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ON POLYNOMIAL-FACTORIAL DIOPHANTINE EQUATIONS

DANIEL BEREND AND JØRGEN E. HARMSE

Abstract. We study equations of the form P (x) = n! and show that for some
classes of polynomials P the equation has only finitely many solutions. This is

the case, say, if P is irreducible (of degree greater than 1) or has an irreducible
factor of “relatively large” degree. This is also the case if the factorization of
P contains some “large” power(s) of irreducible(s). For example, we can show
that the equation xr(x + 1) = n! has only finitely many solutions for r ≥ 4,
but not that this is the case for 1 ≤ r ≤ 3 (although it undoubtedly should
be). We also study the equation P (x) = Hn, where (Hn) is one of several
other “highly divisible” sequences, proving again that for various classes of
polynomials these equations have only finitely many solutions.

1. Introduction

The diophantine equation

(1.1) x2 − 1 = n!

seems to have been first posed by Brocard [Br1], [Br2], and it is believed that
the only solutions are x = 5, x = 11 and x = 71 (with n = 4, n = 5 and
n = 7, respectively). In [EO], Erdős and Obláth considered, more generally, the
diophantine equations xk ± yk = n! and m! ± n! = xk. They were able to show
that most of these have only finitely many solutions. In particular, the equation
xk − 1 = n! has no solutions for k > 1, except possibly for k = 2 and k = 4.
In the case k = 4, namely for the equation x4 − 1 = n!, they showed that the
number of solutions is finite, and Pollack and Shapiro [PolS] eventually proved that
there are actually no solutions. However, the seemingly simplest case, of equation
(1.1), remained open. Further evidence that (1.1) has only finitely many solutions
was provided by Overholt [O], who showed that this would follow from the weak
form of Szpiro’s conjecture (which is itself a special case of the well-known ABC
conjecture). (See Dickson [Di, pp. 680-682] and Guy [Gu1, Sec. D25] for more
details and [BernG] for computational results.) A related equation,

(1.2) x(x + 1) = n! ,

was posed by Erdős at one of the Western Number Theory Conferences. He opined
that it is no doubt true that (1.2) has only finitely many solutions, but that the
problem is “quite hopeless in our lifetime or perhaps the lifetime of this miserable
universe”. It was noted by Spiro, solving a simpler version of the problem, that
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1742 DANIEL BEREND AND JØRGEN E. HARMSE

there are infinitely many positive integers n for which the number x defined by (1.2)
is not an integer (see [Gu2, Problems 301–305]). Erdős then asked [Gu3, Problem
302] to show that the set of integers n yielding an integer x in (1.2) is of 0 density,
and this was accomplished in [BereO]. More generally, for any polynomial P of
degree 2 or more with integer coefficients, the equation

(1.3) P (x) = n!

has only a density 0 set of solutions n. Luca [Luca] has recently shown that the
ABC conjecture implies that (1.3) has only finitely many solutions.

Of course, on probabilistic grounds (namely, the easy part of the Borel-Cantelli
Lemma) one would actually expect (1.3) to have only finitely many solutions, but
that does not follow from the machinery used in [BereO]. The starting point for this
paper is a study of this equation with the intent of proving the stronger result, the
finiteness of the number of solutions. (This objective is only partly accomplished.)

Our approach relies heavily on the fact that the numbers n! are “highly” divisible
by many primes; moreover, any integer eventually divides all of them. It is thus
natural to consider the equation resulting from (1.3) upon replacing n! by other
sequences of such numbers. The equation (1.3) is replaced by the more general
equation

(1.4) P (x) = Hn ,

where (Hn) is a highly divisible sequence. In addition to the choice

(1.5.a) Hn = n! ,

which gives (1.3), two other sequences immediately come to mind,

(1.5.b) Hn = [1, 2, . . . , n] ,

(where [1, 2, . . . , n] is the least common multiple of all positive integers ≤ n), and

(1.5.c) Hn = p1p2 . . . pn ,

(where p1 < p2 < . . . is the sequence of all primes). With respect to the third
sequence, it was noted by Lucas [Lucas2], [Lucas3, p. 351] that the equation xk ±
yk = p1p2 . . . pn has no solutions for k ≥ 2, n ≥ 3 (see also [Ba, pp. 44-46]). In
a somewhat lighter vein, Nelson, Penney and Pomerance [NPP] considered the
equation x(x + 1) = p1p2 . . . pn and conjectured that it has only the solutions
x = 1, x = 2, x = 5, x = 14 and x = 714 (with n = 1, n = 2, n = 3, n = 4 and
n = 7, respectively).

All three sequences (1.5.a)–(1.5.c) are divisor sequences, i.e., each term divides
its successor. Another sequence, also consisting of highly divisible numbers, is that
of the binomial coefficients

(
2n
n

)
, or, more generally, of multinomial coefficients

(1.5.d) Hn =
(

an

n, n, . . . , n

)
=

(an)!
(n!)a

for a fixed integer a ≥ 2. This is not a divisor sequence. While every fixed positive
integer divides most elements of the sequence, every prime p > a is relatively prime
to infinitely many of them.

Most of the paper is devoted to the case of polynomials of degree 2 or more. In
Section 2, however, we study the case of linear polynomials, which turns out (for Hn

as in (1.5.c) or (1.5.d)) to be non-trivial. In the other sections, all dealing only with
deg P ≥ 2, we employ several techniques to deal with (1.4). In Section 3 we start
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ON POLYNOMIAL-FACTORIAL DIOPHANTINE EQUATIONS 1743

with the immediate observation that, for (1.4) to have infinitely many solutions,
P (x) must be highly divisible for appropriate choices of x. This already proves the
finiteness of the set of solutions for several classes of polynomials. In particular,
this is the case for “most” polynomials (see Remarks 3.1 and 4.2 infra). In Section 4
we note that, in some cases, a (large) solution of (1.4) requires some factor of P to
account for a smaller portion of the size of Hn than it should according to its degree,
which gives an upper bound on the size of the solutions. Section 5 is devoted to
polynomials with multiple factors. The results here depend on estimates regarding
the number of primes in short intervals, and we indicate what we obtain with known
results on this question and how improved estimates can strengthen our results. In
Section 6 we combine the ideas of the two preceding sections, showing that in
some cases we can take advantage of the appearance of some multiple irreducible
divisors of P . Most of the proofs, especially the lengthier and more technical, are
presented at the end of the paper; Section 7 deals mostly with auxiliary results, and
in Section 8 we present all remaining proofs. Two appendices contain approximate
values of some constants and a summary of notation.

We are grateful to J.-P. Allouche, I. Efrat, P. Erdős, H. Furstenberg, R. Heath-
Brown, D. Hensley, A. Ivić, J. Lagarias and the referee of this paper for helpful
discussions on this problem and important information on related questions, to
L. Sapir for verifying by Maple the calculations in the proof of Proposition 7.4, and
to Y. Caro for his many comments on an early draft of the paper.

2. Linear polynomials

In this section we study (1.4) for the various sequences (Hn) in the case P is
a linear polynomial, P = rX + s (r �= 0). Note that in the sequel we shall use X
when we have a polynomial P (X) and x to denote an integer variable, supposed to
satisfy an equation of the form P (x) = Hn.

Before stating our main results we recall a conjecture of Hardy and Littlewood
[HaL].

Prime k-Tuple Conjecture. Let a1, a2, . . . , ak be integers which, for every prime
p, do not represent all p congruence classes modulo p. Then there exist infinitely
many positive integers n for which all the numbers n + a1, n + a2, . . . , n + ak are
prime.

When we subsequently refer to this conjecture, we shall mean its assertion for
all integers k simultaneously.

The density of a set A ⊆ N is given by limN→∞
#(A∩[1,N ])

N (where #(B) denotes
the cardinality of a finite set B) if the limit exists.

For a prime p and a positive integer m, denote by νp(m) the maximal k for which
pk|m. By P we shall denote the set of all primes.

Theorem 2.1. Let r �= 0 and s be integers. Then:
a) The equation rx+ s = n! has only finitely many solutions unless r|s, in which

case every sufficiently large n yields a solution.
b) The equation rx + s = [1, . . . , n] has only finitely many solutions unless r|s,

in which case every sufficiently large n yields a solution.
c) Consider the equation rx + s = p1 . . . pn. Let d = (r, s) and r = dr′, s = ds′.
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Then:
1. The following conditions are necessary for the equation to have infinitely many

solutions:
i. The number d is square-free.
ii. All prime divisors of r′ are divisors of d as well.
2. If conditions 1.i-1.ii hold, then out of the φ(r′) possible choices for s′ (modulo

r′), for at least 1+
√

4φ(r′)−3

2 the equation has infinitely many solutions. In partic-
ular, for r′ = 1, 2, 3, 4, 6, conditions 1.i-1.ii are also sufficient for the equation to
have infinitely many solutions (for any s′).

3. Under the prime k-tuple conjecture, conditions 1.i-1.ii above are sufficient for
the equation to have infinitely many solutions.

d) Consider the equation rx + s =
(

an
n,n,...,n

)
.

1. If r|s, then this equation has a density 1 set of solutions n. Otherwise, the
set of solutions is of density 0.

2. Let F = {p ∈ P : νp(r) > νp(s)}. If F contains two primes not exceeding a,
then the equation has only finitely many solutions.

The non-trivial parts of the theorem are c) and d). While the main body of the
proof will be presented only in Section 8, we state at this point several conjectures
and results, relevant to both the proof and various refinements of the theorem. The
following two conjectures are related to the prime k-tuple conjecture.

Prime-Composite (k, l)-Tuple Conjecture. Let a1, a2, . . . , ak be as in the prime
k-tuple conjecture and let b1, b2, . . . , bl be any integers, such that ai �= bj for every i
and j. Then there exist infinitely many positive integers n for which all the numbers
n + a1, n + a2, . . . , n + ak are prime while all the numbers n + b1, n + b2, . . . , n + bl

are composite.

Again the conjecture is universal in the variables mentioned in its name.

Conjecture 2.1. Let M and e be any positive integers and let m1, m2, . . . , me be
integers relatively prime to M . Then there exist infinitely many numbers n for
which

(2.1) pn+i ≡ mi (mod M), i = 1, 2, . . . , e .

The last conjecture is of course a multi-dimensional analogue of Dirichlet’s Theo-
rem on primes in arithmetic progressions. One may sharpen the conjecture, stating
that the density of the set of those numbers n satisfying (2.1) is 1

φ(M)e .

Proposition 2.1. The prime k-tuple conjecture implies the prime-composite (k, l)-
tuple conjecture.

Proposition 2.2. The prime-composite (k, l)-tuple conjecture implies Conjec-
ture 2.1.

Thus, taking into account Erdős’s opinion [E2] regarding the validity of the prime
k-tuple conjecture (and even of a strengthened version thereof; see also [BatH],
for example) that “it is of course clear to every ‘right thinking person’ that this
conjecture must be true”, we may be on safe ground with the prime-composite
(k, l)-tuple conjecture and Conjecture 2.1.

Theorem 2.2. Under Conjecture 2.1, conditions c)1.i.–c)1.ii. in Theorem 2.1 are
sufficient for the equation rx + s = p1 . . . pn to have infinitely many solutions.
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Now we discuss another conjecture, related to part d) of Theorem 2.1.

Conjecture 2.2. Consider the equation

(2.2) rx + s =
(

an

n, n, . . . , n

)
,

where r, s and a are non-zero integers, a ≥ 2. Let F = {p ∈ P : νp(r) > νp(s)}, as
in Theorem 2.1d)2.

1. If ∑
p∈F

(
1 − logp

⌈p

a

⌉)
> 1,

then (2.2) has only finitely many solutions.
2. If ∑

p∈F

(
1 − logp

⌈p

a

⌉)
< 1,

then (2.2) has infinitely many solutions.

Example 2.1. In the case

(2.3)
∑
p∈F

(
1 − logp

⌈p

a

⌉)
= 1,

more information is needed to decide whether (2.2) has finitely many or infinitely
many solutions. In fact, for both of the equations

2x + 1 =
(

2n

n

)
and

4x + 2 =
(

2n

n

)
,

one has equality in (2.3), yet the first is easily seen to have no solutions, while
n = 2m yields a solution of the second for every m.

We note that it is not clear whether there are less trivial instances where (2.3)
holds, and we raise the following

Question. Can (2.3) hold with #(F ) ≥ 2 ?

