
MATHEMATICS OF COMPUTATION
Volume 75, Number 256, October 2006, Pages 2037–2047
S 0025-5718(06)01870-9
Article electronically published on June 28, 2006

ON POLYNOMIAL SELECTION
FOR THE GENERAL NUMBER FIELD SIEVE

THORSTEN KLEINJUNG

Abstract. The general number field sieve (GNFS) is the asymptotically
fastest algorithm for factoring large integers. Its runtime depends on a good
choice of a polynomial pair. In this article we present an improvement of the
polynomial selection method of Montgomery and Murphy which has been used
in recent GNFS records.

1. The polynomial selection method

of Montgomery and Murphy

In this section we briefly discuss the problem of polynomial selection for GNFS.
We also sketch the polynomial selection method of Montgomery and Murphy.

The first step in GNFS (see [3]) for factoring an integer N consists in the choice
of two coprime polynomials f1 and f2 sharing a common root modulo N . If we
denote the corresponding homogenized polynomials by F1, resp. F2, the next (and
most time consuming) step in GNFS consists in finding many pairs (a, b) ∈ Z2 of
coprime integers for which both values Fi(a, b), i = 1, 2, are products of primes
below some smoothness bounds Bi, i = 1, 2 (we will refer to these pairs as sieve
reports). This is usually done by a sieving procedure which identifies (most of)
these pairs in some region A ⊂ Z2. In the case of line sieving A is of the form
[−A, A] × [1, B] ∩ Z2 for some A and B. For lattice sieving the form of this region
is more complicated, but we could use a rectangle as above as an approximation.
The sieving region A and the smoothness bounds Bi, i = 1, 2, are chosen such that
one finds approximately π(B1) + π(B2) sieve reports (π(x) denotes the number of
primes below x). The time spent for sieving mainly depends on the size of the
region A, i.e., 2AB. So we are left with two problems for the polynomial selection
phase: how to find such polynomial pairs and, having found more than one, how
to select a polynomial pair which minimizes sieving time.

Both problems are addressed in several articles ([4], [5], [6]). We give a short
description of the results of these articles. Let ρ(x) be Dickman’s function which
roughly is the probability that the largest prime factor of a natural number n is at
most n

1
x . A first approximation for the number of sieve reports is given by

6
π2

∫
A

ρ
(log(F1(x, y))

log(B1)

)
ρ
(log(F2(x, y))

log(B2)

)
dxdy

Received by the editor December 22, 2004 and, in revised form, June 22, 2005.
2000 Mathematics Subject Classification. Primary 11Y05, 11Y16.
Key words and phrases. Integer factorization, GNFS, polynomial selection.

c©2006 American Mathematical Society
Reverts to public domain 28 years from publication

2037

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

2038 THORSTEN KLEINJUNG

(the factor 6
π2 takes the probability of two integers being coprime into account).

This approximation can be refined by considering the number of roots of Fi, i = 1, 2,
modulo small primes. Let r(F, p) be the number of linear factors of the homogeneous
polynomial F modulo p and let

αi =
∑

p small

(
1 − r(Fi, p)

p

p + 1

)
log(p)
p − 1

.

Then a better approximation for the number of sieve reports is given by

6
π2

∫
A

ρ
(log(F1(x, y)) + α1

log(B1)

)
ρ
(log(F2(x, y)) + α2

log(B2)

)
dxdy.

Since this expression is difficult to compute, one needs simpler approximations.
Note that we only need a method to rank several polynomial pairs, since we are only
interested in finding the best one. We now assume that f2 is of degree one (which
implies that α2 does not depend on f2) and that log(F2(x, y)) does not vary much
over the sieving region (this will be the case for the polynomials in the algorithm
below). Then the term ρ((log(F2(x, y)) + α2)/ log(B2)) can be omitted so that the
integrand only depends on f1. A further simplification consists in considering

α1 +
1
2

log
(∫

A
F 2

1 (x, y)dxdy

)
.

Here the contribution from the left summand α1 is called root property and the
contribution from the right summand is called size property. Note that we want
to minimize this expression, whereas we want to maximize the previously given
approximations.

