On polynomial differential equations of Duffing type

M. D. Monsia ${ }^{1}$
Department of Physics, University of Abomey-Calavi, Abomey-Calavi, 01.B P.526, Cotonou, BENIN

Abstract

The exact and explicit general periodic solution of polynomial differential equations of Duffing type is calculated as a power law of the cosine function. In doing so the solution of all Duffing equations of three terms like the cubic, quintic and heptic equations may be easily expressed in a straightforward fashion.

Keywords: Polynomial differential equations, Duffing type equation, exact periodic solution, trigonometric functions.

Theory

Let us consider the second order nonlinear differential equation [1]

$$
\begin{equation*}
\ddot{x}+\frac{1}{2}(\alpha-q) a x^{\alpha-q-1}+\frac{q b}{2} x^{-q-1}=0 \tag{1}
\end{equation*}
$$

where a, b, α and q are arbitrary parameters, and overdot means derivative with respect to time. In [1] the problem to secure exact and sinusoidal periodic solution to (1) was solved under the conditions that $q>-2, \alpha=q+2$, and $b=\frac{a(q+2)}{4}$. In such conditions the equation (1) reduces to

$$
\begin{equation*}
\ddot{x}+a x+\frac{a q(q+2)}{8} x^{-q-1}=0 \tag{2}
\end{equation*}
$$

and all the solutions of (2) are periodic and expressed as a power law of a single sine function of time t as

$$
\begin{equation*}
x(t)=\left[\frac{\sqrt{q+2}}{2} \sin \left(\pm \frac{q+2}{2} \sqrt{a}(t+K)\right)\right]^{\frac{2}{q+2}} \tag{3}
\end{equation*}
$$

[^0]where $a>0$. It was the first time such a feat has been reached for a Lienard equation with strong and high order nonlinearity in the world of mathematics. The equation (2) is of the general form
\[

$$
\begin{equation*}
\ddot{x}+a_{1} x+a_{2} x^{m}=0 \tag{4}
\end{equation*}
$$

\]

so one may see that to obtain the solution (3) it was necessary that the coefficients a_{1} and a_{2} are related in a precise relationship. Such a relation between a_{1} and a_{2} can be a restriction for the usefulness of equation (2). Now for $m>0$, that is a positive integer $m=n>0$, the equation (4) reduces to Duffing type equation. As examples the cubic Duffing equation

$$
\begin{equation*}
\ddot{x}+a_{1} x+a_{2} x^{3}=0 \tag{5}
\end{equation*}
$$

is obtained for $n=3$. The quintic Duffing equation

$$
\begin{equation*}
\ddot{x}+a_{1} x+a_{2} x^{5}=0 \tag{6}
\end{equation*}
$$

is ensured for $n=5$. In the perspective of the polynomial differential equation of Duffing type (4) where $m=n>0$, the problem to solve is to integrate (4) explicitly under the condition that a_{1} and a_{2} are general parameters. To do so, consider the equation (1). Let $q=-2$ and $\alpha=n$. Then the equation (1) becomes

$$
\begin{equation*}
\ddot{x}+\frac{1}{2}(n+2) a x^{n+1}-b x=0 \tag{7}
\end{equation*}
$$

The equation (7) is of the form (4) where
$a_{1}=-b, a_{2}=\frac{(n+2) a}{2}$
With these values the coefficients a_{1} and a_{2} are always general parameters. The corresponding first order differential equation may be written as [1]

$$
\begin{equation*}
\dot{x}^{2} x^{-2}+a x^{n}=b \tag{9}
\end{equation*}
$$

from which one may get

$$
\begin{equation*}
\frac{d x}{x \sqrt{b-a x^{n}}}= \pm d t \tag{10}
\end{equation*}
$$

The integration of (10) is immediate and yields the exact and explicit general solution of (7) in the form

$$
\begin{equation*}
x(t)=\left[\frac{b}{a \cos ^{2}\left[\frac{n \sqrt{-b}}{2}(t+K)\right]}\right]^{1 / n} \tag{11}
\end{equation*}
$$

where $n \neq 0$, and K an arbitrary constant. One may observe that all solutions of (7) are periodic with $a<0$, and $b<0$. For $n=2$, the solution of the cubic Duffing equation

$$
\begin{equation*}
\ddot{x}+2 a x^{3}-b x=0 \tag{12}
\end{equation*}
$$

takes the form

$$
\begin{equation*}
x(t)=\frac{\sqrt{\frac{b}{a}}}{\cos [\sqrt{-b}(t+K)]} \tag{13}
\end{equation*}
$$

The solution of the quintic Duffing equation
$\ddot{x}+3 a x^{5}-b x=0$
has the expression

$$
\begin{equation*}
x(t)=\left(\frac{b}{a}\right)^{1 / 4} \frac{1}{\cos [2 \sqrt{-b}(t+K)]^{1 / 2}} \tag{15}
\end{equation*}
$$

In conclusion the exact and explicit general solution of all polynomial differential equations of Duffing type with three terms may be obtained from the equation (11) easily.

Reference

[1] M. D. Monsia, On a nonlinear differential equation of Lienard type, Math.Phys.,viXra.org/2011.0050v3.pdf (2020).

[^0]: ${ }^{1}$ Corresponding author : E-mail: monsiadelphin@yahoo.fr

