3 opposite e, its vertex must be on or inside the circular arc, and therefore

either inside the semi-ellipse or on it at c. To project to a point on or inside the semi-

ellipse, the vertex of T opposite v must be on or inside the semi-circle, and therefore

T must be obtuse or right. h

Using this lemma, we can prove that sufficiently iterated Kleetopes have an

obtuse face, and, moreover, one with low sharpness:

Lemma 6 Let e be a positive number with e\u, let i be an integer large enough

that, by Lemma 3, every convex realization of KiP has a face of sharpness less than

�, and let P be any triangulation. Then every convex realization of Kiþ1P has an
obtuse-triangle face of sharpness less than 2e.

Proof Given a realization of Kiþ1P, form from it a realization of KiP by removing

the extra vertices added in going from KiP to Kiþ1P, and apply Lemma 3 to this

realization to find a face F of KiP whose sharpness is less than e. Now consider the

three faces that subdivide F in Kiþ1P, and project these three faces perpendicularly

onto the plane of F. Their projections must be contained within F, for otherwise the

angle between one of these faces and F would be greater than p=2, too big to form a

convex dihedral with the neighboring face across the edge of F given the low

sharpness of F itself. Therefore, within the plane of projection, these three projected

triangles subdivide F and meet at a shared vertex interior to F. If F0 is the face of

Kiþ1 whose projection has the largest angle at this shared vertex, then this angle is

least 2p=3. By the assumption on the sharpness of F, the plane of F0 makes an angle

less than u with the plane of F, so we can apply Lemma 5 to F0 and its projection.

By this lemma, F0 is obtuse, and by Lemma 4 its sharpness is less than 2e. h

3.4 Iterated Kleetopes Cannot be Convex and Isosceles

Combining the results from this section, we have:

Theorem 7 There exists an integer j such that, for every triangulation P, every

convex realization of KjP has a non-isosceles face.

Proof Let i be an integer large enough that, by Lemma 3, every convex realization

of KiP has a face of sharpness less than p=6, and let j ¼ iþ 2. Let P be an arbitrary

triangulation. Consider any convex realization of KjP, and the convex realization of

Kj�1P ¼ Kiþ1P obtained from it by deleting the last layer of added vertices. By

Lemma 6, the realization of Kj�1P has an obtuse face F of sharpness less than p=3.

If the realization of KjP had all-isosceles faces, Lemma 2 (applied to the
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tetrahedron formed by F and the three isosceles triangles that subdivide it) would

show that one of these isosceles triangles lies in a plane making an angle greater

than p=3 with the plane of F. Because this angle is greater than the sharpness of F, it

is impossible for such a triangle to make a convex dihedral angle with whatever

other triangle neighbors it across the edge it shares with F, contradicting the

assumption that the realization is convex. This contradiction shows that the

assumption that the realization has only isosceles triangles as its faces cannot be

true. h

4 Non-Convex Realization of Kleetopes

In this section we prove that, whenever G is a triangulation, KG has a non-convex

realization in which all faces are isosceles. In particular, this is true of the polyhedra

that we constructed as examples that have no convex isosceles realization.

Theorem 8 Let P be a convex polyhedron whose graph G is a triangulation.
Choose distance R, for each face f of P place a new vertex at distance R from each
of the three vertices of f, separated from P by the plane of f, and replace f by three
triangles through the new vertex and two of the three vertices of f. Then for
sufficiently large values of R, the result is a non-self-crossing realization of KG, in
which all faces are isosceles triangles.

Proof Given any triangle f in three-dimensional space, two points at distance R
from the three vertices of f will exist whenever R is greater than the circumradius rf
of f. These two points are symmetric from each other across the plane of f, and the

constraint that this plane separates each new point from P uniquely determines the

placement used in the theorem. Therefore, whenever R is greater than maxf rf , the

construction given in the statement of the theorem is well-defined. Each new face is

a triangle with two sides of length R, so the isosceles shape of the faces is

immediate. The nontrivial part of the theorem is the claim that the resulting system

of triangles is non-self-crossing.