Before outlining the algorithm of Montgomery and Murphy, we have to discuss
some methods to improve the quality of a given polynomial pair. From a coprime
polynomial pair (f1, f2) sharing a common root modulo N , we can produce other
pairs by two methods:

(1) we can translate it by an integer t getting the pair (f̃1, f̃2) where f̃i(x+t) =
fi(x), or

(2) we can add a Z[x]-multiple of one polynomial to the other.
Translation preserves the value of α1, whilst the second method may change it.
Another method to optimize the quality is to change the shape of the sieving region
A (without changing the area of A). A rectangle of given area depends only on the
ratio s = A

B which we will call the skewness of the sieving region. Changing the
skewness also preserves α1.

We now sketch the algorithm of Montgomery and Murphy. Let the number N ,
a degree d, and a bound ad,max for the leading coefficient be given, and set ad = 0.
Then execute the following steps:

• Choose the next good ad (good means that ad has some small prime divi-
sors). If ad > ad,max terminate the algorithm.

• Set m =
[

d

√
N
ad

]
and determine the next two coefficients ad−1, ad−2 of the

base-m-expansion of N . If ad−2 is not sufficiently small, go to the first step.
• Determine the complete base-m-expansion of N which gives an initial f1

and set f2 = x−m. Optimize this pair as explained above by changing the
skewness, translating, and adding multiples of f2 to f1. If the coefficients
of f1 are too big, go to the first step.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE 2039

• Using a sieve identify those f1+cf2 which have good root properties, where c
is a polynomial of small degree with bounded coefficients, and output these
pairs (f1 + cf2, f2). Go to the first step.

This algorithm outputs a lot of polynomial pairs which can be ranked as described
above.

In the next sections we will describe an improvement of the first two steps of the
algorithm above. The optimization step and the sieving step will not be affected.

2. Nonmonic linear polynomials

In this section we consider a substitute for the base-m-expansion in the case of
a nonmonic polynomial f2. Denote the linear polynomial by f2(x) = px − m and
assume that p and m are coprime. We want to find a polynomial f1 =

∑d
i=0 aix

i

of degree d such that f1(m
p) · pd = N holds, and the coefficients of f1 should be as

small as possible. As in the method described above we assume that the leading
coefficient ad is given. If the congruence

(2.1) adm
d ≡ N (mod p)

does not hold, no polynomial f1 satisfying f1(m
p) · pd = N exists.

Lemma 2.1. Let N , d, ad, p, and m be given such that N ≡ adm
d (mod p)

holds. Define m̃ := d

√
N
ad

and assume m ≥ m̃. Then there exists a polynomial

f1(x) =
∑d

i=0 aix
i satisfying

• f1(m
p) · pd = N ,

• |ad−1| < p + dad
m−m̃

p , and
• |ai| < p + m for 0 ≤ i ≤ d − 2.

Proof. Let rd = N and choose successively for i = d − 1, . . . , 0

• ri =
ri+1 − ai+1m

i+1

p
and

• ai = ri

mi + δi with 0 ≤ δi < p such that ri ≡ aim
i (mod p) holds.

Then the ri satisfy N = adm
d + · · · + ai+1m

i+1pd−i−1 + rip
d−i or

ri =
i∑

j=0

ajm
jpi−j for i = 0, . . . , d.

So we will get a polynomial satisfying the first property.
The second property follows from

|rd−1| =
1
p
|N − adm

d| =
ad

p
(md − m̃d) <

ad

p
(m − m̃)dmd−1

and the definition of ad−1.
For showing the last property we use

|ri−1| =
1
p
|ri − aim

i| =
1
p
δim

i < mi

and the definition of ai. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

2040 THORSTEN KLEINJUNG

The lemma above allows us to extend the first part of the Montgomery-Murphy
polynomial selection algorithm to nonmonic linear polynomials. We choose ad and
p, solve the congruence (2.1), and, for each solution m, we compute the (first 3
coefficients of the) polynomial f1 examining it more closely if ad−2 is sufficiently
small. After that we go to the next pair (ad, p).

This will not speed up the algorithm, in fact it will slow it down a bit since the
polynomial expansion is now more expensive. But we have an overwhelming number
of triples (ad, p, m) at our disposal so that we can impose further restrictions on
them in order to speed up the polynomial expansion. This will be done in the next
section.

