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Abstract: Various solution properties have been selected for testing the usefulness of the
classic lattice model. The analysis leads to the inclusion.of improvements such as different
contact numbers for molecules and repeat units, distinction between concentration
regimes, dilute and concentrated in polymer. The extensions of the simple model supply
an adequate description of the data provided the free enthalpy of mixing in the concen-
trated region is made temperature- and molar mass-dependent. Part of the latter contri-
bution can be attrijuted to the chains bending back on themselves. The other part is not
easily accommodated in the model and might be related to free volume effects that have
been left out of the present consideration. The resulting free enthalpy expression quant-
tatively covers independent data like osmotic pressure measurements by Krigbaum and

binodals in near ternary, systems by Hashizume et al.

Key words: Free energy, interaction function, partial miscibility, prediction.

Introduction

Since its origination the rigid latticemodel of poly--

mer solutions has been the subject of much criticism
[1]. Itis the objective of the present papér to investigate

the limits to which the applicability of the model canbe

stretched, in particular from the point of view of its
predictive power. It is obvious that the main point of
criticism — the inability to deal with excess volumes —
cannot be removed in the present context, but we shall
restrict ourselves to systems at constant, ambient pres-
sure. -

A further restriction is that we avoid the serious
complications presented by polymolecularity [2-4]
and limit the analysis to near binary systems in which
the polymeric constituent has a very narrow molar
mass distribution. The system studied is cyclohexane/
polystyrene and we use light scattering and ultracentri-
fuge data by Scholte et al. [5-9], near binary binodals
by Hashizume etal. [10] spinodal points {7, 11=13].and.

T

*) Affectionately dedicated to Prof. Dr. H.-G. Kilian on the
occasion of his 60th birthday.

1 Present address: Polymer Technology, University of Techno-
logy, Eindhoven, Netherlands.
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critical miscibility data [14-18]. ‘Predictive’ calcula-
tions will then be tested i. a. with data on-systems with

"""" o S Vacularity. viz, Kol , ~
moderate polymolecularity, viz. Krigbaum’s osmotic

pressure measurements on polystyrene fractions [19]

-and Hashizume et al’s [10] near ternary coexistence

curves: Prediction means calculation within experi-
-mental error of properties on the same system, not
used in the data fitting. o

The free enthalpy (Gibbs free energy AG) of mixing
n, moles of solvent with 7, moles of polymer with a
single molar mass M, was derived independently by
Flory [20,21], Huggins [22,23] and Staverman and
Van Santen [24,25]. We write

where RT has its usual meaning, ¢; = m/N, ¢, = n,

m,y/N, N = n; + n, my, my = number of lattice sites
occupied by a polymer chain. The term I' is used to

" déscribe all conceivable corrections neéded to amend

the first two combinatorial terms so that AG conforms
with actual thermodynamic properties. In the follow-
ing we develop I, starting from the simple Van Laar
expression, led by the selected experimental data.

3
:
\
;
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Within the framework of the model ¢, is the volume
fraction of component i. Itis in the spirit of the present
study to calculate volume fractions from mass frac-
tions on the assumption of additivity of volume on
mixing, we ignore the obvious problems with the
volume fraction [26]. Ther, the ‘relative chain length’
m, is given by

My = 7)2M2/V1 (2)

where v, and V, are the specific volume of the polymer
in the liquid state, and the molar volume of the solvent,
respectively.

Shultz-Flory method

The Van Laar expression for I' reads

TN = gp1¢2 = (g + gu[T) 9142 3)

The simplest interpretation of the interaction function
g defines it in terms of the interchange energy (see ref.
[27]). Experimental data suggest interpretation as a
free enthalpy to be preferable [28,29]. Thus we have
an entropic contribution gs to g, in addition to the
enthalpic term gy (in a first approximation [30]).

Shultz and Flory used equations (1) and (3) to ana-
lyse miscibility gaps in several solvent/polymer sys-
tems for a series of polymer chain lengths [31]. Atacri-
tical point both spinodal and critical conditions are
obeyed. In a binary system one has

{(3°AG|NRT)[3¢3}, r = O (spinodal) 4)
{(8° AG/NRT)[d 3}, r = O (critical point).  (5)

Application of conditions (4) and (5) to equations
(1) and (3) leads to

gl = — 8 + (" + 1](2ms). (©

Shultz and Flory identified the maximum separation
temperature T,, with the critical point and plotted
1/T,, vs. the expression between brackets in equation
(6) to find the parameters gs and gg.