The new point p for f lies on a line through the circumcenter of f, perpendicular to

f. The circumcenter has distance � rf from each edge of f, and the new point is at

distance at least R� rf away from the plane of f, by the triangle inequality. It

follows that, although the dihedral angle between f and each triangle incident to p
may be obtuse (as happens when f itself is obtuse), it may not be very obtuse: it is

p=2 þ Oðrf =RÞ. By choosing R sufficiently large, we may make this angle as close

to p=2 as we desire.

We observe that the Voronoi diagram of the faces of P (the partition of the space

outside P into cells within which one face is nearer than all others) has cells

bounded by the planes bisecting the dihedral angles of P. Let h\p be the largest

dihedral angle of P. Then, as long as we choose R large enough that each dihedral

angle between a new triangle and the face f that it replaces is less than p� h=2, each

new point and its incident triangles will lie within the Voronoi cell of the face that it

replaces. Since these Voronoi cells are disjoint, the new triangles cannot cross each

other. h
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Figure 2 (right) depicts a non-convex isosceles realization of the iterated

Kleetope of the octahedron, obtained by this construction.

5 Congruent Isosceles Faces

There are only eight convex polyhedra with congruent equilateral triangle faces,

called deltahedra, but infinitely many non-convex deltahedra [7, 16]. Generalizing

this concept, Malkevitch [12] asks about convex polyhedra with congruent isosceles

triangle faces. He states that there are three known infinite families of these

monohedral isosceles convex polyhedra (leaving as a puzzle for the reader finding

these families) and poses as an open question whether there are any more. We

answer this question by identifying four families:

• The bipyramids are convex hulls of equally spaced points on a circle, together

with two additional points on the axis through the center of the circle, equally far

from it on each side (Fig. 7, left).

• Let X and Y be two arcs of circles, each equidistant from the endpoints of the

other arc, such that both arcs lie on the boundary of the convex hull of their

union. Then the convex hull of any finite set of points on both arcs that includes

the endpoints of each arc consists of equilateral triangles whose base connects

two consecutive points on one arc and whose apex is on the other arc. For any

two integers x� 2 and y� 2 it is possible to choose two arcs, such that xþ 1

equally-spaced points on arc X and yþ 1 equally-spaced points on arc Y all have

the same distance between consecutive points; for instance, as in Fig. 7 (right),

this can be done by selecting X and Y to be concentric semicircles on

perpendicular planes with a carefully-chosen ratio of radii. The convex hull of

the resulting point set has 2ðxþ yÞ congruent isosceles triangles as faces; we call

this shape a biarc hull.
• Goldberg [8] constructed an infinite family of convex polyhedra with congruent

isosceles faces by attaching pyramids to opposite faces of an antiprism (Fig. 1,

left). For an antiprism over a k-gon, the result has 4k faces. The cases k ¼ 4 and

k ¼ 5 can also be realized by equilateral triangle faces, producing a gyroelon-

gated square bipyramid and regular icosahedron respectively. As the name

Fig. 7 Left: bipyramid. Right: biarc hull
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‘‘Goldberg polyhedra’’ already refers to an unrelated class of polyhedra, we call

the general case an order-k gyroelongated bipyramid.

• In a gyroelongated bipyramids of odd order k, the faces can be partitioned into

two subsets, separating each pair of opposite faces. For certain realizations of

these polyhedra, the edges separating these two subsets form a non-planar

hexagon with order-6 symmetry. Twisting one of the two subsets by an angle of

2p=3 leaves this hexagon in the same position and results in another polyhedron,

which we call the order-k twisted gyroelongated bipyramid (Fig. 8). We detail

the construction below.