A similar question may be asked with respect to the borderline case in Conjecture
2.3 infra. One is tempted to conjecture that the answer is negative, but it seems
that current techniques in transcendental number theory are not strong enough to
yield this result.

The value of a binomial coefficient
(

n
m

)
modulo a prime p is easily calculated in

terms of the base p expansions of n and m. It was observed by Lucas [Lucas1] that,
writing

n =
k∑

i=1

nip
i, m =

k∑
i=1

mip
i (0 ≤ ni, mi < p),

we have p|
(

n
m

)
unless mi ≤ ni for each i, in which case

(2.4)
(

n

m

)
≡

k∏
i=1

(
ni

mi

)
(mod p) .
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1746 DANIEL BEREND AND JØRGEN E. HARMSE

Thus it is no surprise that Conjecture 2.2 is closely related to certain conjectures
about the expansions of integers in various bases. As these conjectures are of inde-
pendent interest, we formulate them here. (Heuristic arguments for their validity
will be provided in Section 7.) For non-negative integers n, C and b ≥ 2, denote by
db,C(n) the number of distinct digits appearing in the base b expansion of n more
than C times.

Conjecture 2.3. Let b1, b2, . . . , bg ≥ 2 be pairwise prime integers, and let C ≥ 0
be an arbitrary constant. Then:

1.
∑g

j=1

(
1 − logbj

dbj ,C(n)
)
≤ 1 for all sufficiently large integer n.

2. Suppose Bj ⊆ {0, 1, . . . , bj − 1} for 1 ≤ j ≤ g. If

(2.5)
g∑

j=1

(
1 − logbj

#(Bj)
)

< 1 ,

then there exist infinitely many positive integers n such that for each 1 ≤ j ≤ g the
base bj expansion of n contains at most C occurrences of digits not belonging to Bj

(and arbitrarily many occurrences of digits belonging to Bj).

Conjecture 2.3 is closely related to a conjecture of Furstenberg [FU, Conj. 2′].

Remark 2.1. It is conceivable that the first part of Conjecture 2.3 holds even if
b1, b2, . . . , bg are required to be only pairwise multiplicatively independent (i.e.,
log bi/ log bj is irrational for i �= j). However, in the second part one cannot relax
the condition in this way, as the example b1 = 4, b2 = 6, B1 = {0, 2}, B2 = {1, 3, 5}
demonstrates. It is possible to modify the conjecture so as to relate to arbitrary pair-
wise multiplicatively independent b1, b2, . . . , bg. We shall refrain from doing that,
as our interest here in the conjecture is restricted to the case where b1, b2, . . . , bg

are all prime.

Example 2.2. Let g = 2. If logb1 #(B1) + logb2 #(B2) > 1, then according to
Conjecture 2.3.2 there should exist infinitely many positive integers n whose base
b1 expansion consists only of digits in B1 and whose base b2 expansion consists only
of digits in B2. Erdős et al. [EGRS] proved that this is the case if B1 = {0, 1, . . . , c1}
and B2 = {0, 1, . . . , c2}, where c1 and c2 satisfy the condition c1

b1−1 + c2
b2−1 ≥ 1. For

example, Conjecture 2.3.2 would imply the result if c1 =
⌊√

b1

⌋
and c2 =

⌊√
b2

⌋
,

while [EGRS] would imply the same only for the much larger c1 =
⌈

b1−1
2

⌉
, c2 =⌈

b2−1
2

⌉
.

Proposition 2.3. Conjecture 2.3.1 implies Conjecture 2.2.1.

Let us state here a few more results related to Theorem 2.1d). It seems that
the special case a = 2 of our general sequence, namely the sequence

(
2n
n

)
, attracted

the most attention, and we shall confine ourselves almost solely to this case. For a
prime power r we have

Proposition 2.4.
1. For every odd prime p and positive integer l, the equation

plx + s =
(

2n

n

)
has infinitely many solutions for every s.
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2. For l ≥ 2 and 0 ≤ s ≤ 2l − 1, the equation

2lx + s =
(

2n

n

)
has infinitely many solutions for s = 0 and for exactly one of the choices s =
2, 6, 10, . . . , 2l−2. The equation has no solutions for s odd (except n = 0). One can
effectively determine, given any s = 4, 8, 12, . . . , 2l − 4, whether or not the equation
has infinitely many solutions. In either case, one can effectively characterize the
solutions.

Example 2.3. One might expect the first part of the proposition to remain valid
if
(
2n
n

)
is replaced by

(
an

n,n,...,n

)
as long as p > a. However, one easily verifies

(employing (2.4) and the fact that
(

3n
n,n,n

)
=
(
3n
n

)(
2n
n

)
) that, say, the equations

5x + s =
(

3n

n, n, n

)
and

7x + s =
(

3n

n, n, n

)
have solutions only for s ≡ 0, 1(mod 5) and s ≡ 0,±1(mod 7), respectively. It is
quite possible, though, that the result is true for all sufficiently large p.

The result of Erdős et al. [EGRS] mentioned in Example 2.2 served them to
prove that the sequence

(
2n
n

)
assumes infinitely often values which are relatively

prime to 15, or, more generally, relatively prime to pq, where p and q are distinct
odd primes. In terms of the problem at hand, this yields

Proposition 2.5 ([EGRS]). Let p and q be distinct odd primes. Then the equation

pqx + s =
(

2n

n

)
has infinitely many solutions for at least one s relatively prime to pq.

Let us finally mention that Conjecture 2.2 seems more difficult when r is divisible
by three or more primes. In fact, Graham ([Gu1, §B23], [Gr]) offers $1000 for a
solution of the following

Question. Is
((

2n
n

)
, 105

)
= 1 for infinitely many positive integers n?

Note that, as

log3 2 + log5 3 + log7 4 ≈ 0.631 + 0.683 + 0.712 = 2.026 > 2 ,

Conjecture 2.2 would imply that the answer to the last question is affirmative (and
the same should be true if the number 105 is replaced by any product of three
distinct odd primes).

3. Introductory ideas – no solutions modulo some integer

One of the simplest ways of showing that a diophantine equation has no solutions
is to find an integer so that the equation does not even have a solution modulo that
integer. Our results in this section are based on this observation. These results will
be superseded by those in the following sections, but they will serve us in presenting
some of the ideas to be used later in a quantitative form.
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Suppose the equation P (x) = Hn has infinitely many solutions. For the first two
sequences, namely Hn = n! and Hn = [1, 2, . . . , n], this implies that the congruence

(3.1) P (x) ≡ 0 (modm)

has a solution x for every positive integer m. An equivalent condition is that (3.1)
has a solution for every prime power m = pk, or, again equivalently, that P has
a root in the ring Zp of p-adic integers for every prime p. For Hn = p1p2 . . . pn,
the existence of infinitely many solutions implies that (3.1) is solvable for every
square-free integer m (or, equivalently, every prime). We shall now present a few
examples showing that these conditions are not that easy to fulfill.

Example 3.1. The congruence

(3.2) x2 − 2 ≡ 0 (modm)

has no solution for m = 4, so that the equations x2−2 = n! and x2−2 = [1, 2, . . . , n]
have only finitely many solutions. Also, (3.2) has no solution for m = 3, and
therefore x2 − 2 = p1p2 . . . pn has only finitely many solutions as well. One easily
finds suitable moduli to show the same for the polynomials X2 − 3, X2 − 5 and
X2−6 (but certainly not for X2−1 or X2−4). Note that the above does not apply
to the equation x2 − 2 =

(
an

n,n,...,n

)
. (The finiteness of the number of solutions of

the last equation will follow from Theorem 4.1 infra.)

The example is but a special case of

Theorem 3.1. If P ∈ Z[X] is irreducible over Q and deg P ≥ 2, then the equation
P (x) = Hn, where (Hn) is any of the three sequences (1.5.a)–(1.5.c), has only
finitely many solutions.

The theorem follows straightforwardly from the fact that the conditions ensure
that the congruence P (x) ≡ 0(mod p) has no solutions modulo some prime (actually,
infinitely many primes) p [J, pp. 138–139].

Remark 3.1. It will follow from Theorem 4.1 in the next section that the conclusion
of Theorem 3.1 is true for the sequence (1.5.d) as well. Thus, our basic equation
P (x) = Hn admits only finitely many solutions for “most” (see Remark 4.2 infra)
polynomials of degree 2 or more for each of the four sequences considered in this
paper.

The method of Theorem 3.1 also applies to many reducible polynomials. Given
any polynomial P one may ask whether it has a root modulo every integer. If the
answer is negative, then the equations P (x) = n! and P (x) = [1, 2, . . . , n] have only
finitely many solutions. Similarly, if P fails to have a root modulo some prime, then
the equation P (x) = p1p2 . . . pn has only finitely many solutions. In this connection
we are naturally led to ask for an algorithm which, given a polynomial P ∈ Z[X],
decides whether or not it has a root modulo every integer (or, alternatively, modulo
every prime). The question is easy when the irreducible factors of P are all either
linear or quadratic. More generally, let K be the splitting field of P over Q. If
the extension K/Q is abelian, then the set of primes modulo which P has a root is
given by certain congruence conditions (see, for example, [Wy] and the references
there), and the question is easy. If the extension is non-abelian, the ensuing set of
primes is in general quite complicated. An algorithm for testing whether a given
polynomial has a root modulo every prime is given in [BereB]. (That this problem,
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even for several polynomials in several variables, is decidable follows from [A]; see
also [FrS].)

Example 3.2. Consider the congruence

(3.3) (x2 − r)(x2 − s)(x2 − rs) ≡ 0(mod m),

where r and s are any integers. If m is prime, then the congruence must have a
solution. In fact, this is clear if either r or s is a quadratic residue modulo m, while
otherwise rs is a quadratic residue and again we are done. Thus the method of this
section (as well as those of later sections) gives rise to

Problem A. Does the equation

(x2 − 2)(x2 − 7)(x2 − 14) = p1p2 . . . pn

have infinitely many solutions?

Example 3.3. The equations

(x2 − 2)(x2 − 7)(x2 − 14) = n!

and
(x2 − 2)(x2 − 7)(x2 − 14) = [1, 2, . . . , n]

have only finitely many solutions. In fact, although the associated congruence has
a solution for every prime, it fails to have solutions modulo some high powers, say
modulo 8. (It has solutions modulo any prime power pk for p �= 2.)

However, some choices of r and s in (3.3) lead to polynomials with roots modulo
every integer. This is the case, for example, with r = 13, s = 17 [BoS, p. 3].

Problem B. Do the equations

(x2 − 13)(x2 − 17)(x2 − 221) = n!

and
(x2 − 13)(x2 − 17)(x2 − 221) = [1, 2, . . . , n]

have infinitely many solutions?

4. Overloaded factors

We explain the basic idea of this section by means of

Example 4.1. Consider the equation

(4.1) x(x2 + 1) = n! .

(Note that the method employed in the preceding section obviously fails in this
case.) For large n, a solution x should be of the order of magnitude 3

√
n! , so that

x2 + 1 is approximately
3
√

n!2 . Now remember that the congruence

x2 + 1 ≡ 0(mod p) ,

where p is a prime, has a solution if and only if p ≡ 1 (mod 4) (or p = 2). Hence
the factor x2 +1 can account only for these primes. Since these primes are, roughly
speaking, only half of all primes, we should obtain a contradiction for sufficiently
large n, which hints that (4.1) has only finitely many solutions.

Erdős-Obláth’s method for dealing with the equation xp ± yp = n! [EO] is basi-
cally this idea, applied in cases where the set of prime divisors of the polynomial in
question is defined in terms of certain congruences. As mentioned in the preceding
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section, for general polynomials the ensuing sets of primes are not so easily describ-
able. To deal with the general case, we first recall the notion(s) of density of a set
of primes (see, for example, [Go] for more details). Take T ⊆ P. The Dirichlet
density (or analytic density) of T is defined by

D(T ) = lim
s→1+

log
∏

p∈T

(
1 − 1

ps

)−1

log ζ(s)
= lim

s→1+

∑
p∈T p−s

log 1
s−1

,

provided that the limit exists. More natural (but perhaps less useful) is the notion
of natural density (sometimes called ordinary density [La], primitive density [Pow]
or normal density [R]), defined by

(4.2) d(T ) = lim
x→∞

π(x, T )
π(x)

,

where π(x) is the number of primes not exceeding x and π(x, T ) is the number of
those belonging to T . (Of course, in view of the Prime Number Theorem, one may
replace the denominator on the right-hand side of (4.2) by x

log x .) If d(T ) exists,
then so does D(T ), and the two densities coincide [Go, Th. 14-1-2]. (The converse is
false; see, for example [Ser, p. 76].) In this paper we shall use only natural densities.
The set T is naturally regular if d(T ) exists. We note that some results which are
often formulated for Dirichlet densities are in fact valid for natural densities as well
(for example, the Chebotarev Density Theorem; see [N, Th. 7.11, 7.11∗]).