Shultz-Flory plots.are often found to be linear, in
spite of -the fact that the underlying assumptions
(strictly binary systems and validity of egs. (1) and (3))
are probably never realistic. It can be explained that,
nevertheless, linearity is observed frequently, butslope

and intercept cannot be interpreted in terms of equa-
don (6) [30,32]. |

It is therefore not surprising that Shultz and Flory
noted the ‘predictive’ power of their treatment to be
extremely poor. This aspect is illustrated in figure 1
which shows the miscibility gaps calculated with equa-
tions (1) and (3), with the parameters from a Shultz-
Flory plot. The maximum separation temperatures
check with the experimental ones for obvious reasons,
but the calculated gaps are much narrower and more
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Fig. 1. Experimental binodals (coexisting phase compositions: O) as
a function of temperature for indicated molar masses (kg/mole),
and their representation by the Shultz-Flory method (egs. (3) and
(6): ——=), by equation (8) (—) and by equations (18) and (19)
(——= ). Data from Hashizume et al. [10]. Critical points: [1 Sys-
tem cyclohexane/polystyrene
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Fig. 2. Experimental values of (= g — ¢, dg|d¢,) at indicated tem-
perature and and their representation by the Shultz-Flory method
(egs. (3) and (6): ———), by equation (8) (—) and by equations (18)
and (19) (——-— ). Data from Scholte et al. [5-9]. Molarmass: 166
kg/mole. System cyclohexane/polystyrene




asymmetric-than the experimental curves. The discre-
pancy is illustrated even more clearly if measured
values of the quantity (g — ¢, 8g/6¢2) are compared
with those calculated with equations (1) and (3). The
inadequacy of the procedure is demonstrated in figure

In the -present examples polymolecularity can
hardly be expected to cause the discrepancy. Figure 2,
however, indicates a major reason for the failure. Evi-
dently, the parameter g depends markedly on concen-
tration.

The quantity (g — ¢,9g/0@,) is usually known by
the symbol y, representing the interaction parameter
in the expression for the chemical potential of the sol-

C Lliiiias IJUL\.JJ.IAGL Ul uic

vent.

Disparity of contact numbers

The major reason for g to depend on concentration
is to be sought in the disparity in size and shape be-
tween solvent molecules and repeat units in the poly-
mer. Staverman [33], working out earlier suggestions
by Langmuir [34] and Butler [35], assumed the num-
ber of nearest neighbour contacts a molecule or seg-
ment can make to be proportional to its accessible sur-
face area. Thus he obtained an expression for the
_enthalpy of mixing which, in terms of g, reads

— V) 7)

where B(T) summarizes the temperature dependence
and 0,/0, (=1 — p) = the ratio of the surface areas of
polymer segments and solvent molecules.

The idea has been applied by other authors, with or
without reference to the unit cell volume of the lattice
[36,37]. The viability of Staverman’s straightforward
approach is illustrated in figure 3. It is interesting to
note that the curve in figure 3b was calculated with
Bondi’s [38] 0,/0; value of 1.35, and passes right
through the experimental points. Whether one uses
the surface area ratio as such, or corrected for the cell
volume, depends on how close one wishes to adhere
to the notion of a rigid lattice. Remembering Rowlin-
son’s remark that the lattice model might prove more
useful than is often thought provided it is seen as an
abstraction, useful for the purpose of calculation; the
straightforward treatment would not seem objection-
able [39]. We shall adhere to it in this paper.

Fitting critical points for various molar masses in the
system cyclohexane/polystyrene to equations (1), (3),

Progress in Colloid & Polymer Science, Vol. 71 (1985)
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Fig. 3. Enthalpies of mixing (4H) for benzene with perdeutereous
benzene (a, ref. [64]) and with p-xylene (b, ref. [65]). The curves
were calculated according to Staverman [33] with molecular sur-
face ratios of 1 (a) and 1.35 (b) :

(4), (5) and (7) reveals the need of an extra, empirical
parameter [40], viz.

g=B(TD)/1~yp;) + C ®)

where B(T) is expressed as B(T) = B, + By/T.