5.1 Twisted Gyroelongated Bipyramids

To understand the twisted gyroelongated bipyramids, it is helpful to into a little

more detail about Goldberg’s method for realizing order-k gyroelongated bipyra-

mids in such a way that all faces are congruent and isosceles. In Goldberg’s

construction, all of the points lie on a unit sphere, with the two pyramid apexes at its

poles and the other points spaced equally around two circles of equal and opposite

latitude. Goldberg chooses these latitudes so that the spherical angles of the great-

circle arcs on the sphere, connecting the points in the same pattern as the

polyhedron, are 2p=k at the apex of each triangle and ð1=2 � 1=2kÞp at each base

angle. In this way, k of these spherical triangles meet with total angle 2p at each

pole, and the five triangles meeting at each remaining point have total angle

Fig. 8 An order-25 twisted gyroelongated bipyramid
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ð2=k þ 4ð1=2 � 1=2kÞÞp ¼ 2p. The angular excess of each triangle, the amount by

which its total angle exceeds p, is p=k; for spherical triangles, the angular excess

equals the area, so the area of each triangle is exactly 1/4k times the surface area of

the entire sphere. The subdivision of the sphere into spherical triangles of this shape

can be transformed into a polyhedron by taking the convex hull of its vertices, and

(as is true whenever a spherical triangulation consists only of acute triangles) the

combinatorial structure of the resulting convex hull is the same as the spherical

triangulation. In this way, one obtains a gyroelongated bipyramid with congruent

isosceles faces that is, moreover, both inscribed in the unit sphere and circumscribes

another smaller sphere. The polyhedron illustrated in Fig. 1 (left) was constructed in

this way.

The symmetries of this polyhedron include a central symmetry in which each

vertex is directly opposite another vertex on a line through the centroid of the

polyhedron, and each face is directly opposite another face. Divide the resulting

polyhedron into two polyhedral surfaces by a non-planar hexagon through both

poles, separating each face from its opposite face. The same subdivision into two

surfaces can also be made on the spherical triangulation from which the polyhedron

was derived. On the surface of the sphere, at each pole, the hexagon subdivides

ðk � 1Þ=2 spherical triangles on one side from ðk þ 1Þ=2 spherical triangles on the

other side, so its two edges make an angle of ð1 � 1=kÞp with respect to each other

at the poles. At each non-pole vertex, the hexagon subdivides two spherical triangles

(meeting at their base) on one side from three spherical triangles (at two base angles

and an apex) on the other, so its angle is 2ð1=2 � 1=2kÞp ¼ ð1 � 1=kÞp. That is, this

hexagon lies on a sphere, has equal edge lengths, has equal angles, and splits the

sphere into two equal areas. It follows that it has order-6 symmetry: it can be twisted

by an angle of 2p=3 or 4p=3, or flipped and then twisted, to produce the same

hexagon. Applying the twist by an angle of 2p=3 to half of the triangles in

Goldberg’s spherical triangulation (leaving the other half fixed) produces another

spherical triangulation with congruent isosceles spherical triangles, which was

described in 2005 by Robert Dawson [5].

For k� 5, the isosceles triangles in Dawson’s spherical triangulation are acute

triangles, from which it follows that this is the spherical Delaunay triangulation of

its vertices. By a standard correspondence between spherical Delaunay triangula-

tions and convex hulls [4], this means that the polyhedron formed as the three-

dimensional convex hull of the vertices of the spherical triangulation has the same

combinatorial structure. That is, each vertex of the spherical triangulation is a vertex

of the convex hull, each edge of the spherical triangulation is an edge of the convex

hull, and each spherical isosceles triangle forming a face of the spherical

triangulation corresponds to a flat isosceles triangle forming a face of the convex

hull. This produces a new polyhedron, the twisted gyroelongated bipyramid, for

every odd k[ 5. For k ¼ 3 it produces a triangulation of a cube by some of the

diagonals of its squares (with all faces right and isosceles, but not forming a strictly

convex polyhedron) and for k ¼ 5 the twisting process leaves the regular

icosahedron unchanged.

in relation to the work of Dawson, we remark that (for any n� 2) it is also

possible to tile the sphere by 4n isosceles spherical triangles with base angle p=n
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and apex angle pð1 � 1=nÞ, meeting edge-to-edge in the pattern of a bipyramid.

