On polynomials taking small values at integral arguments II

by
Roberto Dvornicich (Pisa), Shih Ping Tung (Chung Li) and Umberto Zannier (Venezia)

1. Introduction. In a recent paper, S. P. Tung [T] considers the problem of estimating from below the quantity

$$
S_{F}(T):=\max _{\substack{x \in \mathbb{N} \\ x \leq T}} \min _{y \in \mathbb{Z}}|F(x, y)|
$$

where $F \in \mathbb{Q}[X, Y]$ is a given polynomial and $T \in \mathbb{N}$ is a variable growing to infinity. For a fixed integer x_{0}, the quantity $\min _{y \in \mathbb{Z}}\left|F\left(x_{0}, y\right)\right|$ (which was investigated already in [DZ]) gives a measure of the distance of the roots of $F\left(x_{0}, Y\right)=0$ from the integers; the function $S_{F}(T)$ expresses the behaviour of this distance as the first variable grows.

Actually, $S_{F}(T)$ implicitly appears in the statement of Hilbert's Irreducibility Theorem; in fact most proofs of it (see e.g. [S]) reduce to showing the following: If for every integer x_{0} the equation $F\left(x_{0}, Y\right)=0$ has an integral solution y, then there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that $F(X, f(X))=0$ identically. Note that the assumption of this statement may be reformulated as $S_{F}(T)=0$ for all positive T. Hence, Hilbert's theorem proves that either $F(X, f(X))=0$ for some polynomial $f \in \mathbb{Q}[X]$ or we have a lower bound $S_{F}(T) \geq c>0$ for all large T.

Note that it may happen that $S_{F}(T)$ is bounded, e.g. when there exists a polynomial $f(X) \in \mathbb{Q}[X]$, taking integral values on \mathbb{Z}, such that $F(X, f(X))$ is a constant. However, Tung proves, among other things, that this is essentially the only case when $S_{F}(T)$ is bounded. In fact, Tung has a much sharper conclusion. To state it, we first define, for an infinite set $\mathcal{A} \subset \mathbb{N}$, the symbol

$$
\mathcal{A}(T)=\mathcal{A} \cap[1, T]
$$

and the function

[^0]$$
S_{\mathcal{A}, F}(T)=\max _{x \in \mathcal{A}(T)} \min _{y \in \mathbb{Z}}|F(x, y)| .
$$

Also, we recall the classical definitions of upper and lower asymptotic densities:

$$
\bar{d}(\mathcal{A})=\limsup _{T \rightarrow \infty} \frac{\# \mathcal{A}(T)}{T}, \quad \underline{d}(\mathcal{A})=\liminf _{T \rightarrow \infty} \frac{\# \mathcal{A}(T)}{T}
$$

When these numbers coincide, their common value is called the asymptotic density of \mathcal{A}. With this notation, Tung proves [T, Thm. 3.4] the following statement: There exists a number $c>0$, depending only on $\operatorname{deg} F$, with the following property: Either there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that $F(X, f(X))$ is constant, or, for all sets \mathcal{A} of positive density, we have $S_{\mathcal{A}, F}(T) \gg T^{c}$. (Here the implied constant may depend both on \mathcal{A} and on F.)

In this statement no attention is given to whether or not the polynomial f is integral-valued on \mathbb{N}; Tung studies this condition later on in the abovementioned paper (see also Remark (ii) below). Here we are concerned with a question in a different direction: how large can one choose the exponent c in the above statement?

Although Tung's method yields in principle an effective estimate for c, he does not mention any explicit lower bound. However, he points out that c cannot exceed $1 / 2$, in view of the data $F(X, Y)=Y^{2}-X, \mathcal{A}=\mathbb{N}$. Moreover, under the Generalized Riemann Hypothesis, he obtains the inequality $S_{\mathcal{A}, F}(T) \gg \sqrt{T} / \log ^{2} T$, proving in particular that one can choose $c=1 / 2-\varepsilon$ for any $\varepsilon>0$.

The purpose of the present note is to show, unconditionally, that in fact one can take $c=1 / 2$. We state this as the following

Theorem 1. Let $\mathcal{A} \subset \mathbb{N}$ be a set of positive lower asymptotic density and let $F(X, Y) \in \mathbb{Q}[X, Y]$. Then either there exists $f(X) \in \mathbb{Q}[X]$ such that $F(X, f(X))$ is constant, or $S_{\mathcal{A}, F}(T) \gg \sqrt{T}$ for $T \rightarrow \infty$.

We shall deduce Theorem 1 from a similar statement, namely
Theorem 2. Let $F(X, Y) \in \mathbb{Q}[X, Y]$. If \mathcal{A} is a set of positive upper asymptotic density and $y(a), a \in \mathcal{A}$, are integers such that $|F(a, y(a))|=$ $o(\sqrt{a})$, then there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that $F(X, f(X))$ is constant.

We remark that e.g. in the case $\mathcal{A}=\mathbb{N}$ the implict constants are effectively computable.

