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ON POLYNOMIALS IN A GALOIS FIELD*
BY LEONARD CARLITZt

1. Introduction. Let p be an arbitrary prime, # an integer 21,
GF(p) the Galois field of order p*; let D(x, p*) denote the total-
ity of primary polynomials in the indeterminate x, with coeffi-
cients in GF(p"), that is, of polynomials such that the coeffi-
cient of the highest power of x is unity. In this note we give a
number of miscellaneous results concerning the elements of D.
The results are of two kinds. The first involve generalizations of
certain formulas treated by the writer in another paper.{ Thus
if we let 7 (E) denote the number of divisors of E of degree «,
then, for B and a+B <v, v the degree of E (we may evidently
assume without any loss in generality that a, 3=v/2),

() @B (E) = (@ + 1)p» — apne-D,

the summation on the left being taken over all polynomials E
of degree ». The other results of this kind involve generalized
totient functions, as defined in §4.

The second group of formulas are of a different nature. Let
us write po for p*, and define

v

F,(0) = JJ(a7* = 0)r"™ F() = Fa(v).

a=1

Then we show that the least common multiple of the polynomials
of degreev is

(2) L(v) = Fo(v);

the product of all the polynomials of degree v is

(3) Il E=F@) =F0);
degE=v

if Q,(v) denote the product of those polynomials of degree » that

* Presented to the Society, August 31, 1932.

t International Research Fellow.

t The arithmetic of polynomials in a Galois field, American Journal of
Mathematics, vol, 54 (1932), pp. 39-50. Cited as A.P.
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are not divisible by the pth power of any polynomial (except
1), then

Flho+ k) (F,m(h — 1)) oot
@ O+ k) = R { ( )} ,

Fr(ho — p+ B\ F,(h)
where it is assumed that 0 <k <p.

2. Notation. Polynomials will be denoted by large italic
letters, ordinary integers by small Greek and italic letters.
We write deg E for the degree of the polynomial E;

B = =0,
where v =deg E. If s is a real quantity >1, then
()= 2| E|—,
E

summed over all E in D, is the zeta-function of ®; and it is
immediately verified that

©) ¢(s) = (1 = pot=)7, po = p".
3. The t- Functions. We define
O'g(E) = Z!Al t,
A|E

the summation being taken over all the divisors of E. Then we
may verify without any difficulty the following ® analog of a
well known Ramanujan identity :*

E)o.(E — 1 — - —
6 3 HEN® 95 = DK — Wi =t =)
7 |E| - ¢2s — t — u)
Now it is evident from the definition of 7 (E) and o, (E) that
oi(E) = 2@ (E)pet

so that the left member of (1) is the coefficient of pg*t8u—s in
the right member of (6). But, using (5), the product of zetas in
(6) is equal to

* Messenger of Mathematics, vol. 45 (1916), pp. 81-84, or Collected Papers,
1927, pp. 133-135, formula (15).
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1 — ?01+t+u—2s
(1 — Pol—s)(l —_ pOI-H—s)(l — p01+u—s)(1 — P01+t+u-—s) ‘

To determine the coefficient in question, we note first that,
fort,u<0,s>1,

M

1
(1 — ptt=)(1 — ptu—s)(1 — pi+ttu—s) - e

where the sum on the right is extended over all o, 8, =0, such
that «, B=<», a+B=v. Then the denominator in (7) is

Z min (a + 1,6 + l)pua tHButr—rs | Z ;

v2a+f v<a+f

P a t+Butv—rs
0 )

clearly the second sum contributes nothing to the coefficient of
peettfu—rs in (7) when v = a4+, and so may be ignored. The
coefficient in question is therefore
{(‘y + Dpy — ypot forv = 2,
(v + Dp¢ forv < 2,
where ¥ =min (a, 3), thus completing the proof of (1).

By means of the Ramanujan identity (6) we may evidently
evaluate

(8 2 aE)ouF),

degE=vy

but for general ¢, #, the result is rather complicated. For certain
special values of ¢, #, the sum in (8) is fairly simple. Thus, for
u=2¢, it may be verified that

% 2. olE)ou(E) = py [V ’ 3:| - Po"_““s‘l:y * 1]’

degE=» 3 3

where

|:y + 3:‘ B (Po(v-l»s)t — 1)(P0(v+2)2 _ 1)(Po(y+1)t _ 1)
3 (po* = D (ps® — D(po* — 1)

Again, for s=¢=0, if we put

o(E) = 7(E) = 21 = 2 r@(E).