(This is the spherical analog of the non-convex polyhedron depicted in Fig. 9.)

When n is odd, the resulting spherical triangulation again has a skew hexagon with

order-6 symmetry, and twisting one side of this skew hexagon by an angle of 2p=3

leads to another spherical triangulation with congruent isosceles spherical triangles,

not listed by Dawson. However, because these spherical isosceles triangles are

obtuse, this spherical triangulation is not Delaunay, and it does not lead to an

isosceles convex polyhedron in the same way. Instead, it corresponds to a family of

non-convex isosceles polyhedra, depicted in Fig. 9. In Theorem 12 we will see

more strongly that (with finitely many exceptions) there is no convex polyhedron

with isosceles triangles in this pattern.

We note that removing a small number of strips of four triangles, from pole to

pole in one of the two halves of the twisted gyroelongated bipyramid, but preserving

the geometric shape of the remaining triangles, results in a polyhedral surface that is

less symmetric (there are different numbers of triangles on one of the two halves

than the other) but still obeys the conditions of Alexandrov’s uniqueness theorem

characterizing the metric spaces derived from the surfaces of polyhedra [1]: it is

topologically spherical and locally Euclidean except at a finite number of points of

positive angular defect, with total angular defect 4p. It follows from Alexandrov’s

theorem that the result is the surface of a convex polyhedron, but the theorem does

not tell us whether the edges of the polyhedron follow the edges of the triangles

from which the surface was derived, or are rearranged into a different combinatorial

structure. If the edges of the resulting polyhedron coincide with the edges of the

triangles, the result would be a generalized asymmetric form of the twisted

gyroelongated bipyramid, with different numbers of congruent isosceles triangles on

each of its two sides. We leave as open for future research whether this generalized

twisted gyroelongated bipyramid actually exists.

Fig. 9 A polyhedron with 16 faces, part of an infinite family of non-well-behaved non-convex
monohedral isosceles bipyramids in which every vertex has positive angular deficit
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5.2 Sharp Angles

The known infinite families of monohedral isosceles convex polyhedra all have very

sharp apex angles when they have large numbers of faces. This is not a coincidence:

as we show, in such a polyhedron with n faces, the apex angle must be O(1/n).

Our proof depends on two ideas: first, that in any convex polyhedron, the total

angular deficit (the amount by which the sum of angles at each vertex fall short of

2p, summed over all vertices) is exactly 4p; this is Descartes’ theorem on total

angular defect, a discrete form of the Gauss–Bonnet theorem. Second, in a

monohedral isosceles convex polyhedron, there are (usually) only a small number of

distinct types of vertex, as follows:

• If a vertex has only the apexes of isosceles triangles incident to it, we call it a

pyramidal vertex.

• If a vertex has two bases of isosceles triangles and one or more apexes incident

to it, we call it a semipyramidal vertex.

• If a vertex has only four bases of isosceles triangles incident to it, we call it a

basic vertex.

• If a vertex has four bases and one apex incident to it, we call it a semibasic
vertex.

As a shorthand, we call a convex polyhedron with congruent isosceles faces whose

vertices are only of these four types well-behaved.

Observation 9 At any vertex of a monohedral isosceles convex polyhedron, the
number of incident base angles of faces is even, and these angles can be grouped
together in pairs, adjacent across a shared base edge of two isosceles triangles.

Observation 10 In a monohedral isosceles convex polyhedron, a vertex incident to
four or more base angles can be incident to at most one apex angle, so the well-
behaved vertex types exhaust the possible vertices that can be incident to zero, two,
or four base angles.