M, = 520 ka/moL

299

T/K
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Fig. 4 Experimental spinodals and their representanon by the
Shuliz-Flory method (egs. (3) and (6): ———), by equation (8)
(—)and by equations (18) and (19) (—+—-~). Light scattering data

from Scholte et al. [5-9] (O) and from Gordon et al. [11-13] (@)
System cyclohexane/polystyrene. Critical points: O
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Table 1. Parameters values for equations (3) and (8)

~026

8&s =

gulK = 234
By/K = 108

y = . 022
C = —0.22

The binary binodals, calculated with the parameters
so obtained, show a much better agreement with the
measured coexistence curves (fig. 1). Both maximum
separation temperature and- concentration are now
reproduced. Yet, the shape of the curves still deviates,
the experimental curves being broader than the calcu-
lated ones. The improvement over equation (3) is most
spectacular with the data in figure 2. The introduction
of the surface area ratio shifts the calculated curves into
the range of the measurements. It should be noted that
the 0,/0; value following from the fitting of the critical
points is 0.78 and compares favourably with the value
calculated with Bondi’s method, viz. 0.87.

The calculated spinodals show a quite comparable
situation, as shows figure 4. The values of the parame-
ters leading to this description and prediction are listed
in table 1, together with those for the Shultz-Flory
treatment. Figures 1, 2 and 4 present examples for one
or a few chain lengths only, the other molar masses,
ranging 50 to 520 kg/mole, show analogous behav-
iour.

The deviations between calculated and measured
curves come out clearly in binodals and spinodals (figs.
1 and 4). Figure 2 (¢ values) also clearly shows the
deviations at high concentration but less convincingly
at the dilute end. A different way of treating the data,
and the issuing plots, does not only bring the differ-
ences out more clearly butalso reveals that C mustbea
function of temperature. To this end we use the param-
eters B,, B; and y of table 1 and let the y darta (fig. 2)
determine a value of C for each molar mass separately.
The contribution of C to x is given by

C'=C — ¢,0C[0¢,. )

Figure 5, showing a plot of C' vs. T for M =51 kg/
mole, reveals that, at concentrations.above ¢, = 0.15,
C' hardly depends on concentration and is, to a good
approximation, linear in T. At ¢, < 0.15 and T >300
K, C'is also independent of concentration and linear in
T. This linearity extends to T <300 K for ¢, >0.15. At

¢, < 0.15 and T < 300 K we see a dependence of C'on
concentration which increases upon a decrease of ¢,.
Summarizing, one might write

C (p, > 0.15) = A(T) = A; + A,T. (10)

With those other molar masses for which a suffi-
cient T range has been measured, one finds analogous
results but different values for A; and A,, both of which
seem to be expressible in a linear relation to reciprocal
molar mass (see fig. 6).

102C

.5 : L
290 310 330
K

Fig. 5. The quantity C' (egs. (8) and (9)) calculated from experimen-
tal values of the chemical potential of the solvent cyclohexane asa
function of temperature, molar mass polystyrene 51 kg/mole. Poly-
mer mass fraction w, < 0.15: @; 0.15 g w, g 0.4: O. The drawn
curve was calculated by regression analysis of C' data for w, > 0.15
(see text)
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Fig. 6. Chain length dependence of the coefficients A, and A, In
equation (10). The curves were fitted to the three data sets for molar
masses 51, 166 and 520 kg/mole (O, ) for which A; and 4, couldbe
estimated from a wide temperature range. For the other three molar
masses (@, B (45, 103 and 180 kg/mole) only a limited T-interval
was available, which might explain the deviation of two of the
points
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From these findings we see that the free énthalpy
expression still needs improvement on two points if a
quantitative covering of the present sets of data is to'be
obtained. Corrections are necessary for the dilute solu-
tion regime as well as the range of higher concentra-
tions. The next two sections deal with these aspects.

Before continuing we might reflect on a possible
molecular origin of the obviously necessary contribu-
tions B, and C. The term B, is well anchored in the
molecular concept of the interchange energy associat-
ed with the breaking of contacts between like mole-
cules and replacing them by unlike nearest neighbours
(see e.g. ref. [27] or [28]).