In the sequel we shall use the notions of the upper natural density d∗(T ) and of
the lower natural density d∗(T ) of a set T of primes. These are defined as in (4.2),
except that the limit is replaced by lim sup and by lim inf, respectively.

Our main result in this section is

Theorem 4.1. Consider the equation

P (x) = Hn,

where (Hn) is any of the four sequences (1.5.a)–(1.5.d). Let Q ∈ Z[X] be any factor
(irreducible or not) of P . Denote by S(Q) ⊆ P the set of all primes p for which the
congruence Q(x) ≡ 0 (mod p) has a solution. If d(S(Q)) < deg Q

deg P , then (1.4) has
only finitely many solutions.

Remark 4.1. The set S(Q) is naturally regular [Ser, p. 76], so we do not have to
introduce upper and lower natural densities in the formulation of the theorem.

Now return to our intuitive discussion in Example 4.1. The conclusion of the
argument for the finiteness of the set of solutions depended on the implicit assump-
tion that in the factorization of n!, for large n, the primes ≡ 1 (mod 4) and the
primes ≡ −1 (mod 4) have roughly equal contributions. A generalization of this
assertion is used in the proof of Theorem 4.1. For N ∈ N and any set S, let

ψ1(N, S) =
∏

p∈S∩P

pνp(N).

The main ingredient in the proof of Theorem 4.1 is given in

Proposition 4.1. Let (Hn) be any of the four sequences (1.5.a)–(1.5.d). If T ⊆ P
is a naturally regular set of primes, then ψ1(Hn, T ) = Hn

d(T )+o(1).
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For the first three of the sequences (Hn), the following (even stronger) result is
valid.

Proposition 4.2. Let (Hn) be any of the three sequences (1.5.a)–(1.5.c). If T ⊆ P
is any set of primes, then H

d∗(T )+o(1)
n ≤ ψ1(Hn, T ) ≤ H

d∗(T )+o(1)
n .

The corresponding result for the fourth sequence is not true. Indeed, let (nk)∞k=1

be a rapidly increasing sequence, and let S =
⋃∞

k=1(P∩ (nk, 2nk]), so that d∗(S) =
1/2. According to the argument of Proposition 7.8 infra we have

ψ1

((
2nk

nk

)
, S

)
=
(

2nk

nk

) 1
2 log 2+o(1)

,

whereas the upper bound predicted by Proposition 4.2 is the much smaller(
2nk

nk

) 1
2+o(1)

.
The factor Q in Theorem 4.1 must sometimes be chosen reducible for the theorem

to be applicable. We see this phenomenon in

Example 4.2. Consider the equation

x(x2 + 1)(x2 + 2) = Hn,

where (Hn) is any of the four sequences (1.5.a)–(1.5.d). For the set S(Q) not
to be the whole of P, the factor Q must not contain X. Taking Q(x) = x2 + 1
we get S(Q) = {2} ∪ {p ∈ P : p ≡ 1(mod 4)}, whereas Q(x) = x2 + 2 gives
S(Q) = {2} ∪ {p ∈ P : p ≡ 1, 3(mod 8)}. Thus in each of these cases d(S(Q)) = 1

2 ,
while deg Q

deg P = 2
5 , and Theorem 4.1 cannot be put to use. Choosing, however,

Q(x) = (x2 + 1)(x2 + 2), we get S(Q) = {2} ∪ {p ∈ P : p ≡ 1, 3, 5(mod 8)}, so that
d(S(Q)) = 3

4 , while deg Q
deg P = 4

5 , and by Theorem 4.1 the equation has only finitely
many solutions.

Example 4.3. Consider the equation

(4.3) P (x) = Hn,

where P is divisible by the rth cyclotomic polynomial Φr. As is well known (see, for
example, [Wa, p. 13]), the prime divisors of Φr are (with finitely many exceptions)
those primes which are 1 modulo r. Hence d(S(Φr)) = 1

φ(r) , so that if deg P <

φ(r)2, then (4.3) has only finitely many solutions. In particular, if r < φ(r)2, which
is the case unless r = 1, 2, 4 or 6, then the equation

(4.4) xr − 1 = Hn

has only finitely many solutions. For r = 6 we arrive at the same conclusion by
considering the divisor X4 + X2 + 1 of X6 − 1 (the divisor Φ6 = X2 −X + 1 would
not suffice), and noting that d(S(X4 + X2 + 1)) = 1

2 . The case r = 4 (and certainly
r = 2) of (4.4) cannot be dealt with by means of Theorem 4.1, which explains why
additional tools were required in [EO] and [PolS] to tackle it.

Now we give some examples involving non-abelian extensions.

Example 4.4. Consider the equation

(4.5) x(x3 − 2) = Hn .

We have d(S(X3 − 2)) = 2
3 (see, for example, [CaF, p. 354]), so that Theorem 4.1,

applied with Q(x) = x3 − 2, shows that (4.5) has only finitely many solutions for
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each of the four sequences (1.5.a)–(1.5.d). We note in passing that in this case the
set of primes dividing the polynomial in question can be “explicitly” characterized;
in fact, it was shown by Gauss that

S(X3 − 2) = {p ∈ P : p ≡ −1(mod 3)} ∪ {p ∈ P : p ≡ 1(mod 3), p = a2 + 27b2} .

Example 4.5. Consider the equation

(4.6) R(x)(x5 − x − 1) = Hn .

In view of [Wy], the Galois group of the splitting field of X5 − X− 1 over Q is the
symmetric group on 5 symbols S5 and d(S(X5 − X − 1)) = 19

30 . It follows easily
from Theorem 4.1 that, if R is linear or quadratic, then (4.6) has only finitely many
solutions. For cubic R we have

d(S(X5 − X − 1)) =
19
30

>
5
8

=
deg(X5 − X − 1)

deg(R · (X5 − X − 1))
,

so that Theorem 4.1 fails (by a small margin).

Problem C. Do the equations

x(x + 1)(x + 2)(x5 − x − 1) = Hn ,

with Hn as in (1.5.a)–(1.5.d), have infinitely many solutions?

Example 4.6. More generally than (4.6), consider the equation

(4.7) P (x) = Q(x)R(x) = Hn ,

where Q is an irreducible polynomial such that the Galois group of its splitting field
over Q is the symmetric group on q = deg Q symbols. As in [Wy], one can verify
that S(Q) corresponds to the set of those permutations having a 1-cycle. Hence

d(S(Q)) = 1 − 1
2!

+
1
3!

− . . . +
(−1)q−1

q!
.

For large q we have d(S(Q)) ∼ 1 − 1
e . Hence if deg Q >

(
1 − 1

e + ε
)
deg P , then

(4.7) can have only finitely many solutions.

Remark 4.2. The last example can be rephrased to assert that, for “most” polyno-
mials having a “large” irreducible factor, our basic equation has only finitely many
solutions. (See [vW], where it is proved that most polynomials of degree d over Q
have the symmetric group on d symbols as their Galois group.) This strengthens
the observation of Remark 3.1.

5. Multiple factors

It is easy to see that each of the four sequences (Hn) in (1.5.a)–(1.5.d) has the
property that all its terms from some place on satisfy p|Hn, p2 � Hn for some prime
p depending on n. Moreover, if F is any finite subset of P, then for sufficiently
large n we may choose p ∈ P \ F . This simple observation already yields

Theorem 5.1. Let P (x) = P0P1(x)e1P2(x)e2 . . . Pu(x)eu be the decomposition of
P as a product of an integer P0 and primitive irreducible polynomials. If ei ≥ 2 for
every 1 ≤ i ≤ k, then the equation P (x) = Hn has only finitely many solutions for
each of the four sequences (1.5.a)–(1.5.d).
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In this section we shall see that one can often prove that our equation has only
finitely many solutions by the existence of just one multiple factor of P . To present
the main result, put

λr =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.8431, r = 2,

0.7907, r = 3,

0.7642, r = 4,

0.7405, r = 5,

0.5 +
0.5099

r
+

log(r − 1)
2r

, r ≥ 6,

θa,k =
∞∑

j=0

(
1

ja + k
− 1

ja + k + 1

)
, a ≥ 2, 1 ≤ k .

Theorem 5.2. Let P (x) = P0P1(x)e1P2(x)e2 . . . Pu(x)eu , as in Theorem 5.1.
a) If

1
deg P

∑
i:r|ei

ei deg Pi > λr

for some r ≥ 2, then the equation P (x) = n! has only finitely many solutions.
b) If ei ≥ 2 for some 1 ≤ i ≤ u, then the equation P (x) = [1, 2, . . . , n] has only

finitely many solutions.
c) If ei ≥ 2 for some 1 ≤ i ≤ u, then the equation P (x) = p1p2 . . . pn has only

finitely many solutions.
d) If

1
deg P

∑
i:r|ei

ei deg Pi >
r

log a

� a−1
r ∑

k=1

kθa,kr

for some r ≥ 2, then the equation P (x) =
(

an
n,n,...,n

)
has only finitely many solutions.

In particular, this is the case if ei ≥ a for some 1 ≤ i ≤ u.

Parts b) and c) of the theorem are very simple. We shall now shed some light
on the other two parts. The idea of part a) is seen in

Example 5.1. Consider the equation

(5.1) x2(x + 1) = n! .

One would expect the part of n! coming from primes p with νp(n!) even to account
(for large n) for about

√
n! . Since the factor x2 of x2(x+1) can contribute only to

these primes, however, they should account for at least
3
√

n!2. This contradiction
should prove that (5.1) has only finitely many solutions. Unfortunately, our results
regarding the portion of n! under investigation are most probably not the best
possible, and the finiteness of the number of solutions of (5.1) does not follow from
Theorem 5.2. However, Theorem 5.2a) yields the finiteness for the equation

xr(x + 1) = n!

if r ≥ 4. In fact,
1

deg P

∑
i:r|ei

ei deg Pi =
r

r + 1
.
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For r = 4 the last expression assumes the value 4/5, which exceeds λ4 = 0.7648.
As r/(r + 1) increases with r, whereas λr decreases with r, we may conclude our
assertion for r ≥ 4. Since for r = 3 we have

1
deg P

∑
i:r|ei

ei deg Pi =
3
4

< 0.7907 = λ3,

Theorem 5.2 is not strong enough to conclude the finiteness for r = 2, 3.
For N ∈ N and A ⊆ N, let

ψ2(N, A) =
∏
p∈P

νp(N)∈A

pνp(N).

Then the portion of n! due to primes appearing with exponents divisible by a
certain integer r is ψ2(n!, rN). The problem with making the idea of Exam-
ple 5.1 precise is that we do not know how to show that ψ2(n!, rN) is about r

√
n! .

The difficulty lies especially with small primes. For example, Erdős and Graham
[EG, p. 77] ask whether for every k there exists some n with all the exponents
ν2(n!), ν3(n!), ν5(n!), . . . , νpk

(n!) even. (This question was settled affirmatively in
[Be].) The contribution of the big primes (say, p > n

c for some constant c) satisfying
this condition is easy to estimate, but they account in any case only for a negligible
part of n!, namely n!o(1). The hope for using the idea is based on primes p >

√
n,

and it is useful to divide even these primes according to their size.
For N ∈ N, A ⊆ N and any set S, let

ψ(N, A, S) =
∏

p∈S∩P
νp(N)∈A

pνp(N).

(Then ψ2(N, A) defined above is ψ(N, A,P), and ψ1(N, S) defined in Section 4 is
ψ(N,N, S).) The upper density δ∗(A) of a set A ⊆ N is given by

δ∗(A) = lim sup
N→∞

#(A ∩ [1, N ])
N

.