Proof A vertex of a monohedral isosceles convex polyhedron with four or more

base angles can have only one incident apex angle, because four base angles and

two apex angles together add to 2p, too much for the vertex of a convex polyhedron.

The well-behaved vertex types allow arbitrarily many apex angles together with

zero or two base angles, and zero or one apex angles with four base angles, so they

include all the vertices that have at most four base angles and obey this constraint.

h

Lemma 11 In a semipyramidal vertex incident to exactly two apex angles of
isosceles triangles, with all incident triangles congruent and having apex angle
greater than p=2, the dihedral angle between the two incident apex angles is less
than p=2.

Proof Two isosceles triangles with apex angle h[ p=2 that meet on a shared side

and lie on perpendicular planes can be placed into a three-dimensional Cartesian
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coordinate system in which the apex is at point (0, 0, 0), the other endpoint of the

shared side is at point (1, 0, 0), and the two remaining vertices of the two triangles

are at points ðcos h; sin h; 0Þ and ðcos h; 0; sin hÞ. In this coordinate, the two non-

shared sides of the triangles have unit length, so the inner product of the two vertex

coordinates, cos2 h, gives the cosine of the angle between these two non-shared

sides, and this angle itself can be calculated as cos�1ðcos2 hÞ[ p� h. However,

two base angles of the same triangle can together span an angle of at most p� h, not

enough to connect two apex angles with this dihedral. Therefore, in order to form a

connected surface at the vertex, the dihedral must be smaller. h

Monohedral isosceles convex polyhedra with more than four base angles at some

vertices do exist. For instance, the Kleetopes of the regular tetrahedron, octahedron,

or icosahedron have six, eight, or ten bases meeting at some vertices respectively.

However, there are only finitely many such cases:

Theorem 12 There are only a finite number of triangulations that can be realized
as non-well-behaved monohedral isosceles convex polyhedra.

Proof Let P be such a polyhedron, with n faces. By Observation 10, P must have a

vertex v at which six or more base angles meet. Therefore, the base angle must be

less than p=3, from which it follows that the apex angle must be greater than p=3.

In P, as in any icosahedral polyhedron, the number of base angles of faces is

exactly twice the number of apex angles of faces, and because the large apex angle

allows at most five apex angles to meet at a vertex, there must be XðnÞ vertices with

at least half as many apex angles as base angles. According to Observation 10, such

a vertex can only be pyramidal or semi-pyramidal, with at most five incident faces.

In order to have total angular defect 4p, these vertices need to have angular defect

O(1/n). We distinguish the following cases:

• A semipyramidal vertex with one incident apex angle has angular defect exactly

p, which can only be O(1/n) if n is itself bounded.

• If there are XðnÞ semipyramidal vertices with two incident apex angles, then to

achieve angular defect O(1/n) for each of these vertices, the apex angle must be

p� 2d and the base angle must be d for some d ¼ Oð1=nÞ. Because these

vertices use equal numbers of apex and base angles, but the faces of the

polyhedron have twice as many base angles as apex angles, there must also be a

linear number of base angles that participate in other vertices with zero or one

incident apex angles. If there are k of these other vertices, then each apex angle

contributes less than p to the total angle of each of these other vertices, and all of

the base angles together contribute O(1) to the total angle, so the total angle is

� kpþ Oð1Þ, but in order to achieve total angular deficit at most 4p the total

angle must be �ð2k � 4Þp. Combining these two inequalities shows that k ¼
Oð1Þ and that, therefore, at least one of these other vertices has XðnÞ incident

base angles. At a vertex with XðnÞ incident base angles, by Observation 9, each

base angle incident to the vertex belongs to a pair of base angles that meet along

a shared side. The other endpoint of the shared side is the apex of the two

triangles meeting on this side. If n is large enough that this apex angle is
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[ 2p=3, then only two apexes can meet at a vertex, so it must be a

semipyramidal vertex. By Lemma 11, the dihedral angle between these two

consecutive base angles must be less than p=2, both at the semipyramidal vertex

and at the vertex with XðnÞ incident base angles. But a vertex of a convex

polyhedron can have at most three dihedral angles less than p=2, so if each of the

XðnÞ pairs of incident base angles produces such a sharp dihedral angle, then

n must be bounded.