Many years ago it was already pointed out by Sta-
verman [41] that it does not suffice to-consider only the
energy of mixing on the basis of numbers of contacts
between molecules. The entropy of mixing should
then also be calculated for the numbers of contacts
rather than the numbers of molecules, as is usually
done. Today this is still very much the normal practice,
it involves the assumption of a constant coordination
number 2z on the lattice.

We relax that condition and allow the various spe-
cies to differ in coordination number z;. If the two
component molecules or repeat units differ in size but
not much in shape, we have three coordination numb-
ers, setting zy; = Zy,. If all z;; are equal the number of
arrangements on the lattice is well known [20-25, 27,
28,36]. We denote this number by Q,,. If 2, =2,, + 2,
o 2, we need to correct Q, for the over- and underes-
timations referring to z;, and 2,,. Following a proce-
dure suggested by Huggins [36] and Silberberg [42]
we can write [43]

(1)

where Pj, = P,, is the number of unequal contact
pairs, and Z is an average number depending on con-
centration.

Arbitrarily writing

Q = Q,(21,/2)72 (21/2)7>

Z 0141 + 029, (12)
and using the regular solution approximation for Py,,
one obtains

C =2z, (n Q)/Q, B,=— 2310 (215 221/2%1)(13)

where Q =1 — p¢,.

Itis seen that equation (13) thus supplies an after the
fact explanation for the empirical parameters B, and C,
though in a qualitative sense. We ignore a possible

¢, dependence of C (by the term Q). It should be noted
that Staverman has recently developed a rigorous
treatment of contact statistics [44].

Non-uniform segment density

The concentration range covered by the experimen-
tal data employed here contains two essentially differ-
ent regimes. As was pointed out by Flory as early as
1949, polymer solutions cannot, at high dilution, be
looked upon as systems with uniformly distributed
segments [45]. They consist of isolated coils separated
by regions of pure solvent. The other regime ranges
upward from concentrations where the coils overlap
effectively, and the segment density can be considered
approximately uniform.

Theoretical treatments of dilute solutions [45, 46]
on the one hand, and concentrated systems on the
other [1,47,48], are abundant, but a AG expression
Continuously covering both concentration regimes has
had very little attention so far. However, it 1s needed
for the description of liquid-liquid phase equilibria in
polymer solutions where one of the phases is normally
very dilute, and the other so concentrated that the coils
overlap extensively.

To remedy the situation, Stockmayer et al. [49]
wrote the interaction function as a sum of two terms,
one for each concentration range:

g=g"(T,m)P + ¢

where g°, governing the concentrated regime, can be

(14)

expressed by equation (8). The term g*(T, m1,) quanti-
fies the differences relevant for the dilute regime com-
pared with the uniform density state. The first term in -
equation (14) is attenuated by the probability factor P
P = exp (= 4,m* ¢)) (15)
where 4, can be expressed in molecular parameters, in-
dependently determineable [49]. P stands for the
probability that a given volume element in the solu~
tions does not fall within any of the coil domains.
The function g* was originally ‘calibrated” versus
the osmotic second virial coefficient, expressions for
which are in ample supply [46]. However, it has
become clear that a fully theoretical treatment of equa-
tion (14) leads to qualitatitve agreement with experi-

_ment only [2,50]. Itis therefore not surprising that we

had to drop the theoretical definition of g* in order to
obtain the quantitative agreement aimed at.

A detailed analysis of the upward curvature in C’ at
small ¢, confirms, within experimental accuracy, the
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theoretical probability factor P in its general exponen-
tial form, whereas we found g* to be well represent by

g ={g+&(T -0} (T —0)m, (16)
where g, and-g, are adaptable parameters and 6 is the
Flory temperature. It is to be noted that equation (16)
does not obey the theoretical boundary condition that
the dilute solution effect should disappear for a mix-
ture of small molecules: '

lim g*(T’ m2) =0.

mp—1

(17)

This boundary condition can be included if, rather
arbitrarily, we introduce a further chain length de-
. pendence: -

g=lg+a (T-0)}(T-96) 1- 1/m2)/m2-. (18)

All these considerations finally result in a semi-
empirical expression for the interaction function g [4]:

g= (B, + BT)[(1 — y¢,) + A(T, m,)

+ g*(T, my) P (19)

where

A(T, my) = Ay + Anfmy + (Ag + A21/m2) (T-6).
(19a)