The lower density δ∗(A) is similarly defined, with lim sup replaced by lim inf, and
the density of A is

δ(A) = δ∗(A) = δ∗(A)

if δ∗(A) and δ∗(A) coincide. For 0 < α ≤ 1 set

γ∗(α) = lim inf
x→∞

#(P ∩ (x, x + xα])
xα

log x

, γ∗(α) = lim sup
x→∞

#(P ∩ (x, x + xα])
xα

log x

.

Proposition 5.1. Let A ⊆ N and 0 < α < 1. Set

β = β(α) =
1 − α

2 − α
= 1 − 1

2 − α
<

1
2

.

Then for 0 ≤ β1 < β,

(n!)(β−β1)γ∗(α)δ∗(A)+o(1) ≤ ψ(n!, A, (n1−β, n1−β1 ]) ≤ (n!)(β−β1)γ
∗(α)δ∗(A)+o(1).

This is a special case of Proposition 6.1. In Section 7 we present a self-refinement
of the proposition.
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We now present the results known regarding γ∗(α) and γ∗(α). By the Prime
Number Theorem we have γ∗(1) = γ∗(1) = 1. One expects that actually γ∗(α) =
γ∗(α) = 1 for every 0 < α ≤ 1. However, even the inequality

(5.2) γ∗(α) ≤ 2
α

, 0 < α ≤ 1

(which follows, for example, from [Mon, (4.11)]), is non-trivial. We also have

Lemma 5.1. γ∗(α) is non-increasing with α and γ∗(α) is non-decreasing with α.

A problem closely related to that of calculating γ∗(α) and γ∗(α) is that of the
existence of primes in short intervals. Trying to prove this kind of result by means
of the Prime Number Theorem,

π(x) = lix + O(xe−c(log x)3/5(log log x)−1/5
)

([Mi], [So1], [So2]) is of little use, as the best currently known estimate for the error
term is too large. (Note that, in view of the lower bound for the error term [I,
p. 307]

π(x) − lix = Ω±

(
x

1
2 log log log x

log x

)
,

even the sharpest form of the Prime Number Theorem which may be valid would
require intervals of size x

1
2+o(1) to ensure the existence of a prime, but it is generally

believed that much smaller intervals suffice.) Following Hoheisel [Ho], who proved
that, for x > x0(ε), the interval (x, x + x1− 1

33000+ε] must contain a prime, there
is a long chain of improvements. The best unconditional result known to date is
due to Baker, Harman and Pintz [BakHP], who showed the existence of a prime in
the interval (x, x + x0.525). We mention that the best known result assuming the
Riemann hypothesis is

pn+1 − pn = O(
√

pn log pn)

(cf. [I, p. 299]; for slight improvements, under additional hypothesis, see [Mu], [He1],
[HeaG]), and both are very far from Cramér’s 1937 conjecture [Cr], according to
which (it follows in particular that) the interval (x, x + (1 + ε) log2 x] must contain
a prime for large x (see also [Sh]).

However, all these results are not quite what we need, as they do not prove that
the part of n! consisting of primes with exponents divisible by a fixed integer is
non-negligible. For this we need to know that the intervals in question contain not
one but “many” (i.e., approximately what we expect, or at least a fixed fraction
of that) primes. Davenport [Dave, p. 174] mentions, with respect to all results
known at the time on the existence of primes in short intervals, that they are easily
modified to show that the number of primes in those intervals is asymptotically
what one would expect. The best result of this sort is due to Heath-Brown [He3]

(5.3) π(x + x
7
12 ) − π(x) ∼ x

7
12

log x
.

When reducing the exponent from 7
12 the situation regarding the number of primes

in the interval becomes worse. In fact, the results of Lou and Yao [LoY] give only

(5.4) 0.99
x

11
20+ε

log x
< π(x + x

11
20+ε) − π(x) < 1.01

x
11
20+ε

log x
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and

(5.5) 0.969
x

6
11+ε

log x
< π(x + x

6
11+ε) − π(x) < 1.031

x
6
11+ε

log x

for ε > 0 and sufficiently large x, those of Baker and Harman imply

(5.6) (0.4 − ε)
x0.54

log x
< π(x + x0.54) − π(x),

and those of Baker, Harman and Pintz [BakHP] give

(5.7) 0.09
x0.525

log x
< π(x + x0.525) − π(x).

With our notations, (5.3)–(5.7) amount to

γ∗

(
7
12

)
= γ∗

(
7
12

)
= 1 ,(5.8)

γ∗

(
11
20

+ ε

)
≥ 0.99 , γ∗

(
11
20

+ ε

)
≤ 1.01,(5.9)

γ∗

(
6
11

+ ε

)
≥ 0.969 , γ∗

(
6
11

+ ε

)
≤ 1.031,(5.10)

γ∗(0.54) ≥ 0.4,(5.11)

and

(5.12) γ∗(0.525) ≥ 0.09,

respectively. Maier (see [E3]) showed that a quantitative version of Cramér’s con-
jecture mentioned above (namely, that the interval (x, x+ log2 x] contains approxi-
mately log x primes) is certainly not true. However, Erdős [E3] opines that perhaps

π(x + y) − π(x)
y

log x

→ 1

as x → ∞ if y → ∞ faster than any power of log x (see also [E1]). This result
would mean in particular that γ∗(α) = γ∗(α) = 1 for every α > 0.

Now we discuss some aspects related to part d) of Theorem 5.2. First we provide
some more information on the constants θa,k, and in particular a closed form formula
for them. Approximate values of θa,k for 1 ≤ k < a ≤ 9 are provided in Appendix A.

Lemma 5.2. For any a ≥ 2:
1. θa,k = 1

a

∑
ξ∈Ra

(
ξk+1 − ξk

)
log(1 − ξ−1) for 1 ≤ k < a, where Ra is the set

of all ath roots of unity. (On the right-hand side we take 0 log 0 = 0.)
2. kθa,k > (k + 1)θa,k+1, 1 ≤ k < a .

3.
∑a−1

k=1 kθa,k = log a.

Like the proof of part a) of Theorem 5.2, the proof of part d) depends mainly on
knowing the part of

(
an

n,n,...,n

)
consisting of primes appearing with various exponents

in its factorization. Fortunately, here the situation is much simpler. (When a set
argument to ψ or ψ2 is a singleton, we may replace it with its single element.)
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Proposition 5.2. For any a ≥ 2:

1. ψ2

((
an

n, n, . . . , n

)
, k

)
=
(

an

n, n, . . . , n

) kθa,k
log a +o(1)

, k = 1, 2, . . . , a − 1,

2. ψ2

((
an

n, n, . . . , n

)
, {a, a + 1, . . .}

)
=
(

an

n, n, . . . , n

)o(1)

.

Remark 5.1. For a = 2, Sárközy [Sár] proved (with a totally different purpose from
ours) a more refined version of part 2.

Now, while Theorem 5.2 looks stronger than Theorem 5.1, this is not always the
case for Hn = n! and Hn =

(
an

n,n,...,n

)
. For example, by Theorem 5.1 the equation

x2(x + 1)3 = n!

has only finitely many solutions, but Theorem 5.2 does not yield the same result.
The following theorem will include both Theorem 5.1 and Theorem 5.2a), 5.2d), and
is the best one can obtain employing the method of this section. As in other cases,
it is sometimes best to focus on “general” divisors of P (x). For r1, r2, . . . , rs ∈ N
let h(r1, r2, . . . , rs) = δ(r1N∪ r2N∪ · · · ∪ rsN) (the density of a union of arithmetic
progressions). It is readily verified by inclusion-exclusion that

h(r1, r2, . . . , rs) =
∑

1≤i≤s

1
ri

−
∑

1≤i1<i2≤s

1
[ri1 , ri2 ]

+
∑

1≤i1<i2<i3≤s

1
[ri1 , ri2 , ri3 ]

− . . . +
(−1)s−1

[r1, r2, . . . , rs]
.

For 0 ≤ h ≤ 1 put

ηh =
1
2

+
∫ 1/2

0

min
{

hγ∗
(

1 − 2β

1 − β

)
, 1 − (1 − h)γ∗

(
1 − 2β

1 − β

)}
dβ .

Clearly, for r1, r2, . . . , rs ≥ 2 we have h(r1, r2, . . . , rs) < 1. Also, ηh < 1 for h < 1,
and therefore ηh(r1,r2,...,rs) < 1 for any r1, r2, . . . , rs ≥ 2.

Theorem 5.3. Let P (x) = P0P1(x)e1P2(x)e2 . . . Pu(x)eu , as in Theorem 5.1.
a) If for some r1, r2, . . . , rs ∈ N

1
deg P

∑
i:r1|ei∨...∨rs|ei

ei deg Pi > ηh(r1,r2,...,rs),

then the equation P (x) = n! has only finitely many solutions.
d) If for some r1, r2, . . . , rs ∈ N

1
deg P

∑
i:r1|ei∨...∨rs|ei

ei deg Pi >
1

log a

∑
l<a:r1|l∨...∨rs|l

lθa,l,

then the equation P (x) =
(

an
n,n,...,n

)
has only finitely many solutions.

Remark 5.2. In view of Theorem 5.2, there is no need for parts b) and c).

To be able to apply Theorem 5.3a), we give an upper bound for ηh.
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Proposition 5.3.

ηh ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 + 0.5099h +
h

2
log

1 − h

h
, 0 ≤ h ≤ 81

446
,

0.3891 + 0.3678h + h log
1 − h

h
,

81
446

≤ h ≤ 9
49

,

0.5016 + 0.5012h +
h

2
log

1 − h

h
,

9
49

≤ h ≤ 1911
7811

,

0.3396 + 0.5997h + h log
1 − h

h
,

1911
7811

≤ h ≤ 2457
9757

,

0.5079 + 0.4758h +
h

2
log

1 − h

h
,

2457
9757

≤ h ≤ 21
80

,

0.6859 + 0.3143h,
21
80

≤ h ≤ 1
2
,

0.6861 + 0.3139h,
1
2
≤ h ≤ 1.

In particular, η1/r ≤ λr.

We conclude this section with conditional results, indicating how the result of
Theorem 5.2a) would be strengthened under various conjectures. Specifically, we
consider the conjectures

(5.13) γ∗(α) = γ∗(α) = 1,
1
2

< α ≤ 1,

which seems to be the best possible result by means of current techniques (and
would follow from the Riemann hypothesis),

(5.14) γ∗(α) = γ∗(α) = 1, 0 < α ≤ 1,

and

Conjecture 5.1. If A ⊆ N is a union of finitely many arithmetic progressions and
0 ≤ β1 < β ≤ 1, then

ψ(n!, A, (n1−β, n1−β1 ]) = (n!)(β−β1)δ(A)+o(1).

Remark 5.3. It should be possible to replace the union of arithmetic progressions
by any “reasonable” set. However, one can construct a 0-density set A with

ψ(n!, A, (1,
√

n]) = Ω((n!)1/2+o(1)).

Theorem 5.4. Consider the equation P (x) = n!, where

P (x) = P0P1(x)e1P2(x)e2 . . . Pu(x)eu ,

as in Theorem 5.1.
i) Under (5.13), if

1
deg P

∑
i:r|ei

ei deg Pi >

{
2
3 + 1

3r , r = 2, 3,
1
2 + 2−log 3

2r + log(r−1)
2r , r ≥ 4,

for some r ≥ 2, then the equation has only finitely many solutions.
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ii) Under (5.14), if

1
deg P

∑
i:r|ei

ei deg Pi >
1
2

+
1
2r

for some r ≥ 2, then the equation has only finitely many solutions.
iii) Under Conjecture 5.1, if

1
deg P

∑
i:r|ei

ei deg Pi >
1
r

for some r ≥ 2, then the equation has only finitely many solutions.

6. Multiple overloaded factors

In this section we combine the techniques of Sections 4 and 5. The idea is to
take advantage both of the fact that the polynomial P has a multiple factor and
of the fact that this factor may be irreducible of degree≥ 2 and therefore cannot
account for the part of the factorization of Hn coming from many primes. Here, in
view of Theorem 5.2, we have to deal only with Hn as in (1.5.a) and (1.5.d). We
illustrate this by means of

Example 6.1. Consider the equation

(6.1) Q(x)(x2 + 1)2 = n!,

where Q is any polynomial (over Z) relatively prime to X2 + 1 over Q. The factor
(x2 + 1)2 can account only for primes p ≡ 1 (mod 4). However, we expect that for
large n only about half of the contribution of these primes towards the factorization
of n! is with even powers. Since only finitely many primes can divide both x2 + 1
and Q(x), we may expect that the (x2 + 1)2 factor will be able to account only for
about 4

√
n!. Hence we would expect that if deg Q < 12, then (6.1) has only finitely

many solutions.
For S ⊆ P and 0 < α ≤ 1 set

γ∗(S, α) = lim inf
x→∞

#(S ∩ (x, x + xα])
xα

log x

, γ∗(S, α) = lim sup
x→∞

#(S ∩ (x, x + xα])
xα

log x

.