A|E

then it is obvious that (7) implies
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R I B

degE=v 3 3

which is indeed a particular case of (9).

4. Totient Functions. Let ¢(M; o, - + -, o) denote the num-
ber of sets of (ordered) polynomials 4y, - - -, 4, such that
degAi=ai, (Al,"',Ak,M):l.
Using this definition, we have evidently
> 2 I P
Ay, Ag, M)=1
(10) >
= E ¢(M) a1, * 0, ak)PO_am_' ’ ._aksk;
ai=0

where the s; are real and each >1. By means of this identity
it is easy to express the general ¢-function in simple terms.
Let f(s) denote the left member of (10); then since

D R P

alla;
= H{1+,P|—(s1+-“+sk)}—l > lAl—sl...]Ak,—d
P|M (A1, Ag, M)=1

it follows that
) = §(s) - -+ gs) TTIL = | Pt ven},

P|M
where P runs through the irreducible divisors of M. Therefore,
by (10) and (5),

(1) $(M;ay, -+, @) = part e Jou(A) | A|-5F

AlM

the sum being taken over 4, dividing M, and of degree <min
(o, -+ -, ap). If all the quadratfrei divisors of M satisfy this
condition, (11) may be written in the form

(1) ¢(M;ay -, ) = pert+a [ (1 —| P[4,

P\ M

In particular, let a1= - - - =a,=v, the degree of M. We now
write ¢,(M) in place of ¢(M;», - - - ,»), and (11) becomes

* u (4) is the Mobius u-function for D; see A.P., §4.
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(12) ¢k(M)=1M|kP1|}l<1—|P|-k>= 2 w4)| B|*

M=AB

(where now all the terms in both sum and product are included).
It is clear either from the definition or from (12) that ¢x(M) is
the ©-analog of the Jordan ¢-function of higher order.

5. Sets of Relatively Prime Polynomials. Let Y(ay, « - -, o)
denote the number of sets of (ordered) polynomials 4y, « « + , Ay,
such thatdeg 4; = a;, (41, -+, 4x) = 1. Then, clearly,

Do¥(ay, e, a)pi st e = 35 Ay A |

ai=0 (A, e Ap)=1
G R O L= pomCotdw
St (L= gt (U= pdm)

and therefore

Po°‘1+"'+°‘"(1 —_ jﬁol_k) fora, -+« oy # 0,
porat ek otherwise.

(13) Yle, -+, @) = {

As might be expected, the ¢ and ¢ functions are closely re-
lated. Indeed, from the definition, Y(ay, - - - , ax, ») is the num-
ber of sets of polynomials 41, - - -, A%, M, such that

degAi = Oti,degM =7 (Ala e )Ak, M) = 1;
and therefore

(14) 'l/(alx o, Oy V) = Z ¢(M: (25 PR ak)'

deg M=y
From (13) and (14) we have
o hasbo(1 = pi)

(15) Z¢(M;a1,"‘,ak)=} foray -« aw # 0,

dosd= pert s tatr otherwise.
In particular, if a;1= - - - =ax=v, we get for the ¢-function
in (12)
PO( Dy pok(v—l)+v for v >0
2 b (M) = { ’
deg M=y 1 for » = 0.

6. A Modification of the ¢-Functions. Let us now denote by
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¢'(M; oy, + -+, ay) the number of sets of quadratfrei polyno-
mials Ay, - - -, Ay, such thatdeg A;=a;, (41, - - - , 4%, M) =1.
Then, as in §4, we show that

28 (Myay, - -, ap)po et Fam) = S| Ayl | Ay ]n,

the sum on the right being taken over all quadratfrei A; such
that (44, - + +, Ax, M) =1; but this sum is equal to

§(s1) - - §(sw)
1 Pl Hepy-1,
$(2s1) - - - §(250) PII}J( 17l )

Therefore, if N(B) is the D-analog of the Liouville A-function,*
and if ¢(») is defined by the relationt

FON-'0)

$(2s) B =0 Po”°

we have in place of (11)
(16)  ¢'(Mja, -+, o) = 2 NB)glar — B) - - - glax — B),
B

’

the sum extending over all B whose irreducible divisors are

divisors of M, and such that deg B=B=<min (ay, - - -, o). As
for the function of §5, let us define ¢¥/(ay, - - -, ay) to be the
number of sets of guadratfres polynomials 4,, - - -, Ay, such
that deg A;=ay, (41, -+ -, Ax) =1. Then

g ) | KD g fOn 2
p0a181+"~+akek {(251) e ?(28}0) f(sl R sk)
so that

(A7) Y, - - an) = Xﬁ:(— 1Dfpf'qar — B) - - - glar — ),

the sum being taken over all 8, 0=8=min (o4, - + -, ax); and
B’ is the greatest integer < (8+1)/2.
Now, from the definition of ¢’ and ¢’, it is clear that
(18) ¢’(Ol1., Cee ek, v) = Z pA (M) (M; ey, - - - i),
deg M=y
* That is, if B=P#1Pye2 - - « , N(B) = (—1)erteat " see A.P., §3.