• If there are XðnÞ pyramidal vertices with three incident apex angles, then to

achieve angular defect O(1/n) for each of these vertices, the apex angle must be

2p=3 � 2d and the base angle must be p=6 þ d for some d ¼ Oð1=nÞ. However,

the base angles of the faces must also appear in a linear number of non-

pyramidal vertices, and for these apex and base angles, all other vertex types

have angular deficit at least p=6 � OðdÞ, bounded away from zero. Therefore, to

keep the total angular defect below 4p, n must be bounded.

• If there are XðnÞ pyramidal vertices with four incident apex angles, or

semipyramidal vertices with three incident apex angles, then to achieve angular

defect O(1/n) for each of these vertices, the apex angle must be p=2 � 2d and the

base angle must be p=4 þ d for some d ¼ Oð1=nÞ. Because vertices of these

types use fewer than twice as many base angles as apex angles, the base angles

of the faces must also appear in a linear number of vertices of other types, and

for these apex and base angles, all other vertex types have angular deficit at least

p=4 � OðdÞ, bounded away from zero. Therefore, to keep the total angular

defect below 4p, n must be bounded.

• If there are XðnÞ pyramidal vertices with five incident apex angles, then to

achieve angular defect O(1/n) for each of these vertices, the apex angle must be

2p=5 � 2d and the base angle must be 3p=10 þ d for some d ¼ Oð1=nÞ. Because

vertices of these types use fewer than twice as many base angles as apex angles,

the base angles of the faces must also appear in a linear number of vertices of

other types, and for these apex and base angles, all other vertex types have

angular deficit at least p=5 � OðdÞ, bounded away from zero. Therefore, to keep

the total angular defect below 4p, n must be bounded.

• There can be no pyramidal vertices with six or more incident apex angles, or

semipyramidal vertices with four or more incident apex angles, because the total

angle of such a vertex would be greater than 2p.

No case allows n to be arbitrarily large, so it must be bounded, and the number of

triangulations with n faces must also be bounded. h

We remark that this result applies only to convex realizations. There exist non-

convex non-well-behaved monohedral isosceles polyhedra, combinatorially equiv-

alent to bipyramids, with arbitrarily many faces. It is even possible to realize these

polyhedra in such a way that all vertices have positive angular defect (Fig. 9).

Theorem 13 A monohedral isosceles convex polyhedron with n faces must have
apex angle O(1/n).
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Proof By Theorem 12 we may assume without loss of generality that the

polyhedron is well-behaved, because the finitely many non-well-behaved possibil-

ities do not affect the asymptotic statement of the theorem.

Because the polyhedron has twice as many base angles as apex angles, and (by

the assumption that it is well-behaved) each vertex has O(1) base angles, it follows

that there are XðnÞ vertices that have at least twice as many incident base angles as

apex angles. To keep the total angular deficit equal to 4p, XðnÞ of these vertices

must have deficit O(1/n). This rules out the semipyramidal vertices with one

incident apex angle, for sufficiently large n, because they have deficit exactly p. The

only remaining possibilities are the basic and semibasic vertices. If the base angle is

h and the apex angle is p� 2h, then a basic vertex has angular deficit 2p� 4h and a

semibasic vertex has angular deficit p� 2h. This can only be O(1/n) if

h ¼ p=2 � Oð1=nÞ, for which the apex angle is O(1/n). h

5.3 Graph-Theoretic Properties

The infinite families of monohedral isosceles convex polyhedra listed at the start of

this section all have many basic or semi-basic vertices, but few pyramidal or

semipyramidal vertices. This can be formalized and proven more generally:

Lemma 14 In a well-behaved monohedral isosceles convex polyhedron, there is a
nonzero but bounded number of pyramidal or semipyramidal vertices.