Thus, γ∗(α) and γ∗(α), defined in Section 5, are γ∗(P, α) and γ∗(P, α). Unfortu-
nately, there currently seem to be no results regarding these numbers. One might
expect that γ∗(S, α) = d(S)γ∗(α) and γ∗(S, α) = d(S)γ∗(α) for “reasonable” sets
S ⊆ P. This would make Theorem 6.1a) below apply to cases for which Theo-
rem 5.3a) cannot.

The following two results generalize Lemma 5.1 and Proposition 5.1, respectively.
It can also be shown that γ∗(S, 1) ≤ d∗(S) ≤ d∗(S) ≤ γ∗(S, 1).

Lemma 6.1. γ∗(S, α) is non-increasing with α and γ∗(S, α) is non-decreasing
with α.

Proposition 6.1. In the setup of Proposition 5.1, for S ⊆ P,

(n!)(β−β1)γ∗(S,α)δ∗(A)+o(1) ≤ ψ(n!, A, S ∩ (n1−β, n1−β1 ])

≤ (n!)(β−β1)γ
∗(S,α)δ∗(A)+o(1).
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Proposition 6.2. Let S be a naturally regular set of primes, a ≥ 2 and k ∈
{1, 2, . . . , a − 1}. Then

ψ

((
an

n, n, . . . , n

)
, k, S

)
=
(

an

n, n, . . . , n

) kd(S)θa,k
log a +o(1)

.

For S ⊆ P and 0 ≤ h ≤ 1 put α(β) = 1−2β
1−β and

ηS,h =
d∗(S)

2
+
∫ 1/2

0

min{hγ∗ (S, α(β)) , d∗(S) − (1 − h)γ∗ (S, α(β)) ,

1 − (1 − h)γ∗ (α(β)) − hγ∗ (P \ S, α(β))}dβ .

Theorem 6.1. Let P (x) = P0P1(x)e1P2(x)e2 . . . Pu(x)eu be the decomposition of
P into a product of an integer and primitive irreducible polynomials.

a) Let A = r1N ∪ r2N ∪ . . . ∪ rsN for some r1, r2, . . . , rs ∈ N. Let B ⊆ {i : 1 ≤
i ≤ u, ei ∈ A} and put S =

⋃
i∈B S(Pi). If
1

deg P

∑
i∈B

ei deg Pi > ηS,δ(A),

then the equation P (x) = n! has only finitely many solutions.
d) Choose B ⊆ {1, 2, . . . , u}. If

1
deg P

∑
i∈B

ei deg Pi >
1

log(a)

a−1∑
k=1

d

⎛
⎜⎜⎝⋃

i∈B
ei|k

S(Pi)

⎞
⎟⎟⎠ kθa,k,

then the equation P (x) =
(

an
n,n,...,n

)
has only finitely many solutions.

Remark 6.1. Again, as in Theorem 5.3, there is no need for parts b) and c).

Theorem 6.1d) is the best possible with our techniques, but it is not clear how
best to formulate a). Apparently we could do better by breaking A into residue
classes modulo [r1, r2, . . . , rs] and letting S vary as in d). However, this would
produce a more complicated expression, and (since hardly anything is known about
γ∗(S, α) and γ∗(S, α)) the more complicated expression might in principle be worse
than that given above.

Example 6.2. Consider the equation

(6.2) Q(x)x6(x2 + 1)4 =
(

7n

n, n, . . . , n

)
,

where Q is any polynomial relatively prime to both the polynomials X and X2 + 1
over Q. Employing Theorem 5.2 for r = 2, r = 4 and r = 6, we can infer that (6.2)
has only finitely many solutions if

14
deg(Q) + 14

>
2θ7,2 + 4θ7,4 + 6θ7,6

log 7
≈ 0.4473,

if
8

deg(Q) + 14
>

4θ7,4

log 7
≈ 0.1376 ,

and if
6

deg(Q) + 14
>

6θ7,6

log 7
≈ 0.1159 ,
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respectively. Thus we would arrive at the desired conclusion so long as deg(Q) ≤ 17,
deg(Q) ≤ 44 or deg(Q) ≤ 37, respectively. Choosing B to correspond to the factor
(X2 + 1)4 in Theorem 6.1 we obtain the same under the requirement

8
deg(Q) + 14

>
2θ7,4

log 7
≈ 0.0688.

Thus we can conclude that (6.2) has only finitely many solutions if deg(Q) ≤ 102.

7. Auxiliary results

In this section we prove results about ψ(Hn, A, S), including some propositions
stated in previous sections. We also deal with some related matters, like the con-
stants θa,k. In Section 8 we use these results to prove the assertions in Sections 4,
5 and 6.

For later reference we note at this point the factorizations of the general terms of
the sequences (1.5.a)–(1.5.d). Recall that νp(m) denotes the maximal k for which
pk|m. For x real, let {x} denote the fractional part of x. The various parts of the
following lemma are all either trivial or well known.

Lemma 7.1. For every n ∈ N and p ∈ P:
a) νp(n!) =

∑∞
k=1

⌊
n
pk

⌋ (
=
∑	logp n


k=1

⌊
n
pk

⌋)
.

b) νp([1, . . . , n]) = �logp n.

c) νp(p1 . . . pn) =

{
1, p ≤ pn,

0, p > pn.

d) νp

((
an

n,...,n

))
=
∑∞

k=1

(⌊
an
pk

⌋
− a
⌊

n
pk

⌋)
=
∑∞

k=1

(
a
{

n
pk

}
−
{

an
pk

})
.

Proposition 4.2 will follow from a few lemmas. The inequality for p1p2 . . . pn

is easy, and Lemma 7.4 below shows that [1, 2, . . . , n] is essentially the same. For
n!, Lemmas 7.2 and 7.3 allow us to replace νp(n!) with a simpler expression and
manage any ‘irregularity’ of S.

Lemma 7.2. For n ∈ N and p ∈ P we have νp(n!) ≤ n
p−1 . On the other hand, for

n ∈ N ∏
p∈P
p≤n

p
n

p−1−νp(n!) = n!o(1).

Proof. Certainly,

νp(n!) =
∞∑

j=1

⌊
n

pj

⌋
≤

∞∑
j=1

n

pj
=

n

p − 1
.

On the other hand,

n

p − 1
− νp(n!) =

∞∑
j=1

(
n

pj
−
⌊

n

pj

⌋)

=
∑

j≤logp n

(
n

pj
−
⌊

n

pj

⌋)
+

∑
j>logp n

(
n

pj
−
⌊

n

pj

⌋)

≤
∑

j≤logp n

1 +
∑

j>logp n

n

pj

≤ logp n + 2.
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It follows that p
n

p−1−νp(n!) ≤ np2 ≤ n3 for p ≤ n. Thus∏
p∈P
p≤n

p
n

p−1−νp(n!) ≤ n3π(n).

Since π(n) = o(n) by the Prime Number Theorem and nn = (n!)1+o(1) by Stirling’s
Formula, the lemma follows.

Proposition 7.1 below depends upon more than a count of primes in S less than
n because different primes contribute different amounts to the factorization of n! .
The natural approach is to divide [2, n] into subintervals and count primes in each
subinterval. Even in the case that S is naturally regular, this involves unnecessary
complications. (The complications are unnecessary in this context but must be
faced in other cases.) It is much easier to employ the following simple observation.

Lemma 7.3. Let µ1, µ2 be non-negative Borel measures on (1,∞) such that
µ1

(
(1, t]

)
≤ µ2

(
(1, t]

)
for every t. Then for every non-negative decreasing func-

tion f on (1,∞), ∫
(1,∞)

f dµ1 ≤
∫

(1,∞)

f dµ2 .

Proof. This follows immediately once the integrals are written in terms of distribu-
tion functions. Indeed∫

(1,∞)

f dµ1 =
∫ ∞

0

µ1

(
f−1(τ,∞)

)
dτ ≤

∫ ∞

0

µ2

(
f−1(τ,∞)

)
dτ =

∫
(1,∞)

f dµ2 .

Proposition 7.1. Let S ⊆ P. Then for 0 ≤ β1 < β ≤ 1,

(n!)d∗(S)(β−β1)+o(1) ≤ ψ1(n!, (n1−β, n1−β1 ] ∩ S) ≤ (n!)d∗(S)(β−β1)+o(1).

In particular, (n!)d∗(S)+o(1) ≤ ψ1(n!, S) ≤ (n!)d∗(S)+o(1).

Proof. It suffices to prove the first inequality, because the second will then follow
from the lower bounds on ψ1(n!, (n0, n1−β]), ψ1(n!, (n1−β, n1−β1 ] ∩ (P \ S)) and
ψ1(n!, (n1−β1 , n1]).

We may assume d∗(S) to be positive. Choose ε strictly between 0 and min{d∗(S),
β−β1}. By the Prime Number Theorem, there is N0 such that the number of primes
not exceeding x and belonging to S satisfies π(x, S) ≥ (d∗(S)−ε)

∫ x

2
dt
log t for n ≥ N0

and x ≥ n1−β+ε. There is also N1 such that for n ≥ N1,

π(n1−β, S) ≤ n1−β ≤ (n1−β+ε − 2)(d∗(S) − ε)
log(n1−β+ε)

≤ (d∗(S) − ε)
∫ n1−β+ε

2

dt

log t
.

Now take n > max{N0, N1, 2}, and define Borel measures µj by

µ1(A) = (d∗(S) − ε)
∫

A∩(n1−β+ε,n1−β1 ]

dt

log t

and

µ2(A) = #(A ∩ S ∩ (n1−β, n1−β1 ]).
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Of course µ1

(
(1, x]

)
= 0 ≤ µ2

(
(1, x]

)
for x ≤ n1−β+ε, and µ1

(
(1, x]

)
≤ µ2

(
(1, x]

)
for x ≥ n1−β+ε by choice of n. Thus by Lemma 7.3,

log

⎛
⎝ ∏

p∈(n1−β ,n1−β1 ]∩S

p
n

p−1

⎞
⎠ =

∫
t∈(1,∞)

log(t
n

t−1 ) dµ2

≥
∫

t∈(1,∞)

log(t
n

t−1 ) dµ1

= (d∗(S) − ε)
∫ n1−β1

n1−β+ε

log(t
n

t−1 )
dt

log t

= (d∗(S) − ε)n
∫ n1−β1

n1−β+ε

dt

t − 1

= (d∗(S) − ε)n log
(

n1−β1 − 1
n1−β+ε − 1

)

≥ (d∗(S) − ε)n log
(

n1−β1

n1−β+ε

)
= (d∗(S) − ε)n(β − β1 − ε) log n

≥
(
(d∗(S) − ε)(β − β1 − ε)

)
log n! .

The result follows by Lemma 7.2.

Proposition 7.2. Let S ⊆ P with d∗(S) = d. Then

ψ1(p1p2 . . . pn, S) ≤ (p1p2 . . . pn)d+o(1).

Proof. Clearly ∏
p∈S

pνp(p1p2...pn) =
∏
p∈S
p≤pn

p ≤
∏
p∈S
p≤pn

pn ≤ p(d+o(1))n
n .

On the other hand, for every ε > 0

p1 . . . pn ≥ (p1−ε
n )n−p1−ε

n = p(1−ε)(n−o(n))
n .

This completes the proof.

Lemma 7.4.
1. νp([1, 2, . . . , n]) ≥ νp(p1p2 . . . pπ(n)) for n ∈ N and p ∈ P.
2. [1, 2, . . . , n] = (p1p2 . . . pπ(n))1+o(1) .