t It is evident that g(»)=po"—ps"! for »=2 and that g(»)=p," other-
wise.
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and therefore the sum
Z’ ¢’(M> (25 PR ak)y

deg M=v

taken over quadratfrei M only, is equal to the right member of
an.

7. The L.C.M. of Polynomials of Degree v. We recall the well
known result that
(19) art — x = [[0(w),
where O(a) is the product of the irreducible polynomials of
degree a. If now L(») is the L.C.M. of the polynomials of de-
gree v, it is evident, to begin with, that if P is irreducible of
degree §, then the exponent of the highest power of P dividing
L(v) is precisely [v/8], the greatest integer <»/8. Therefore

L) = ][] priesn

degP=<v

(20)

M{Ir = [eopn.

0=1 deg P=§ d=1

On the other hand, by (19),

v v

Fo) = [T — o = I 1106) = [T{e@}en.

a=1 dla é=1
Comparison with the right member of (20) shows at once that
(2) L(y) = Fo(»).

8. The Product of Polynomsials of Degree v. Formula (3) may
be proved very quickly if we make use of the following theorem
due to E. H. Moore :*

If G run through the linear forms G=oxo+ - - - +oxy,
where the coefficients a; lie in GF(p"), and the «; of lowest sub-
script #0 is taken =1, then

(21) HG:lxiPoj l: (i7j=0)"')”)'

Suppose that in this theorem x;=x""* (1=0, - - -, »); then
the left hand member of (21) has the value

* This Bulletin, vol. 2 (1896), p. 189.
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v v

(22) H II E= ]I H E;
a=0 degE=a a=1 degE=a
the right member of (21) is a familiar determinant, and is easily
seen to be equal to
-1

(23) H(xm”-a — x)lrpot et m®

a=0

Therefore, comparing (22) and (23), we have at once the for-
mula to be proved:

r—1

(3) [0 E= [IG»=— ) =F@).

degE=v a=0

9. The Formula for Q,(v). Since any E may be written in the
form E = GM», PrtG, it is evident that, for v=hp-+k, 0<Ek <p,

Fo) = ]I E
degE=v
h
(24) = H { H Gm"}{ H Mpqp(v—aw}
a=0 deg G=v-—-ap deg M=a

[0 = ap)- TT{F(e)}ruoew,

a=0

where ¢,(v) is the number of polynomials E of degree v such
that P# 1 E for any irreducible P. It is known that*

POV —_ pov—p-i—l for » g 0,
) = {

P otherwise;
so that

h
(25) D8P, — ap) = pgre.

a=p
Then the product in (24) is equal to

h

H{F(a) } pap(v—ap)

a=1

a
= H(x?’oﬁ —_ x)Pa—ﬂ-Pqp(V’aP)
=1 =1

* AP, §6.
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h h
= I — 2o, e = 2 pebq(v — ap),
B=1 a=f

B H(xmﬁ— x)en ™% (by (25))

h pock
(26) { H(xlloﬂ — x)ﬂo(h_ﬂ)p} = FPPPok(ho).

B=1
By (24) and (26)

h
FO) =TI — an) Fo(h),
a=0
or, writing & —a for «,

h
(27) 10" "(ap + &) = F(hp + BF,~*»(h)
a=0
= Ry(hp + k), say.
It is now easy to evaluate Q,. Indeed, substituting 2 —1 for %

in (27), and raising both members of the resulting equation to
the poth power, we have

h—1

HQpp"h_a(ap + k) = Rﬂm(l’ - p)a

a=0

and therefore
(4) Qp(”) = Rp(V)Rp_m(V - P) .

It will be remarked that by (27) R,(») is a polynomial, so that
by (4), Q,(») is expressed as the ratio of two polynomials.

From (27) we may deduce another result of some interest.
Since no polynomial of degree <p is divisible by the pth power
of an irreducible polynomial, it is evident that

Qu(k) = F(k), 0=k <p):
therefore, by (27), the expression
F(hp + BYF-(R)F,~#7(h)
is a polynomial provided that 0 =% <p.

CAMBRIDGE, ENGLAND