Expressing the temperature variable as (T — §) proved
advantageous in the fitting. We also noted that the
additonal factor (1—1/m,) improved the overall agree-
ment between semi-empirical theory and experiment.
The adjustable parameters in equation (19) were
determined in a simultaneous optimisation of the com-
plete data-set consisting of y values, spinodal points,
coexisting phase compositions and critical points, each
with the relevant equation. A representative selection
of the resulting descriptions is shown in figures 1, 2, 4
and 7-9: Full details and a comprehensive report on
the procedure, including the step-wise approxima-
tions eventually leading to equation (19), can be found
in [4]. Table 2 lists the values of the various parameters
found to give the best fit to the complete data set.

- Tor W T PERORITIET £mTF ¢ T Tha feeREed Sem S e B AT B B

Chain length dependence of the entropy of mixing
Tn most theoretical treatments of concentrated solu-
tions the-chain length dependence of the entropy of

[ ]
OASL, x . L
. .3 ’ X
oo 01 Q2 0. % 04
Fig. 7. Experimental y data for polystyrene (M = 51 kg/mole) in
cyclohexane as a function of concentration and temperature, and
their description by equations (18) and (19). Data from Scholte et al.

[5-9]

Qasor

or 02 04

Fig. 8. As figure 7, M = 166 kg/mole
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Fig. 9. As figure 7, M = 520 kg/mole

“Table 2. Parameter values for equations (18) and (19)

B, = =0:89
BiJK = 490

y = 0.29
Ao = =0.003
Ap = -—2.10
Az = 0.00282
A21 = 0.032
& = —0.0281
2 = 0:00069
Ao = 0.885

mixing is considered to be adequately accounted for by
the second, combinatorial, term in equation (1). Writ-
ing AG per mole of lattice sites in equation (20) we see
the reciprocal dependence on 171,, and the second term
diminishes with increasing #1,, vanishing at 71, — co.
For this reason it is sometimes neglected altogether

Z = AGINRT = ¢, 1n¢l+(¢2/m2) Ing, +F/N

first, it may still be too large to be negligible. The sum
total of the many contributions to Z is itself, most of
the time, relatively small. Minor contributions may
thus influence the value of the sum. Since details in
Z(¢,) determine phase relationships sensitively, it is
evident that none of the contributions should be
ignored without checking. Also, both small and large
terms should be assessed with the maximum possible
precision. :
The original AG expression (1) with g function (3)
has the osmotic second virial coefficient @, independ-
_ent of molar mass:

(L)
0’2‘~\§—A1/ (21)
where
X1=§8 (21a)

Equation (21) is appropriate also if g depends on ¢,,
then we have

x1= (g — ¢108/0¢3)s, -0 (21b)

The molar mass dependence of a, has been
observed in early measurements already and has been
successfully attributed to the non uniform segment
density in dilute polymer solutions [45,46]. The dilute
solution theory can be summarized as

@y o (—;— - X1> h(z) (21¢)

where h(z) is the excluded volume function- [46]
which introduces the chain length dependence in a
qualitatively correct manner. . :‘
Recently, Tong etal. [51] have questioned the valid-
ity of equation (21c) and, thereby, dilute solution
theory in general. The basis of their criticism was
formed by extensive measurements of @, by light scat-
tering at T < 6 for a wide range of molar masses in the
system cyclohexane/polystyrene. .
We analysed Tong et al’s data with our empirical g*
function and found it to provide a quite satisfactory
description, although the molar massand temperature
dependencies had to be extended to include quadratic

(20

Such simplifications are not commendable because,
even if the second term is very small compared to the

~and higher terms:

g4 (T, my) = golmy) + &i(my) (T — 6)

+ g(my) (T - 6)° (22)
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285 2% T/K
1 B

Fig. 10. Experimental second virial coeffi-
cients as a function of temperature. Molar
masses in kg/mole indicated. Data from
Tong et al. [51], curves fitted to the data
with equation (22). All curves (except for
M =10 kg/mole) successively shifted ver-
‘ tically by 0.8 x 107* em’molg™
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Fig. 11. As figure 1. Curves calculated with equations (19) and (22)

with

&(mz) = (go1 + oo/ 1m,)[m,
31(7’”2) = (g + &io[ma)m
8(my) = (g1 + &aofm, + os[mM3) 11, -

