PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 2, February 1973

ON POLYNOMIAL APPROXIMATION IN $A_q(D)$

THOMAS A. METZGER

ABSTRACT. Let D be a bounded Jordan domain with rectifiable boundary and define $A_q(D)$, the Bers space, as the space of holomorphic functions f, such that

$$\iint_{D} |f| \, \lambda_{D}^{2-q} \, dx \, dy$$

is finite, where λ_D is the Poincaré metric for D. It is shown that the polynomials are dense in $A_q(D)$ for q > 3/2.

1. Introduction. Let D be a bounded Jordan domain. Define $A_q(D)$ (q>1), the Bers space, as the Banach space of holomorphic functions f(z), such that

(1.1)
$$||f||_q = \iint_D |f(z)| \lambda_D^{2-q}(z) \, dx \, dy < \infty,$$

when $\lambda_D(z)$ is the Poincaré metric for *D*. If ϕ is a Riemann mapping function from *D* onto *U*, the unit disk, and $\psi = \phi^{-1}$, then

(1.2)
$$\iint_{D} \lambda_{D}^{2-q}(z) \, dx \, dy = \iint_{U} |\psi'(\zeta)|^{q} \left(1 - |\zeta|^{2}\right)^{q-2} \, d\zeta \, dn.$$

Since for Jordan domains the rectifiability of the boundary is equivalent to $\psi' \in H^1(U)$, the Hardy class (cf. [3, p. 44]), it follows immediately by a theorem of Carleson [3, p. 157] that if the boundary of D is rectifiable then (1.2) is finite for all q > 1. Hence D bounded implies that the polynomials belong to $A_q(D)$, for all q > 1.

The question of polynomial density in $A_q(D)$ has been considered by various authors. In the case $q \ge 2$, Bers [2] and Knopp [4] proved that the polynomials were dense in $A_q(D)$ without any assumptions on the mapping functions ψ or ϕ . Later Sheingorn [6] proved that the polynomials are dense in $A_q(U^*)$, for all q > 1, where U^* is a particular Jordan region which appears in the proof of the "Main Lemma" of Knopp [4]. Finally Metzger

Received by the editors May 17, 1972 and, in revised form, June 15, 1972.

AMS (MOS) subject classifications (1970). Primary 30A82; Secondary 30A58, 41A10. Key words and phrases. Polynomial density, Bers spaces.

[©] American Mathematical Society 1973

and Sheingorn [5] proved that if either $\psi' \in H^p$, for some p > 1, or D is a Smirnov domain, then the polynomials are dense in $A_q(D)$, for all q > 1.

In this paper we show

THEOREM 1. If D is a bounded Jordan domain with a rectifiable boundary, then the polynomials are dense in $A_q(D)$, for q > 3/2.

2. **Proof of Theorem 1.** Clearly we can assume that the origin lies in D and we choose $\psi(z)$, such that $\psi(0)=0$, $\psi'(0)>0$. We now note

LEMMA 1. Suppose D is a bounded Jordan domain with rectifiable boundary. The polynomials are dense in $A_q(D)$ if and only if ϕ'^q can be approximated by polynomials in $A_q(D)$.

The necessity is clear since $\phi'^q \in A_q(D)$ for all q > 1 and the sufficiency follows easily from Lemma 1 of [5].

We define $\mathscr{H}_p(D) = \{f: f \text{ is holomorphic on } D \text{ and } ||f||_p^* < \infty\}$, where

(2.1)
$$||f||_{p}^{*} = \left(\iint_{D} |f|^{p} \, dx \, dy \right)^{1/p}.$$

An application of Hölder's inequality yields

$$\begin{split} \|F\|_{q} &= \iint_{U} |F \circ \psi| |\psi'^{q}| (1 - |z|^{2})^{q-2} dx dy \\ &\leq \left(\iint_{U} |F \circ \psi|^{p} |\psi'|^{2} dx dy \right)^{1/p} \\ &\cdot \left(\iint_{U} |\psi'|^{(qp-2)/(p-1)} (1 - |z|^{2})^{(qp-2p)/(p-1)} dx dy \right)^{(p-1)/p} \\ &= \|F\|_{p}^{*} \left(\iint_{D} \lambda_{D}^{(qp-2)/(p-1)} dx dy \right)^{(p-1)/p} < \infty, \end{split}$$

if (qp-2)/(p-1)>1, i.e. if p>1/(q-1), by (1.2) and the fact that (qp-2)/(p-1)-2=(qp-2p)/(p-1). Thus polynomial approximation in $\mathscr{H}_p(D)$ implies polynomial approximation in $A_q(D)$ and, by Lemma 1, it follows that we need only show that $\phi' \in \mathscr{H}_p(D)$ for p>q/(q-1).

To see that this holds, we first note that q < 2 implies p > 2 and by changing variables we get

$$\iint_D |\phi'|^p \, dx \, dy = \iint_U |\psi'|^{2-p} \, dx \, dy = I.$$

Since ψ is a bounded schlicht function with $\psi(0)=0$, it follows that there exists an M (>0) such that $|\psi'(z)| \ge M(1-|z|^2)$ for all z in U. Hence I is finite if p<3, i.e., if q>3/2 and this completes the proof.

REMARK. If one lets G be a discrete group of conformal transformations on D and defines $A_q(D, G)$ as in Bers [1] then Theorem 2 of that paper yields the density of the Poincaré theta series of the polynomials in $A_q(D, G)$. (Cf. [1] and [5] for a precise formulation of the result plus all definitions and notations.)

BIBLIOGRAPHY

1. L. Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups, Amer. J. Math. 87 (1965), 196-214. MR 30 #4837.

2. ——, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113–134. MR 33 #273.

3. P. L. Duren, *Theory of H⁹ spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.

4. M. I. Knopp, A corona theorem for automorphic forms and related results, Amer. J. Math. 91 (1969), 599-618. MR 40 #4450.

5. T. A. Metzger and M. Sheingorn, *Polynomial approximations in the Bers' spaces* (to appear).

6. M. Sheingorn, Poincaré series of polynomials bounded away from zero on a fundamental region, Amer. J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843

470