3. The improvement

We begin with a discussion of measuring the size of the polynomial f1. We will
work with the sup-norm of polynomials which is defined as follows:

Definition 3.1. Let f(x) =
∑d

i=0 aix
i ∈ R[x] be a polynomial of degree d and s a

positive real number (skewness). We define

sup(f, s) = max
i

|ais
i− d

2 |

and
sup(f) = min

s>0
sup(f, s).

The (An) s for which the minimum is attained will be called optimal skewness.

Remark 3.2. We can also define the L2-norm by

sup
L2

(f, s) =

√∫ 1

0

∫ 1

0

(
f
(sx

y

)
·
(y√

s

)d)2

dxdy

and
sup
L2

(f) = min
s>0

sup
L2

(f, s).

This seems to give better estimates for the size properties of a polynomial, but we
do not know how to use it in the following algorithm. We can at least bound the
quotient of the two norms by constants (for fixed degree d).

From now on we assume d ≥ 4. This is reasonable since at the crossover point
of MPQS and GNFS degree 4 polynomials are optimal. It is also possible to carry
over the algorithm below (with some modifications) to the case d = 3 and even
d = 2. For the case d = 4, see also Remark 3.8.

Below we will present an algorithm for finding polynomials whose first three
coefficients ad, ad−1, ad−2 are below some bounds ad,max, ad−1,max, resp. ad−2,max.
It is possible to use these three bounds as input for the algorithm. However, in
practice the following approach seems to be preferable.

Let M < d+1
√

N be a bound on the sup-norm of the polynomials we want to find.
For a given ad let m̃ = d

√
N
ad

as above. We will allow |a0| and |a1| to be of size

m̃. For an upper bound on the skewness we immediately get s ≤
(

M
ad

) 2
d

. To get a
lower bound we assume that in the polynomial expansion of Lemma 2.1 the worst

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE 2041

case happens for the first coefficient, namely |a1| = m̃. With this assumption we
obtain

(3.1) smin =
(

m̃

M

) 2
d−2

≤ s ≤ smax =
(

M

ad

) 2
d

for the optimal skewness. This immediately yields the bound

ad ≤
(

M2d−2

N

) 1
d−3

for ad. We also get the bounds |ai| ≤ Ms
d
2−i
min =: ai,max for d

2 ≤ i < d, and

|ai| ≤ Ms
d
2−i
max =: ai,max for i < d

2 which depend on ad.
We now assume that m is chosen near m̃ and that p ≤ ad−1,max and p � m holds.

Then the polynomial expansion of Lemma 2.1 implies that the coefficient ad−1 is
of order ad and so is within the bounds. The other coefficients are of size m̃, so a1

and a0 are also within the bounds. Our task is to get the coefficients ad−2, . . . , a2

sufficiently small. In the following we will show how to quickly estimate the size of
ad−2.

We now choose p =
∏l

i=1 pi, where pi ≡ 1(mod d) are (small) primes, (p, adN) =
1, and p ≤ ad−1,max. This choice implies that the equation N ≡ adx

d (mod p) has
either no solution or dl solutions. In the latter case these can be written as

(3.2) xµ =
l∑

i=1

xi,µi
,

where µ = (µ1, . . . , µl) with µi ∈ {1, . . . , d}, 0 ≤ xi,µi
< p, p

pi
| xi,µi

, and
{xi,j mod pi | j = 1, . . . , d} are the d solutions of N ≡ adx

d (mod pi).

Remark 3.3. From each of these dl solutions xµ we will construct a polynomial
pair via Lemma 2.1. The corresponding variables will get an additional subscript
µ (e.g., ad−1 becomes ad−1,µ). We will represent some of these variables in a form
such as (3.2), since in this form the dl variables on the left-hand side are linear
combinations of the ld variables on the right-hand side.

Let m0 be the smallest integer bigger than m̃ and divisible by p and let

(3.3) mi,j =

{
m0 + xi,j , i = 1,

xi,j , i > 1.

Then mµ =
∑l

i=1 mi,µi
= m0 + xµ are dl solutions of N ≡ adx

d (mod p) near m̃.

Lemma 3.4. Notations as above. There exist integers 0 ≤ ei,j < p where 1 ≤ i ≤ l
and 1 ≤ j ≤ d (see formula (3.6)) such that

(3.4) ad−1,µ =
l∑

i=1

ei,µi

satisfies

(3.5) ad−1,µmd−1
µ ≡

N − adm
d
µ

p
(mod p).