Proof. It is obvious that νp([1, 2, . . . , n]) ≥ νp(p1p2 . . . pπ(n)), and it follows that
[1, 2, . . . , n] ≥ (p1p2 . . . pπ(n)). To obtain the upper bound for [1, 2, . . . , n], observe
that

[1, 2, . . . , n]
p1p2 . . . pπ(n)

=
∏

p∈P∩[1,
√

n]

p	logp n
−1 ≤
∏

p∈P∩[1,
√

n]

n

= nπ(
√

n) ≤ n
√

n = eo(n) = (p1 . . . pπ(n))o(1).

(Using the Prime Number Theorem we could of course replace n
√

n by eO(
√

n) =
O(1)

√
n.)
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Proposition 7.3. Let S ⊆ P with d∗(S) = d. Then

ψ1([1, 2, . . . , n], S) ≤ [1, 2, . . . , n]d+o(1).

Proof. By Proposition 7.2 and Lemma 7.4,

ψ1([1, 2, . . . , n], S) =
[1, 2, . . . , n]

ψ1([1, 2, . . . , n],P \ S)

≤
(p1p2 . . . pπ(n))1+o(1)

ψ1(p1p2 . . . pπ(n),P \ S)

= (p1p2 . . . pπ(n))o(1)ψ1(p1p2 . . . pπ(n), S)

≤ (p1p2 . . . pπ(n))d+o(1)

≤ [1, 2, . . . , n]d+o(1)
.

We now prove results related to γ∗(S, α) and γ∗(S, α) needed for Sections 5 and 6.

Lemma 7.5. Suppose S ⊆ P and 0 < α < 1. Then

γ∗(S, α) ≤ lim inf
(x,x−αt)→(∞,∞)

t≤x

#(S ∩ (x, x + t])
t

log x

≤ lim sup
(x,x−αt)→(∞,∞)

t≤x

#(S ∩ (x, x + t])
t

log x

≤ γ∗(S, α).

In particular, γ∗(S, α) is non-increasing with α and γ∗(S, α) is non-decreasing
with α.

Proof. Let ε > 0 be given. Choose M > 0 so that for x ≥ M ,

γ∗(S, α) − ε ≤ #(S ∩ (x, x + xα])
xα

log x

≤ γ∗(S, α) + ε.

Take x, t with x > max{M, 21/ε}, x−αt > 1/ε, and t ≤ x. Define a sequence (xk)
as follows: x0 = x and xk+1 = xk +xα

k . Choose n so that xn ≤ x+ t < xn+1. Then

#(S ∩ (x, x + t]) ≤ #(S ∩ (x0, xn+1]) =
n∑

k=0

#(S ∩ (xk, xk+1])

≤ (γ∗(S, α) + ε)
n∑

k=0

xk+1 − xk

log xk

≤ (γ∗(S, α) + ε)
n∑

k=0

xk+1 − xk

log x

= (γ∗(S, α) + ε)
xn+1 − x0

log x

≤ (γ∗(S, α) + ε)
(x + t) + (x + t)α − x

log x

≤ (γ∗(S, α) + ε)
(1 + 2ε)t

log x
.
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Similarly (provided ε < min{γ∗(S, α), 1
2}),

#(S ∩ (x, x + t]) ≥ #(S ∩ (x0, xn]) =
n−1∑
k=0

#(S ∩ (xk, xk+1])

≥ (γ∗(S, α) − ε)
n−1∑
k=0

xk+1 − xk

log xk

≥ (γ∗(S, α) − ε)
n−1∑
k=0

xk+1 − xk

log 2x

= (γ∗(S, α) − ε)
xn − x0

log x + log 2

≥ (γ∗(S, α) − ε)
(x + t) − (x + t)α − x

(1 + ε) log x

≥ (γ∗(S, α) − ε)
(1 − 2ε)t

(1 + ε) log x
.

The monotonicity follows from the first part: for 0 < α < β ≤ 1 take t = xβ to
prove that γ∗(S, α) ≤ γ∗(S, β) ≤ γ∗(S, β) ≤ γ∗(S, α).

Proposition 7.4.

ηh ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 + 0.5099h +
h

2
log

1 − h

h
, 0 ≤ h ≤ 81

446
,

0.3891 + 0.3678h + h log
1 − h

h
,

81
446

≤ h ≤ 9
49

,

0.5016 + 0.5012h +
h

2
log

1 − h

h
,

9
49

≤ h ≤ 1911
7811

,

0.3396 + 0.5997h + h log
1 − h

h
,

1911
7811

≤ h ≤ 2457
9757

,

0.5079 + 0.4758h +
h

2
log

1 − h

h
,

2457
9757

≤ h ≤ 21
80

,

0.6859 + 0.3143h,
21
80

≤ h ≤ 1
2
,

0.6861 + 0.3139h,
1
2
≤ h ≤ 1.

Proof. Denote

f(β) = min
{

hγ∗
(

1 − 2β

1 − β

)
, 1 − (1 − h)γ∗

(
1 − 2β

1 − β

)}
.

By Lemma 7.5, f is increasing, and hence Riemann integrable. By (5.8)

(7.1) f(β) = h, 0 ≤ β ≤ 5
17

.

For 5
17 ≤ β < 9

29 , (5.9) yields

(7.2) f(β) ≤
{

1.01h, 0 ≤ h ≤ 1/2,

0.01 + 0.99h, 1/2 ≤ h ≤ 1 .
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For 9
29 ≤ β < 5

16 , we have by (5.10)

(7.3) f(β) ≤
{

1.031h, 0 ≤ h ≤ 1/2,

0.031 + 0.969h, 1/2 ≤ h ≤ 1 .

By (5.11), in the region 5
16 ≤ β < 23

73 ,

(7.4)

f(β) ≤ min
{

2h(1 − β)
1 − 2β

, 1 − (1 − h) · 0.4
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2h(1 − β)
1 − 2β

, 0 ≤ h ≤ 81
446

,

2h(1 − β)
1 − 2β

,
81
446

< h ≤ 9
49

,
5
16

≤ β <
3 − 8h

6 − 6h
,

0.6 + 0.4h,
81
446

< h ≤ 9
49

,
3 − 8h

6 − 6h
≤ β <

23
73

,

0.6 + 0.4h,
9
49

< h .

Next, for 23
73 ≤ β < 19

59 ,

(7.5)

f(β) ≤ min
{

2h(1 − β)
1 − 2β

, 1 − (1 − h) · 0.09
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2h(1 − β)
1 − 2β

, 0 ≤ h ≤ 1911
7811

,

2h(1 − β)
1 − 2β

,
1911
7811

< h ≤ 2457
9757

,
23
73

≤ β ≤ 91 − 191h

182 − 182h
,

0.91 + 0.09h,
1911
7811

< h ≤ 2457
9757

,
91 − 191h

182 − 182h
< β ≤ 19

59
,

0.91 + 0.09h,
2457
9757

< h .

Finally, for 19
59 ≤ β ≤ 1

2 ,

(7.6)

f(β) ≤ min
{

2h(1 − β)
(1 − 2β)

, 1
}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2h(1 − β)
(1 − 2β)

, 0 ≤ h ≤ 21
80

,
19
59

≤ β ≤ 1 − 2h

2 − 2h
,

1, 0 ≤ h ≤ 21
80

,
1 − 2h

2 − 2h
≤ β ≤ 1

2
,

1,
21
80

≤ h ≤ 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON POLYNOMIAL-FACTORIAL DIOPHANTINE EQUATIONS 1767

From (7.1) – (7.6) we infer

ηh ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

+
7889807h

7888000
− h

2
log

8
3

+
h

2
log

1 − h

h
, 0 ≤ h ≤ 81

446
,

142
365

+
927760711h

575824000

− h

2
log

2920
243

+ h log
1 − h

h
,

81
446

≤ h ≤ 9
49

,

2929
5840

+
575068511h

575824000

− h

2
log

73
27

+
h

2
log

1 − h

h
,

9
49

≤ h ≤ 1911
7811

,

585049
1722800

+
56417848469h

33973616000

− h

2
log

430700
51597

+ h log
1 − h

h
,

1911
7811

≤ h ≤ 2457
9757

,

34999
68912

+
33713699749h

33973616000

− h

2
log

59
21

+
h

2
log

1 − h

h
,

2457
9757

≤ h ≤ 21
80

,

47263
68912

+
10680739749h

33973616000
,

21
80

≤ h ≤ 1
2
,

23308441749
33973616000

+
10665174251h

33973616000
,

1
2
≤ h ≤ 1 ,

and the proposition follows.

Lemma 7.6 connects a sum which will arise in the proof of Proposition 6.1 to
δ(A).

Lemma 7.6. Let (aN)∞N=1, (bN)∞N=1 be sequences in N with aN = o(bN). Define F
on P(N) × N by

F (A, N) =
∑

aN <j≤bN
j∈A

1
j

, A ⊆ N, N ∈ N .

Then

δ∗(A) ≤ lim inf
N→∞

F (A, N)
F (N, N)

≤ lim sup
N→∞

F (A, N)
F (N, N)

≤ δ∗(A) , A ⊆ N .

Proof. The last inequality is of course the result of applying the first to N \ A, so
it suffices to prove the first.

Take any ε strictly between 0 and δ∗(A), and take an integer M > 1/ε such
that #(A ∩ [1, x]) ≥ ε#(N ∩ [1, x]) for x ≥ M . Suppose N ∈ N is so large that
MaN < bN . Then for x ≥ MaN , #(A ∩ (aN , x]) = #(A ∩ [1, x]) − #(A ∩ [1, aN ]) ≥
ε · #(N ∩ [1, x]) − aN ≥ (ε − 1

M ) · #(N ∩ [1, x]) > (ε − 1
M ) · #(N ∩ (aN , x]). We
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now apply Lemma 7.3 with µ1(X) = (ε − 1
M ) · #(X ∩ N ∩ (aN , bN ]), µ2(X) =

#(X ∩ A ∩ (aN , bN ]) + #(X ∩ N ∩ (aN , MaN ]), and f(t) = 1
t . This shows that

F (A, N) + lnM ≥
(

ε − 1
M

)
F (N, N).

Since F (N, N) → ∞ as N → ∞, it follows that

lim inf
N→∞

F (A, N)
F (N, N)

≥
(

ε − 1
M

)
.

M may be taken arbitrarily large, and ε can be arbitrarily close to δ∗(A) (unless
δ∗(A) = 0), so this completes the proof.

We now prove Proposition 6.1. To make it clear in the sequel which results have
been proved, we restate the proposition.

Proposition 7.5. In the setup of Proposition 5.1, for S ⊆ P,

(n!)(β−β1)γ∗(S,α)δ∗(A)+o(1) ≤ ψ(n!, A, S ∩ (n1−β, n1−β1 ])

≤ (n!)(β−β1)γ
∗(S,α)δ∗(A)+o(1).

Proof. Choose β2 strictly between β1 and β. Since, by Proposition 7.1,

ψ1(n!, (n1−β, n1−β2 ]) = (n!)β−β2+o(1),

it suffices to prove the inequalities with β2 in place of β.
For p ∈ P, if n1−β2 < p ≤ n, then νp(n!) = �n

p  < nβ2 . Thus νp(n!) equals a
specific positive integer c (< nβ2) ⇐⇒ p ∈ ( n

c+1 , n
c ]. Now

n

c(c + 1)
=

c

c + 1
n1−α

c2−α

(n

c

)α

≥
(

c

c + 1

)1−α

n1−α−(2−α)β2

(
n

c + 1

)α

=
(

c

c + 1

)1−α

n(2−α)(β−β2)

(
n

c + 1

)α

.

Thus for such c by Lemma 7.5,

γ∗(S, α) + o(1) ≤
#(S ∩ ( n

c+1 , n
c ])

n
c(c+1)

log n
c+1

≤ γ∗(S, α) + o(1),

as n → ∞. (For fixed n, let En be the largest error term in the inequalities as
c ranges over the set of admissible values. Then En tends to zero as n tends to
infinity.)

Of course, for p ∈ ( n
c+1 , n

c ],

log
n

c + 1
< log p ≤ log

n

c
.
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By these results and Lemma 7.6,

log
(
ψ(n!, A, S ∩ (n1−β2 , n1−β1 ])

)
≥ log

∏
nβ1<c<	nβ2
−1

c∈A

∏
n

c+1<p≤n
c

p∈S

pc

≥
∑

nβ1<c<	nβ2
−1
c∈A

(
γ∗(S, α) + o(1)

)

·
n

c(c+1)

log n
c+1

log
(

n

c + 1

)
c

=
(
γ∗(S, α) + o(1)

) ∑
nβ1<c<	nβ2
−1

c∈A

n

c + 1

≥
(
γ∗(S, α) + o(1)

)(
δ∗(A) + o(1)

)
·

	nβ2
−2∑
c=	nβ1
+1

n

c + 1

=
(
γ∗(S, α)δ∗(A) + o(1)

)
n (log nβ2 − log nβ1)

=
(
(β2 − β1)γ∗(S, α)δ∗(A) + o(1)

)
log(n!).