Figure 10 shows the representation of the experimental
second virial coefficients so obtained. Using the values
of the A and B coefficients in table 2 in combination
with g* function (22) we calculated binodals for molar
masses of 44, 100 and 174 kg/mole, and obtained a de-

scription comparable in quality to that in figure 1 (see
fig. 11). We conclude therefore that Tong et al.’s virial
coefficient data do not contradict the AG function de-
veloped in this paper.
Nevertheless, Tong et al’s criticism of the dilute
solution theory is justified, albeit for a slightly different
reason. The chain length dependence we established
for the contribution A(T, m,) to AG necessitates a fur-
ther amendment to the dilute solution expression
(21.¢). The term y; contains a contribution from A(T,
m,) and consequently becomes chain length depend-
ent, an effect not accounted for in the theory. Hence,

cCL 1N

we should write

e fL 0 ) 1)

> @21d)

and it is seen that the excluded volume function A(z)
should be tested with equation (21 d) rather than with
equation (21 ¢). Whether this situation prevails at tem-
peratures further removed from @, where the solvent
quality increases, is an open question at this moment.
In view of remarks in the following paragraph one
might expect any near @ situation to be representative
of equation (21d) rather than equation (21c¢).

For a molecular explanation of the molar mass de-
pendence of the term A in g° we turntoa calculation by
Staverman [52]. He considered the effect of the chains
bending back on themselves on the entropy of mixing
for the athermal case. Summarizing his equations one
could write ,

6 =6(my,T) (23)

g£=g006T7);
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10
has no objections against the empirical transformation
e of g into an free enthalpy function by the additon of g,

-13
295 T o318 335
K

Fig. 12. Temperature dependence of the empirical free enthalpy
contribution A(T, m,) (egs. (10) and (19 2)) (—) and the same con-
tribution as predicted by Staverman’s model [4,52] (—=—), calcu-
lated for molar masses My, M, and M5 of 50, 100 and 1000 kg/mole,
réspectively

where & is the fraction of external contacts on the chain
lost to intramolecular contacts by back-bending.
According to Staverman, 6 must be expected to
depend on the size of the polymer coil and this, in turn,
depends on molar mass and temperature.

Extending his treatment to the non-athermal case
we find the resulting equation for A(T, m,) to show the
correct trend; magnitude and slope, however, are too
small. Figure 12 illustrates the situation. Since the
theory is in the process of further development at the
moment [44] we let a further discussion of the A(T,
m,) term rest. We only note that back bending 1s more
likely to occur in near 6 states than in good solvents.

Temperature dependence of the interaction
function g :

The AG function developed so far includes a semi-
empirical expression for g with a rather complex tem-
perature dependence. The original model, on the other
hand, only allows for alinear dependenceon/T. This
temperature function has often been and stll is the
ground for objections against the Flory-Huggins
model, represented by equations (1) and (3}, because
ofits alleged incapability to describe lower critical mis-
cibility, in particular if it occurs together with upper
critical miscibility in the same system. Such criticism is

Ilot justiﬁed [3@]: i S T R T R S

In the first place there is no reason why g in equa-
tion (3) could not assume negative values, the inter-
change enérgy determining its sign. Lower critical mis-
cibility goes with a negative gy Further, if the criticism

one can hardly refuse to accept the outcome of an
application -of some fundamental thermodynamic
relations to g, viz:

AH =14c,dT; AS =|(Ac,|T)dT (24)
where AH, AS and Ac, are the enthalpy, entropy and
specific heat changes upon mixing.’

The specific heat at constant pressure, Cp, of aliquid
is known to depend on temperature. In additon, Ac,
must be expected to vary with concentration, €. g.

Ac, = (co + &1 T) P19 (25)
Equations (24) and (25), together with equation (1),
can now be understood to define the interaction func-

A tion g(T). One finds

g=g + &IT + 8T + &nT (26)
where g, and g, arise from integration constants (eq.
(24)) and g, = — ¢1/2NR; g3 = — co/NR. Use of the
Flory-Huggins equation in the form of equations (1)
and '(3) unrealistically ignores the temperature de-
pendence of Ac,. The latter was formulated theoreti-
cally by Delmas et al. [53] who found Prigogine’s
model {1] to supply expressions for g, and g, sufficient
to deal with the occurrence of both upper and lower
critical miscibility.