Hence ad−1,µ can be used in the expansion of N for the pair (p, mµ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

2042 THORSTEN KLEINJUNG

Proof. First note that given ad−1,µ modulo p for all µ by equation (3.5), it is
sufficient to solve (3.4) modulo p since we can reduce the ei,j modulo p to satisfy
0 ≤ ei,j < p. Note also that the ei,j are not uniquely determined, since we can
add a constant to all ei,j , i fixed, 1 ≤ j ≤ l (reducing modulo p if necessary) and
subtract the same constant from all ei′,j , i′ fixed, 1 ≤ j ≤ l.

Fix a 1 ≤ i ≤ l, and let µ = (µ1, . . . , µl), µ = (µ′
1, . . . , µ

′
l) with µj = µ′

j for j 	= i.
We will show that ad−1,µ−ad−1,µ′ mod p does not depend on µj for j 	= i, but only
on µi and µ′

i. This allows us to set

e1,1 ≡ ad−1,(j,1,...,1) (mod p),
ei,1 = 0 for i > 1 and(3.6)
ei,j ≡ ad−1,(1,...,1,j,1,...,1) − ad−1,(1,...,1) (mod p) for i > 1, j > 1

(in the last line j appears at the ith place). Because of the independence these ei,j

satisfy (3.4).
Let µ̃ = (µ̃1, . . . , µ̃l) and µ̃′ = (µ̃′

1, . . . , µ̃
′
l) be another pair with µ̃j = µ̃′

j for
j 	= i and µ̃i = µi, µ̃′

i = µ′
i (omitting or adding a ′ means that everything outside

the ith place remains constant; a ˜means that the ith place stays constant). We
have to prove

(3.7) ad−1,µ − ad−1,µ′ ≡ ad−1,µ̃ − ad−1,µ̃′ (mod pk), 1 ≤ k ≤ l.

We now multiply (3.5) by 1
N admµ mod p and get

ad−1,µ ≡ 1
N

admµ

N − adm
d
µ

p
(mod p).

For k 	= i we have mµ − mµ′ = xµ − xµ′ = xi,µi
− xi,µ′

i
≡ 0 (mod pk), whence we

get

ad−1,µ − ad−1,µ′ ≡ ad

N
mµ

adm
d
µ′ − adm

d
µ

p
≡ ad

N
mµ

addmd−1
µ

pi

xi,µ′
i
− xi,µi

p
pi

≡ add

pi

xi,µ′
i
− xi,µi

p
pi

(mod
p

pi
),

proving (3.7) for k 	= i.
For showing it modulo pi we note that mµ ≡ mµ̃ (mod pi) and get (as above)

ad−1,µ − ad−1,µ̃ ≡ ad

N
mµ

adm
d
µ̃ − adm

d
µ

p
≡ add(mµ̃ − mµ)

p
(mod pi)

and analogously for ad−1,µ′ − ad−1,µ̃′ . Therefore

ad−1,µ − ad−1,µ′ − ad−1,µ̃ + ad−1,µ̃′ ≡
add(mµ̃ − mµ − mµ̃′ + mµ′)

p
≡ 0 (mod pi),

which completes the proof. �

Now we consider the next coefficient in the polynomial expansion corresponding
to mµ, and want to estimate its size. We use the approximation mµ ≈ m0 because
m0 is much bigger than p and mµ differs from m0 by at most lp. Since we are

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE 2043

free to add multiples of (px−mµ)xd−2 to the polynomial expansion, we want that
ad−2,µ

m0
is very near to an integer. An approximation of this quantity is given by

ad−2,µ

m0
≈ rd−2,µ

md−1
0

=
N − adm

d
µ − ad−1,µmd−1

µ p

p2md−1
0

≈ N − adm
d
0 − add(mµ − m0)md−1

0 − ad−1,µmd−1
0 p

p2md−1
0

=
N − adm

d
0

p2md−1
0

+
−add(mµ − m0) − ad−1,µp

p2
.

The transition from the first to the second line is done by using the binomial
expansions of (m0 + (mµ − m0))a, a = d, d − 1, and omitting all monomials in the
numerator for which the power of m0 is less than d − 1.