The upper bound is similar.

Applying Proposition 7.5 with S = P to both the set A and its complement
N \ A and using Proposition 7.1, we obtain the following self-refinement.

Proposition 7.6. In the setup of Proposition 5.1,

ψ(n!, A, (n1−β, n1−β1 ]) ≤ (n!)(β−β1)min{γ∗(α)δ∗(A),1−γ∗(α)(1−δ∗(A))}+o(1).

Of course, in the same way, one establishes an analogous lower bound for the
product in question. In this formulation, however, the upper bound (applied to the
complement of A) implies the lower bound.

The last proposition gives rise to a further self-refinement, obtained by using it
on small subintervals of [β1, β] and applying the definition of the Riemann integral
(and Lemma 7.5). This gives the best refinement (short of a different approach) for
any possible behaviour of γ∗ and γ∗. Note that the inverse of the function defining
β in terms of α in Proposition 5.1 is given by

α = α(β) =
1 − 2β

1 − β
, 0 < β <

1
2

.

A limiting process and an application of Proposition 7.1 give

Proposition 7.7. For A ⊆ N and 0 ≤ β1 < β ≤ 1
2 ,

ψ(n!, A, (n1−β, n1−β1 ]) ≤ (n!)
∫ β
β1

min{γ∗
(

1−2β2
1−β2

)
δ∗(A),1−γ∗

(
1−2β2
1−β2

)
(1−δ∗(A))}dβ2+o(1)

.

We now consider
(

an
n,n,...,n

)
. As before, we approximate νp with something sim-

pler.

Lemma 7.7. Suppose a, n ∈ N and p ∈ P. Then:
1. If p >

√
an, then νp

((
an

n,n,...,n

))
= �an/p − a�n/p ∈ {0, 1, 2, . . . , a − 1}.

2. In any case, �an/p − a�n/p ≤ νp(
(

an
n,n,...,n

)
) ≤ (a − 1) logp an.
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Proof. Observe that for x ≥ 0, �ax − a�x ∈ {0, 1, 2, . . . , a − 1}. Both parts of
the lemma now follow from the further observation that for k > logp an we have
�an/pk − a�n/pk = 0 − 0 = 0.

Lemma 7.8. ∏
p∈P

νp(( an
n,n,...,n)) �=	an/p
−a	n/p


pνp(( an
n,n,...,n)) = eo(n).

Proof. Now∏
p∈P∩[1,

√
an]

pa logp(an) =
∏

p∈P∩[1,
√

an]

(an)a = (an)aπ(
√

an)

≤ (an)a
√

an = exp
(
(ln a + lnn)a3/2

√
n
)

= eo(n).

In view of Lemma 7.7, this completes the proof. (We could obtain a better estimate
by using the Prime Number Theorem to approximate π(

√
an).)

It is now convenient to restate (and prove) Proposition 6.2.

Proposition 7.8. Let S be a naturally regular set of primes, let a ≥ 2 and let
k ∈ {1, 2, . . . , a − 1}. Then

ψ

((
an

n, n, . . . , n

)
, k, S

)
=
(

an

n, n, . . . , n

) kd(S)θa,k
log a +o(1)

.

Proof. By Lemma 7.8, we may replace νp

((
an

n,n,...,n

))
by �an/p − a�n/p. This

quantity equals k if, and only if, there is j ∈ N∪{0} such that j+ k
a ≤ n

p < j+ k+1
a ,

i.e., p/n ∈ Ij = ( a
ja+k+1 , a

ja+k ]. Clearly,

log

⎛
⎜⎜⎝ ∏

p∈S
p
n∈Ij

p

⎞
⎟⎟⎠ = n

(
a

ja + k
− a

ja + k + 1

)
d(S) + o(n).

It remains to check that the limiting processes (limit in n and infinite summation
in j) commute. This is clear since for J ∈ N,

lim sup
n∈N

1
n

∞∑
j=J+1

log

⎛
⎜⎜⎝ ∏

p∈S
p
n∈Ij

p

⎞
⎟⎟⎠ ≤ lim sup

n∈N

1
n

∑
p∈P
p≤n

J

log p

= lim sup
n∈N

1
n

(n

J
+ o(n)

)
=

1
J

.

Lemma 7.9. For any a ≥ 2:
1. θa,k = 1

a

∑
ξ∈Ra

(
ξk+1 − ξk

)
log(1 − ξ−1) for 1 ≤ k < a, where Ra is the set

of all ath roots of unity. (On the right-hand side we take 0 log 0 = 0.)
2. kθa,k > (k + 1)θa,k+1, 1 ≤ k < a.
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Proof. 1. This part is certainly well known, and we shall only outline the proof.
Put

Sa,k(x) =
∞∑

j=0

(
xja+k

ja + k
− xja+k+1

ja + k + 1

)
.

Then θa,k = Sa,k(1). Now S′
a,k(x) is readily seen to be a difference of two geometric

series, and thus is easily computed:

S′
a,k(x) =

xk − xk−1

xa − 1
.

The denominator is a product of distinct linear factors (over p1p2 . . . pn), and the
representation of the function as a sum of partial fractions is therefore routine. (We
use the fact that ξ limx→ξ

xa−1
x−ξ = a for ξ ∈ Ra.) Integration yields the formula

required.
2. The proof of the preceding part gives

kθa,k − (k + 1)θa,k+1 =
∫ 1

0

k
xk − xk−1

xa − 1
dx − (k + 1)

∫ 1

0

xk+1 − xk

xa − 1
dx

=
∫ 1

0

kxk−1 − (k + 1)xk

1 + x + · · · + xa−1
dx

=
[

xk − xk+1

1 + x + · · · + xa−1

]1
0

+
∫ 1

0

(xk − xk+1)
(
1 + 2x + · · · + (a − 1)xa−2

)
(1 + x + · · · + xa−1)2

dx

> 0.

Lemma 7.10.
∑a−1

k=1 kθa,k = log a, a ≥ 2.

Proof. This follows from part 1 of the preceding lemma when we change the order
of summation and observe that

∑
ξ∈Ra\{1} log(1 − ξ−1) = log a.

Proposition 7.9. Let S be a naturally regular set of primes. Then
∏
p∈S

pνp(( an
n,n,...,n)) =

(
an

n, n, . . . , n

)d(S)+o(1)

.

The proposition follows from Proposition 7.8 and Lemma 7.10.
The reader can no doubt guess the inequality required for Theorem 6.1.

Proposition 7.10. Take A ⊆ N with δ∗(A) = δ∗(A) and S ⊆ P. Then

ψ(n!, A, S) ≤ (n!)ηS,δ(A)+o(1).

Proof. By Proposition 7.1,

ψ(n!, A, S ∩ [2,
√

n]) ≤ (n!)d∗(S)/2+o(1).

For 0 ≤ β1 ≤ β < 1/2,

ψ(n!, A, S ∩ (n1−β, n1−β1 ]) ≤ (n!)(β−β1)γ
∗(S,α(β))δ(A)+o(1)

by Proposition 7.5. Using Proposition 7.1 and the lower bound in Proposition 7.5,
we see that

ψ(n!, A, S ∩ (n1−β, n1−β1 ]) ≤ (n!)(β−β1)(d
∗(S)−(1−δ(A))γ∗(S,α(β)))+o(1)
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and

ψ(n!, A, S ∩ (n1−β, n1−β1 ]) ≤ (n!)(β−β1)(1−(1−δ(A))γ∗(α(β))−δ(A)γ∗(P\S,α(β)))+o(1).

The bound for ψ(n!, A, S ∩ (
√

n, n]) follows as in the proof of Proposition 7.7.

8. Proofs

We now prove the outstanding assertions from Sections 2, 4, 5 and 6 in approxi-
mately the order stated. Except for results from Section 2, this is a matter of citing
results proved in Section 7 and using ideas already discussed.

Proof of Proposition 2.1. The proof is carried out by induction on l. The case l = 0
reduces to the prime k-tuple conjecture. Assuming our claim to be true with l − 1
instead of l, we shall prove it for l. Given a1, . . . , ak, b1, . . . , bl, select a prime p not
dividing any of the numbers ai − bl, 1 ≤ i ≤ k. Choose numbers ak+1, . . . , aK so
that the following requirements are satisfied:

1. The numbers a1, . . . , aK represent all congruence classes modulo p, except
for the class of bl.

2. For every 1 ≤ i ≤ K, 1 ≤ j ≤ l we have ai �= bj .
3. The numbers a1, . . . , aK do not form a complete system of residues modulo

any prime.

Such a choice is indeed possible since K − k can be taken as p − 1 − k′, where
k′ is the number of distinct congruence classes modulo p determined by a1, . . . , ak.
Once K is chosen there are only finitely many primes which must be considered in
requirement 3. Thus ak+1, . . . , aK may be chosen congruent to a1 modulo each of
these primes satisfying requirements 1 and 2.

By the induction hypothesis there are infinitely many n such that n + a1, n +
a2, . . . , n+aK are all prime and n+b1, n+b2, . . . , n+bl−1 are all composite. Choose
n satisfying these conditions so large that n + a1, n + a2, . . . , n + aK , n + bl > p.
Then the first condition implies n + ai �≡ 0 (mod p). By requirement 1 this implies
that n + bl ≡ 0 (mod p), so n + bl is composite. The proposition follows.

Proof of Proposition 2.2. Let M, e, m1, . . . , me satisfy the hypotheses of Conjec-
ture 2.1. Adding mi’s to the list, we may assume that the mi’s yield (perhaps with
repetitions) all residue classes modulo M which are relatively prime to M . Let
d0, d1, . . . , ds−1 be all distinct numbers modulo M such that mi + dj is relatively
prime to M for every 1 ≤ i ≤ e, 0 ≤ j ≤ s − 1. (Thus, if M = qg1

1 qg2
2 . . . qgr

r is
the prime power factorization of M , then dj = jq1q2 . . . qr for 0 ≤ j ≤ s− 1, where
s = qg1−1

1 qg2−1
2 . . . qgr−1

r .) Using the Chinese remainder theorem we can find posi-
tive integers aij with aij ≡ mi + dj (modM), 1 ≤ i ≤ e, 0 ≤ j ≤ s − 1, satisfying
the assumptions of the prime k-tuple conjecture, and such that

a10 < a20 < . . . < ae0 < a11 < a21 < . . . < ae1 < . . . < ae,s−1.

Under the prime-composite (k, l)-tuple conjecture, there exist infinitely many pos-
itive integers n for which all numbers n + aij are prime, while all other integers
between n + a10 and n + ae,s−1 are composite. For each such n, the numbers
n + a1j , n + a2j , . . . , n + aej satisfy the conclusion of Conjecture 2.1 for some
0 ≤ j ≤ s − 1.
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Proof of Theorem 2.2. Set M = r′ and choose m1, m2, . . . , me so that the prod-
ucts m1, m1m2, m1m2m3, . . . , m1m2 . . .me represent all the residues modulo M
of numbers relatively prime to M . Choose n so that d | p1 . . . pn and pn+j ≡
mj(mod r′) for j ≤ e. (Conjecture 2.1 and the assumptions imply that there are
infinitely many such n.) Set t = p1 . . . pn/d, and observe that s′ ≡ tpn+1 . . . pn+k

(mod r′) for some k, 1 ≤ k ≤ e. It follows that rx+ s = p1 . . . pn+k for some integer
x.