We thus see that the Flory-Huggins equation, pro-
perly used, is not to be criticised in this respect. We see
also that a complex g(T) function, like our equations
(18) and (19), is to be expected. Whether the various
Coefficients in equation (26) are consistent with those
in equation (19) could not be checked and may prob-
ably not be expected. The main point, however, 1s that
the form found experimentally for g(T) is conceivable
and qualitatively consistent.

Predictive calculations

During the development of an appropriate free
enthalpy function for the present set of data, the treat-
ment has changed character from a model to a curve-
fitting procedure. The number of parameters is large

and;,though the general form of the equations can be

supported by molecular considerations, the procedure
needs justification. This can be found in the predictive
power of the equations used and parameter values
obtained. :
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Krigbaum’s extensive osmotic pressure data, cover-
ing molar masses ranging from 51 to 566 kg/mole [19],
offer a suitable example. We calculated the reduced
osmotic pressure by standard methods, using the
values of the parameters in table 2. It is seen in figure13
that the ‘predicted’ curves pass through the experi-

mental points within the accuracy specified by Krig-
* baum.

Other examples can be drawn from the work of
Kuwahara etal. [16-18] who reported near binary coe-
xistence curves (binodals). It is seen in figure 14 that the
calculated binodals agree in shape with the experimen-
tal ones, but the temperatures are about 0.5°C off. A

- small shift of the predicted curves makes them coin-
cide fairly well. .

As a final test we introduce polydispersity and try to
calculate ternary binodals, assuming that the ternary
system can be treated as a simple superposition of three
binary ones without any cross terms. Figure 15
demonstrates that Hashizume et al”’s data [10] are well

M, = 203 -
3 .
e 5 ]
n/c
: °
hd .
NN =359
2. ] 9 ry

C

Fig. 13. Reduced osmotic pressures for various indicated molar
masses (kg/mole) as a function of concentration and temperature
(bottom, middle and top curves: 30, 40 and 50°C, respectively)
cyclohexane/polystyrene, data from Krigbaum [19]. Curves calcu-
lated with equations (18) and (19)

reproduced by the free enthalpy equation presented in
this paper. :

When it comes to wide molar mass distributions
and to the description of distribution coefficients as a
function of chain length, the present model and corre-
lation function have not yet been analysed in depth
[3,4]. It is conceivable that the simple superposition
method would be inadequate for such cases. This
problem is a matter of current study.

Limiting critical concentration

We now drop the precise representation of data stri-
ven after in the preceding sections, and focus on a
peculiar phenomenon indicated several years ago by
Flory and Daoust [54]. These authors pointed out that
the critical concentration at infinite chain length does
not necessarily have to be zero. Later, Du$ek [55] ana-
lysed the situation and found that in such a case, if
existing at all, the § temperature, taken to be the tem-
perature at which the osmotic second virial coefficient
vanishes, is not identical to the critical temperature at

infinite chain length. Kennedy [56] suggested makinga

304
T/K

296

292

00 [oX} 02 e, 03

Fig. 14. Experimental binodals and their representation by equa-
tions (18) and (19) (——-). System cyclohexane/polystyrene, data
from Kuwahara et al. [16-18] (@). Critical points: (I: experimental;
#: calculated. Shifted calculated curves: — - v
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Fig. 15. Ternary phase relations for the system cyclohexane/polys-
tyrene. Molar masses polymer cotistituents: 45 and 103-kg/mole.
Data from Hashizume et al. [10]. Binodals (—) and tie lines
(——-) calculated with equations (18) and (19)

0.5 0

-1 \ [ - % -
0.5 1 1.5 2

9579 |

Fig. 16. Relation between C and y for a non-zero limiting critical
concentration at infinite chain length. ¢z =0.02: —; ¢ =0.04:

clear distinction between the @ state and the critical
state for infinite 1, denoting the latter by the term
imiting critical state’. Experimental evidence of the
existence of a limiting critical concentration, ¢y, has
been reported [57]. ‘ ’

Since we are now interested in properties at 11, — o,
much of the intricacies discussed above can be
dropped. Equation (19) reduces to equation (8) in
which we shall ignore a possible temperature depend-
ence of C. Combining equations (1), (4), (5) and (8) we
can write the critical condition as

lm, = (@2]01)*(Q — 3y + 6Cy¢7)/Qi

where Q; =1 + 2y ¢,.