Definition 3.5. Let f0 = N−admd
0

p2md−1
0

and for 1 ≤ i ≤ l, 1 ≤ j ≤ d,

fi,j = −addxi,j

p2
− ei,j

p
.

With this definition the approximation above becomes

ad−2,µ

m0
≈ f0 +

l∑
i=1

fi,µi
.

The error made is O(dl2(dad+p)
m0

).
We now present an algorithm which, given an integer N and a degree d ≥ 4,

produces a list of polynomial pairs (f1, f2) with a common root modulo N such
that the first three coefficients of f1 are “small”.

Algorithm 3.6. Input: a number N , a degree d ≥ 4 of f1, a bound M for the
sup-norm of f1 (or alternatively three bounds ad,max, ad−1,max and ad−2,max for the
first three coefficients), a bound l on the minimal number of prime factors of p, and
a bound pb for these prime factors.

(1) Set P = {r ≡ 1 (mod d) | r prime, r � N and r < pb } and set ad = 0.

(2) Increase ad and terminate the algorithm if it exceeds ad,max =
(

M2d−2

N

) 1
d−3

.
Otherwise set

Q(ad) = {r ∈ P | ad

N
	≡ 0 (mod r) is a dth power modulo r}.

Also compute approximately m̃ = d

√
N
ad

, ad−1,max = M2

m̃ and ad−2,max =(
M2d−6

m̃d−4

) 1
d−2

.

(3) For all subsets P ′ of at least l elements of Q(ad) such that p =
∏

r∈P′ r ≤
ad−1,max holds, execute the following three steps:
(a) Compute xi,j , mi,j , and ei,j as in (3.2), (3.3), and (3.6), respectively.
(b) Finally compute f0 and fi,j as in Definition 3.5.
(c) Set ε = ad−2,max

m0
and find those vectors µ for which

f0 +
l∑

i=1

fi,µi
mod Z ∈ [−ε, ε]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

2044 THORSTEN KLEINJUNG

holds and output the corresponding polynomial pair. This can be done
by setting l′ = [l

2], computing the two lists f0 +
∑l′

i=1 fi,µi
mod Z

and −
∑l

i=l′+1 fi,µi
mod Z, sorting these two lists, and checking each

element of the second list to see whether it is in an ε-neighbourhood
of an element of the first list.

Go to step (2).

Remark 3.7. In one pass of steps 3(a)–(c) we check dl polynomial pairs in time
O(d

l
2 log d) resulting in a runtime of O(d−

l
2 log d) per checked polynomial pair. So

we try to choose l as large as possible.

Remark 3.8. For smaller numbers N (less than 105 digits, say) a polynomial pair
of degree (4,1), i.e., d = 4, will be superior to one of degree (5,1). In this case the
following modification produces better polynomial pairs. We no longer require that
|a1| is of size m̃ which will restrict the degree of the polynomial c in the root sieve
to 0, i.e., we search among f1 + c0f2, c0 ∈ Z, |c0| small for polynomials having good
root properties. Then the bounds (3.1) will be replaced by

smin =

√
m̃

M
≤ s ≤ smax =

√
M

a4

giving

|a4| ≤
(

M8

N

) 1
3

, |a3| ≤
(

M11

N

) 1
6

, and |a2| ≤ M.

The output of the algorithm above consists of polynomials such that all coefficients
with the possible exception of a1 are small enough. We then check whether |a1|
also lies within the bounds (for a suitable skewness).

We now describe some variants of the algorithm above:
(1) Instead of considering every ad we may only consider those which are di-

visible by a product of some small primes (60, say). This increases the root
properties of the polynomial f1 by adding projective roots modulo these
small primes. On the other hand it reduces the number of available leading
coefficients ad which may force us to decrease the number l of prime factors
in p which in turn slows down step 3(c) of the algorithm.

Alternatively it is also possible to identify good ad using a sieve.
(2) For degree d = 5 and smaller l a large part of time is spent in the initializa-

tion of step 3(a). By also considering products p of the form p = p0

∏l
i=1 pi,

where p0 is a number (not necessarily prime) such that adx
d ≡ N (mod p0)

has exactly one solution, we can decrease the percentage of the initializa-
tion cost. For a set P ′ we first proceed as in parts 3(a)–(c) of the algorithm
(this corresponds to p0 = 1). Then we do these steps with other values of
p0 such that p ≤ ad−1,max holds. For these values we can reuse some of the
computations done for p0 = 1.