Proof The number of apex angles is half the number of base angles, but the basic

and semi-basic vertices use more than twice as many base angles as apex angles, so

the leftover apex angles must be incident to pyramidal or semipyramidal vertices. If

there are k pyramidal or semipyramidal vertices, then the base angles incident to

these vertices contribute total angle less than pk (less than p for each pair of base

angles incident to a semipyramidal vertex) and the apex angles contribute O(1)

because there are � n of them, each with angle O(1/n). Therefore, the total angle is

at most pk þ Oð1Þ. However, the total angle must be at least 2pk � 4p in order to

achieve total angular deficit 4p for the whole polyhedron. Combining these

inequalities, k must be O(1). h

We can use this fact to show that the graphs of monohedral isosceles convex

polyhedra have small dominating sets. Recall that a dominating set, in a graph, is a

subset of the vertices such that every vertex in the graph either belongs to this set or

has a neighbor in the set.

Theorem 15 If G is a triangulation that can be realized as a monohedral isosceles
convex polyhedron, then G has a dominating set of size O(1).

Proof If the realization is not well-behaved, then G has O(1) vertices, and we may

take the entire vertex set as the dominating set. Otherwise, we claim that the

pyramidal and semipyramidal vertices form a dominating set, which by Lemma 14

has size O(1). By the assumption that the realization is well-behaved, every vertex is

pyramidal or semipyramidal (and belongs to this set), or is basic or semibasic. In a

basic or semibasic vertex, there are four incident base angles, and at most one apex
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angle to separate them, so some two base angles must be adjacent across a shared

side of their two faces rather than across a shared base edge. The vertex adjacent to

the basic or semibasic vertex at the other end of this shared side has two incident

apex angles, so it must be pyramidal or semipyramidal. h

Theorem 16 If G is a triangulation that can be realized as a monohedral isosceles
convex polyhedron, then G has unweighted graph diameter O(1).

Proof Choose a starting vertex v within the small dominating set for G, and

partition the vertices into subsets Si of the vertices at distance i from v (the layers of

G in a breadth-first search from v). Then at most two consecutive layers can be

disjoint from the dominating set, because three or more consecutive layers would

leave the vertices in the middle layer without a neighbor in the dominating set.

Therefore, the number of layers is at most three times the size of the dominating set.

h

6 Conclusions and Open Problems

We have shown that not every triangulated polyhedral graph has a convex isosceles

realization, but that a wide family of polyhedral graphs (including all the ones that

we use to prove have no convex isosceles realizations) do have non-convex

isosceles realizations. It would be of interest to find triangulated polyhedral graphs

for which even a non-convex but non-self-crossing isosceles realization is

impossible. More ambitiously, we would like to understand the computational

complexity of testing whether a (convex or non-convex) isosceles realization exists,

and of finding one when it exists, but such a result seems far beyond the methods we

have used in this paper.

We have also added to the zoo of known infinite families of polyhedra with

congruent isosceles faces. As well as these infinite families, there also some number

of sporadic examples of such polyhedra, presumably many more than the eight

convex deltahedra (convex polyhedra with congruent equilateral triangle faces). Is it

possible to classify all such polyhedra rather than merely finding more examples?

Can our graph-theoretic analysis assist in this classification?

The example of Grünbaum’s polytope (Fig. 1, right) shows that there are

additional families of convex polyhedra with edges of two lengths (necessarily, with

all faces isosceles or equilateral) than the families of monohedral isosceles

polyhedra already listed. Can these families be classified? To what extent can our

structural analysis of monohedral isosceles polyhedra be extended to them? Our

triangulations that cannot be realized as isosceles convex polyhedra show that, for

convex realizations, at least three edge lengths may sometimes be needed. Is the

minimum number of edge lengths of convex realizations of polyhedral graphs

bounded or unbounded? What about for non-convex realizations?
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