Equation (2) shows that, at 11; = =, ¢, =0 always
represents a possible root. Another root (¢p,;) might
arise from the second expréssion between brackets, i
the values of the paraméters allowed it to be between 0
and 1. Figure 16 demonstrates that the parameters C
andy would have to be related ina special way. Since C
values are often found to be close to zero the ratio
0,04 of surface areas should be smaller than 1. The
model thus predicts that experimental examples had
best be sought in systems where the solvent molecule s
bigger than the repeat units in the polymer.

_ Experiments on diphenylether/polyethylene [58],
cyclohexane/polystyrene [15]; and benzene/polyiso-
butylene [57] show that such a trend can indeed be
observed. Recent measurements on diphenylether/
polyisobutylene also indicate ¢, > O (see fig. 17). The

(27)
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2.0

DIPHENYLETHER/POLYI SOéUTYLP;NE

/

2,106
} / M, /M1

/
/

26 / 3.0 3.4 3.8
'l Z

WT % POLYMER

Fig. 17. Experimental indication for non-zero critical concentration
¢z at infinite chain length. The abcissa represents value of M /M 2
to correct for differences in polydispersity. The experimental error
in the critical concentration (determined with the phase-volume-
ratio method [30]) is indicated by the horizontal lines on the error
bars

Bondi rations 0,/a; are 0.28, 0.87, 0.93 and 0.57, re-
spectively. Most samples had wide molar mass distri-
butions and we should therefore have used the multi-
component versions of equations (4) and (5) to derive
equation (27). This can be shown to lead to replace-
ment of 1, by m2 [m,, where m,, and m, are the mass-
and z-average chain lengths [59]. Hence, this quantity,
or M2|M,, has been plotted in figure 17 and the ratio
M_/M,, is assumed to remain finite when M, — co. We
do not want to stretch the present argument too far,
but feel justified in concluding that these examples
furhter exemplify the importance of accounting for
differences in size and shape between the constituent
molecules and repeat units.

Discussion

In this paper we have tried to carry the description
of thermodynamic properties of polymer solutions as

far as the rigid lattice model would permit. In the
course of the development we relaxed the constancy of
the coordination number, giving up the model in its
strict, literal sense, but obviously greatly adding to its
applicability. A further improvement includes the
chain length dependence at a high degree of dilution.
Finally, we saw that the back bending of chains onto
themselves affects the free enthalpy of mixing, particu-
larly in the concentrated regime where the coils over-
lap extensively. However, we are still left with a size-
able correction term to which the present model can-
not assign a molecular basis. .

It should be noted that the data sets used come from
different sources and yet allow a comprehensive treat-
ment. It must be admitted that the number of adap-
table parameters seems excessive (table 2), but drop-
ping one or more immediately worsens both descrip-
tion and predictions [4]. Therefore we feel that, at the
moment, the presented procedure is the optimum
treatment within the lattice model.

In spite of the multitude of parameters the molecu-
lar background behind most of the necessary correc-
tion terms is clear. We know that molecules and repeat
units differ in size and shape; and will differ considera-
bly in the number of nearest neighbour contacts they
can make. Further, we have the well known phenome-
non that dilute and concentrated polymer solutions
differ essentially in segment density. Finally, we ack-
nowledge the effect back bending of chains may have,
in particular in poor solvents like the system with
which we are dealing.

That the theoretical treatments are still too rough to
come up with quantitative answers is hardly surpris-
ing. The various contributions to AG, arising from
these physically evident effects, are not seldom larger
than AG itself. Even minute inaccuracies, unavoidable
with approximate theories and negligible in each term
separately, may seriously distort the resulting AG
value. Large errors, in paticular in phase relations, may
easily ensue. The prediction of such properties
requires a high precision on AG which, at present, can
only be had at the cost of a relatively large number of
parameters.

In the end we retained a correction for the concen-
trated regime that so far seems to escape obvious mole-
cular interpretation within the model. Free volume,
left out of consideration here, must certainly be held
responsible for part of the concentration dependence
of g [60-63]. Inclusion will doubtless change the
values of the parameters obtained so far, but allow
excess volumes and the influence of pressure to be
treated. This point is the subject of current research.
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