(3) For very large N the number of admissible values for ad is huge. We may de-
crease the sup-norm bound M , thereby shrinking the admissible ad-interval,
but we risk getting no polynomial satisfying this reduced sup-norm bound.
So we can only restrict the search interval by selecting some of the ad.
Since we want to have the number l of different prime factors of p as large
as possible (for very large N step 3(c) dominates the runtime), we reverse

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE 2045

the roles of p and ad in the following way: select l primes out of P whose
product p is smaller than ad−1,max. Now ad must be congruent to N times
a dth power modulo each of the l primes dividing p, and it has to satisfy a
restriction on its size. So we get another knapsack problem whose solutions
give pairs (ad, p).

We may include informations modulo 60 into the knapsack problem to
get only those ad which are divisible by 60. As in the previous variant we
may also use an auxiliary factor p0, but since the initialization costs are
not a problem, it is probably better to increase l.

4. Simple heuristic analysis

In this section we want to examine which quality we can expect using a given
amount of time. This will only be a rough analysis not involving the root sieve and
assuming that the number of examined polynomials is not too big.

As above let N be the integer to be factored, d ≥ 4 the degree of the algebraic
polynomial f1 =

∑d
i=0 aix

i, and M a bound on its sup-norm. We want to search
for polynomials whose sup-norm is less than M . Furthermore let b < d−1

2 be an
integer. Using the algorithm described above we search for polynomials such that
there exists a skewness s ≥ 1 such that the following holds:

(4.1) |ai| ≤ Ms
d
2−i for b ≤ i ≤ d and d

√
N

ad
≤ Ms

d
2−b.

Since the coefficients a0, . . . , ab−1 will be of size d

√
N
ad

, these conditions imply that
the de-skewed sup-norm is at most M . The second condition implies that we can
do a (b + 1)-dimensional root sieve, i.e., using a sieve over polynomials c ∈ Z[x]
of degree b with small coefficients, we search for polynomials f1 + cf2 having good
root properties. In the previous section we only considered the case b = 1.

For a polynomial expansion we have by Lemma 2.1 |ad−1| ≈ max(p, ad) and

|ai| ≈ d

√
N
ad

for i = d − 2, . . . , 0. Therefore we get the restriction p ≤ Ms1− d
2 .

Then the average number W of polynomials we have to check in order to find one
polynomial satisfying (4.1) is

W =
d−2∏

i=b+1

max

⎛
⎝1,

d

√
N
ad

Ms
d
2−i

⎞
⎠ .

These checks consist of a quick check of the size of ad−2 and for the

W ′ =
d−3∏

i=b+1

max

⎛
⎝1,

d

√
N
ad

Ms
d
2−i

⎞
⎠

survivors of this a slower check of the sizes of the remaining coefficients. Choosing
p as a product of l primes, this can be done in time O(W

d
l
2
) + O(W ′). This is

minimal if ad is as large as possible, so we assume from now on that ad = Ms−
d
2 .

If we substitute this and multiply out, we get W = N ···M ···sz, where z ≥ 0 and
W ′ = N ···M ···sz′

, where z′ ≥ 0 for b ≥ 1. In order to minimize the work we choose
s as small as possible for b > 0, i.e., d

√
N
ad

= Ms
d
2−b, since a smaller s implies a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

2046 THORSTEN KLEINJUNG

larger bound on p and therefore a larger l. In this case the second argument in the
products above is always the maximum and we get

W =
(

N

Md+1

) (d−2−b)(d−1−b)
d(d−1−2b)

or

M = N
1

d+1 W− d(d−1−2b)
(d+1)(d−2−b)(d−1−b) .

We now assume that the O(W

d
l
2
)-term dominates the O(W ′)-term. By checking one

polynomial we obtain M = N
1

d+1 as expected. If we want to improve this by a
factor f we have to check f

(d+1)(d−2−b)(d−1−b)
d(d−1−2b) polynomials on average. For small

values of d and b this exponent is tabulated in the following table:

b
d 4 5 6 7

0 5
2

18
5

14
3

40
7

1 5
2

18
5

14
3

40
7

2 - - 7 48
7

We note that this function takes the same values for b = 0 and b = 1, namely
(d+1)(d−2)

d . So in these cases the amount of work for finding a polynomial with
small sup-norm is equal, but for b = 1 we have a larger root sieve and can expect
better root properties (always neglecting the O(W ′)-term).