Proof of Theorem 2.1. Parts a), b) and c)1 are immediate. Part c)3 follows from
Propositions 2.1 and 2.2 and Theorem 2.2.

c)2. Rewrite our equation in the form

r′x + s′ = tpj+1 . . . pn

for sufficiently large n (that is, such that no prime divisors of d exceed pn). Note
that if φ(r′) = 1, then every large value of n yields a solution since s′ and the
right-hand side are both relatively prime to r′, and that the inequality is therefore
correct in this case. We therefore assume that φ(r′) > 1. For large n, denote by
s′n the least non-negative residue of tpj+1 . . . pn modulo r′. Let l be the number of
values v such that s′n = v for infinitely many n. We also consider the number L
of pairs (v, w) with v �= w such that s′n = v and s′n+1 = w for infinitely many n.
Clearly l(l−1) ≥ L. On the other hand, each congruence class modulo r′, relatively
prime to r′, contains infinitely many primes, so for 2 ≤ u < r′, (u, r′) = 1, there
exist 1 ≤ v, w ≤ r′ with w ≡ uv(mod r′) such that s′n = v and s′n+1 = w for
infinitely many integers n. It follows that L ≥ φ(r′) − 1, so l(l − 1) ≥ φ(r′) − 1.

Solving the inequality we see that either l ≥ 1+
√

4φ(r′)−3

2 or l ≤ 1−
√

4φ(r′)−3

2 . Since
φ(r′) > 1, the latter inequality implies that l < 0 and may be excluded.

In the cases r′ = 1, 2, 3, 4, 6, we have φ(r′) = 1 or 2, so the lower bound exceeds
φ(r′) − 1, and hence for all s′ there exist infinitely many solutions.

d)1. We may assume 0 ≤ s ≤ r − 1. Suppose first s > 0. Take a prime p for
which νp(s) < νp(r). Put l = νp(s) + 1. For any solution of our equation we have
pl �
(

an
n,n,...,n

)
. Since

(
2n
n

)
|
(

an
n,n,...,n

)
, this means that pl �

(
2n
n

)
. By [San],

#
({

1 ≤ n ≤ N : pl �

(
2n

n

)})
= O

(
N1− log 2

log p + 1
p log p · (log N)l−1

)
.

This clearly shows that the set of solutions n is of density 0. Since every n is a
solution of exactly one of the equations obtained as s varies from 0 to r − 1, this
shows that for s = 0 the set of solutions is of density 1.

d)2. Select two primes p, q ∈ F not exceeding a. Set u = νp(s), v = νq(s). From
Lemma 7.1 we infer that, given any solution n of our equation, the base p expansion
of n contains at most u non-zero digits and the base q expansion of n contains at
most v non-zero digits. In view of [SenS], this implies that there exist only finitely
many solutions n.

Heuristic justification of Conjecture 2.3. It will be more convenient to start with
the second part. Since the bj ’s are relatively prime, one would expect the digits of
a “randomly chosen” integer to be (statistically) independent. Now if a number n
is to be chosen with up to l digits in base b, then the probability that all digits will
belong to a certain set B ⊆ {0, 1, . . . , b − 1} is (#(B)/b)l, which for most numbers
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n in the range is approximately (#(B)/b)logb n. Thus the probability that for each
j its base bj expansion will consist of digits belonging to Bj only is about

g∏
j=1

(
#(Bj)

bj

)logbj
n

= n
∑g

j=1 logbj
#(Bj)−g

.

Summing these probabilities over all n, the series diverges if (2.5) is satisfied. Hence
the Borel-Cantelli Lemma suggests that if (2.5) holds, then there exist infinitely
many integers n with the property given.

The first part of the conjecture is similarly justified.

Proof of Proposition 2.3. Assume the condition in item 1 of Conjecture 2.2. Let
n be a solution of (2.2). Then for every p ∈ F we have pνp(s)+1 �

(
an

n,n,...,n

)
. By

Lemma 7.1d), this implies that the base p expansion of n contains at most νp(s)
occurrences of digits greater than or equal to p/a. Letting C = max{νp(s) : p ∈ F},
this yields

dp,C(n) ≤
⌈p

a

⌉
, p ∈ F .

It follows that ∑
p∈F

logp dp,C(n) ≤
∑
p∈F

logp

⌈p

a

⌉
< #(F ) − 1 .

Assuming item 1 of Conjecture 2.3, the set of numbers n satisfying this inequality
is necessarily finite, and therefore (2.2) has only finitely many solutions.

Proof of Proposition 2.4. The first part is the contents of Theorem 1.1 of [BereH].
For the second part, we first recall that, by an old result of Kummer [K], ν2

((
2n
n

))
is exactly the number of ones in the binary expansion of n. Hence:

i) All numbers n with at least l ones in their binary expansion solve the equation
with s = 0.

ii)
(
2n
n

)
is even for every n > 0, and therefore there are no solutions with odd

values of s.
iii) Only numbers n which are powers of 2 solve the equation for values of s

which are divisible by 2 but not by 4. Since by [BereH, Prop. 2.1] the sequence((
2k+1

2k

))∞
k=1

converges in the ring of 2-adic integers, for each l only one of the values

s = 2, 6, 10, . . . , 2l − 2 is obtained infinitely often modulo 2l.
It remains to deal with the case l > ν2(s) ≥ 2. Put t = ν2(s). According

to the above, the only numbers n which may solve our equation are of the form
n = 2e1 + 2e2 + . . . + 2et , where e1 > e2 > . . . > et ≥ 0. Denote D(n) =
(e1 − e2, e2 − e3, . . . , et − et+1), where we put et+1 = 0. Call numbers n and n′ with
D(n) = (d1, d2, . . . , dt) and D(n′) = (d′1, d

′
2, . . . , d

′
t) equivalent if for each 1 ≤ i ≤ t

we have either di = d′i or di, d
′
i ≥ l − 3. According to [DaviW, Th. 2], if n and n′

are equivalent, then
(
2n
n

)
≡
(
2n′

n′

)
(mod 2l). (In fact, the equivalence means that one

can get from n to n′ by successive changes, in each of which we insert a zero to a
block of zeros of length at least l−3 or delete a zero from a block of zeros of length
at least l−2. The formula in the mentioned theorem ensures that each such change
does not change the value of the binomial coefficient in question modulo 2l.) If the
equation 2lx+ s =

(
2n
n

)
has infinitely many solutions, then it has a solution n, with

at least one of the components of D(n) being l − 3 or more. Hence it suffices to
go over all numbers n with exactly t ones in their binary expansion, and with the
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maximal component of D(n) being exactly l−3. If one of them solves the equation,
then there exist infinitely many solutions, while otherwise there are at most finitely
many solutions. This proves the proposition.

Proof of Proposition 4.2. The second inequality follows from Propositions 7.1, 7.2
and 7.3. The first is proved by passing to complements.

Proof of Proposition 4.1. For the three sequences (Hn) given in (1.5.a)–(1.5.c), this
follows from Proposition 4.2. For Hn =

(
an

n,n,...,n

)
, this is the content of Proposi-

tion 7.9.

Proof of Theorem 4.1. Clearly, |Q(x)| ∼ |P (x)|deg(Q)/ deg(P ) as |x| −→∞. If P (x)
= Hn, then Q(x)|

∏
p∈S(Q) pνp(Hn) = ψ1(Hn, S(Q)). The result follows from Propo-

sition 4.1.

Proof of Lemma 5.1. This is contained in Lemma 7.5.

Proof of Lemma 5.2. Follows from Lemma 7.9 and Lemma 7.10.

Proof of Proposition 5.1. This is a special case of Proposition 7.5.

Proof of Proposition 5.2. Part 1 is a special case of Proposition 7.8. Part 2 follows
from Part 1 as well as Part 3 of Lemma 5.2.

Proof of Proposition 5.3. Follows from Proposition 7.4, above.

Proof of Theorem 5.2. a) By Proposition 7.1 and Proposition 7.7 (with A = rN),

ψ2(n!, rN) ≤ (n!)η1/r+o(1) .

From Proposition 5.3 it follows that

(8.1) ψ2(n!, rN) ≤ (n!)λr+o(1) .

On the other hand, since the polynomials
∏

i:r|ei
P ei

i and
∏

i:r�ei
P ei

i are relatively
prime, there exist only finitely many primes that can divide the values of both of
these polynomials at any point x. Hence there exists a finite set F ⊂ P such that
the equality P (x) = n! implies∏

i:r|ei

Pi(x)ei

∣∣∣∣ ψ2(n!, rN)ψ1(n!, F ) .

Now
∣∣∣∏i:r|ei

Pi(x)ei

∣∣∣ ∼ |P (x)|
1

deg P

∑
i:r|ei

ei deg Pi as |x| −→ ∞, so that using Propo-
sition 7.1 we have

(8.2) ψ2(n!, rN) ≥ (n!)
1

deg P

∑
i:r|ei

ei deg Pi+o(1) .

The required result follows from (8.1) and (8.2).
b) Follows immediately from Lemma 7.4.
c) Trivial.
d) By Proposition 7.8 we may neglect a finite set of primes. Our claim then

follows from Proposition 5.2 (by estimating the contribution from primes which
appear to a power which is a multiple of r).

The theorem follows.

Proof of Theorem 5.3. The result follows as in the proof of Theorem 5.2. Part a)
is simpler because we do not need Proposition 5.3.
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Proof of Theorem 5.4. Under (5.13) or (5.14) we obtain an improved version of
Proposition 5.3. The first two parts follow from Theorem 5.3 (in the special case
s = 1). The third part follows from the ideas used to prove Theorem 5.3.

Proof of Lemma 6.1. This follows from Lemma 7.5.

Proof of Proposition 6.1. This is Proposition 7.5, above.

Proof of Proposition 6.2. This is Proposition 7.8, above.

Proof of Theorem 6.1. This is similar to the proof of Theorem 5.3. The upper
bounds on parts of Hn follow from Proposition 7.10 and Proposition 6.2.

Appendix A. Some parameters

Table 1. Approximate Values of θa,k

1 2 3 4 5 6 7 8
2 .6931
3 .6046 .2470
4 .5660 .2194 .1272
5 .5455 .2042 .1151 .0776
6 .5333 .1948 .1075 .0713 .0523
7 .5255 .1885 .1024 .0669 .0485 .0376
8 .5201 .1842 .0988 .0639 .0459 .0352 .0284
9 .5163 .1810 .0961 .0615 .0438 .0334 .0267 .0221

Appendix B. Notation

In this appendix, x is a real number, S a set of primes, T any set, h,α∈ [0, 1], A
a set of positive integers, p a prime, and a, k and N positive integers.

{x} is the fractional part of x.
#(T ) is the cardinality of a finite set T .
P is the set of all primes. π(x, S) = #(S ∩ [1, x]) and π(x) = π(x,P).

d∗(S) = lim inf
x→∞

π(x, S)
π(x)

,

γ∗(S, α) = lim inf
x→∞

#(S ∩ (x, x + xα])
xα

log x

,

γ∗(α) = γ∗(P, α),

δ∗(A) = lim inf
N→∞

#(A ∩ [1, N ])
N

.

The functions d∗, γ∗ and δ∗ are defined similarly, with lim sup in place of lim
inf. Where the limit exists, the ornament may be omitted.

θa,k =
∞∑

j=0

(
1

ja + k
− 1

ja + k + 1

)
.
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νp(N) = k − 1 if pk−1 | N and pk � N .

ηS,h =
d∗(S)

2
+
∫ 1/2

0

min{hγ∗ (S, α(β)) , d∗(S) − (1 − h)γ∗ (S, α(β)) ,

1 − (1 − h)γ∗ (α(β)) − hγ∗ (P \ S, α(β))}dβ ,

where α(β) = 1−2β
1−β .

ηh = ηP,h =
1
2

+
∫ 1/2

0

min
{

hγ∗
(

1 − 2β

1 − β

)
, 1 − (1 − h)γ∗

(
1 − 2β

1 − β

)}
dβ ,

ψ(N, A, T ) =
∏

p∈T∩P
νp(N)∈A

pνp(N),

ψ1(N, T ) = ψ(N,N, T ),

ψ2(N, A) = ψ(N, A,P).

If k is the only element of A, we write ψ(N, k, T ) or ψ2(N, k).
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J. Number Theory 42 (1992), 189–193. MR1183375 (93e:11016)

[BernG] B. Berndt and W. F. Galway, On the Brocard-Ramanujan Diophantine equation n!+1 =
m2, Ramanujan J. 4 (2000), 41–42. MR1754629 (2001a:11044)

[BoS] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
MR0195803 (33:4001)

[Br1] H. Brocard, Question 166, Nouv. Corresp. Math. 2 (1876), 287.
[Br2] H. Brocard, Question 1532, Nouv. Ann. Math. (3)4 (1885), 391.
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