5. Experimental results

This algorithm has been used for the polynomial selection stage of the factor-
ization of many numbers. The largest number whose factorization has been com-
pleted and where a number of similar size has been factored using the original
Montgomery-Murphy method is a composite 143-digit factor of 21064 + 1. We
used the following parameters: a5 ranged over all multiples of 60 between 1 and
ca. 5.6 · 109, p was composed of 7 primes ≡ 1 (mod 5) less than 1000 and an
auxiliary factor less than 215. This took approximately 3 days on four 233 MHz
Pentiums. Compared with the polynomial pair used for the factorization of the
(slightly smaller) 143-digit composite 92! + 1 which has been generated by the
original Montgomery-Murphy method, the yield has been increased by 40%.

We also have done a short search for the 512-bit RSA challenge number factored
in August 1999 ([1]). In this experiment p was composed of 7 primes ≡ 1 (mod 5)
and an auxiliary factor p0. The range for the leading coefficient a5 was [1, 20000000],
a5 being a multiple of 60. Only for those polynomials whose de-skewed sup-norm
was less than 2 · 1023 a root sieve was performed. The best polynomial pair found
was

f1 = 4985820x5 + 15578368316860x4 − 513748876280490487x3

− 1021157413079535703297344x2 − 3989311146723167867825149900x
+ 14658919460374074323550710377995600

and

f2 = 87494555574829559x − 293947565389650342960556270613.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

POLYNOMIAL SELECTION FOR THE GENERAL NUMBER FIELD SIEVE 2047

This polynomial pair has a yield approximately 32% higher than that of the
polynomial pair used for the factorization. The time spent for the search was less
than 9 hours on a 1 GHz Pentium.

For the 576-bit RSA challenge number factored in December 2003 ([2]), the
algorithm presented in this article was intensely used. The best polynomial pair we
found was

f1 = 46023405120x5 + 10480176714921624x4 − 29328324309954903103603x3

− 830838022743867257648284551x2

+ 2618829302219857165734268221807627x
− 231988217535862601582671892090396902425

and

f2 = 5956727282031209111x − 332910602001256782441484803843034,

and it was used for the factorization.

References

1. S. Cavallar, W. M. Lioen, H. J. J. teRiele, B. Dodson, A. K. Lenstra, P. L. Montgomery,
B. Murphy et al., Factorization of a 512-bit RSA modulus, Report MAS-R0007, CWI.

2. J. Franke, T. Kleinjung et al., RSA-576, E-mail announcement, 2003.

http://www.crypto-world.com/announcements/rsa576.txt

3. A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of the Number Field Sieve,
Lecture Notes in Math. 1554, Springer, 1993. MR1321217

4. B. A. Murphy and R. P. Brent, On Quadratic Polynomials for the Number Field Sieve, Com-
puting Theory 98, ACSC 20(3) (1998), pp. 199–215. MR1723947 (2000i:11189)

5. B. A. Murphy, Modelling the Yield of Number Field Sieve Polynomials, Algorithmic Number

Theory - ANTS III, LNCS 1443 (1998), pp. 137–147. MR1726067 (2001d:11029)
6. B. A. Murphy, Polynomial selection for the Number Field Sieve Integer Factorisation Algo-

rithm, Ph.D. thesis, The Australian National University, 1999.

Department of Mathematics, University of Bonn, Beringstrasse 1, 53115 Bonn, Ger-

many

E-mail address: thor@math.uni-bonn.de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1321217
http://www.ams.org/mathscinet-getitem?mr=1723947
http://www.ams.org/mathscinet-getitem?mr=1723947
http://www.ams.org/mathscinet-getitem?mr=1726067
http://www.ams.org/mathscinet-getitem?mr=1726067

	1. The polynomial selection method of Montgomery and Murphy
	2. Nonmonic linear polynomials
	3. The improvement
	4. Simple heuristic analysis
	5. Experimental results
	References