Our method, of completely different nature compared to [T], will make essential use of the previous paper [DZ]. We shall not use Hilbert's theorem (a proof of which is implicitly given in [DZ]) nor other classical diophantine tools.
2. Proofs. For the reader's convenience, we recall the main result of [DZ]:

Theorem DZ. Let $F(X, Y) \in \mathbb{R}[X, Y]$. Assume that \mathcal{A} is a set of natural numbers of positive upper density, such that for $a \in \mathcal{A}$ we may find an integer $y(a)$ satisfying

$$
\begin{equation*}
|F(a, y(a))|=o\left(\sup _{|\xi-y(a)| \leq 1}\left|\frac{\partial F}{\partial Y}(a, \xi)\right|\right) \tag{1}
\end{equation*}
$$

Then there exist a polynomial $f \in \mathbb{Q}[X]$ and a set $\mathcal{B} \subset \mathcal{A}$ such that $\mathcal{A} \backslash \mathcal{B}$ has zero density and

$$
\begin{equation*}
|F(b, f(b))| \leq|F(b, y(b))| \quad \forall b \in \mathcal{B} \tag{2}
\end{equation*}
$$

Proof of Theorem 2. Assume, as in the statement, that $\mathcal{A} \subset \mathbb{N}$ is an infinite set of positive upper density, such that $|F(a, y(a))|=o(\sqrt{a})$ for $a \in \mathcal{A}$. We start by writing

$$
F(X, Y)=\varphi_{0}(X)+\varphi_{1}(X) Y+\ldots+\varphi_{d}(X) Y^{d}, \quad \varphi_{i} \in \mathbb{Q}[X], \varphi_{d}(X) \neq 0
$$

We note at once that, if $d=0$, then the assumption implies that $\left|\varphi_{0}(a)\right|=$ $o(a)$, whence F is constant, and there is nothing to prove. Hence we assume $d \geq 1$.

Suppose that the leading coefficient $\varphi_{d}(X)$ in Y of $F(X, Y)$ is constant. Then we normalize F as follows. First we choose $h(X) \in \mathbb{Q}[X]$ such that the second coefficient in Y of $F(X, Y+h(X))$ vanishes, i.e. $h(X)=$ $-\varphi_{d-1}(X) / d \varphi_{d}$. Next, if r is a common denominator for the coefficients of $h(X)$, we replace $F(X, Y)$ with $F(X, Y / r+h(X))$. We note that this polynomial continues to satisfy the assumptions of Theorem 2: we leave the set \mathcal{A} unchanged, while the function $y(a)$ is replaced by $r(y(a)-h(a))$. Moreover, the conclusion of Theorem 2 for the new polynomial implies the same conclusion for the old one.

Summing up, we may assume that either $\varphi_{d}(X)$ is not constant or $\varphi_{d-1}(X)=0$.

Before going on, we recall the following simple fact.
Lemma. Let $P(Y) \in \mathbb{C}[Y]$. Then

$$
\sup _{0 \leq y \leq 1}|P(y)| \geq c \sum_{j=0}^{\operatorname{deg} P}\left|P^{(j)}(0)\right|
$$

where c is a positive number depending only on $\operatorname{deg} P$.
Proof. Write the Taylor expansion

$$
P(Y)=P(0)+P^{\prime}(0) Y+\ldots+\frac{P^{(k)}(0)}{k!} Y^{k}
$$

where $k=\operatorname{deg} P$. Since the Vandermonde determinant $\operatorname{det}\left((i / k)^{j}\right)_{0 \leq i, j \leq k}$ is nonzero, the formulas

$$
P\left(\frac{i}{k}\right)=P(0)+P^{\prime}(0)\left(\frac{i}{k}\right)+\ldots+\frac{P^{(k)}(0)}{k!}\left(\frac{i}{k}\right)^{k}, \quad i=0, \ldots, k
$$

imply that the numbers $P^{(j)}(0)$ may be expressed as linear forms in $P(0)$, $P(1 / k), \ldots, P(1)$ with coefficients depending only on k. If C is the maximum of the absolute values of these coefficients, we have

$$
\begin{aligned}
\sum_{j=0}^{k}\left|P^{(j)}(0)\right| & \leq(k+1) \sup _{j}\left|P^{(j)}(0)\right| \\
& \leq(k+1) C\left(P(0)+P\left(\frac{1}{k}\right)+\ldots+P(1)\right) \\
& \leq(k+1)^{2} C \sup _{0 \leq y \leq 1}|P(y)|
\end{aligned}
$$

We now put $G(X, Y)=\frac{\partial}{\partial Y} F(X, Y)$ and, for $a \in \mathcal{A}$,

$$
\sigma(a):=\sup _{|\xi-y(a)| \leq 1}|G(a, \xi)|
$$

Our next aim is to show that either the conclusion of Theorem 2 is true or

$$
\begin{equation*}
\sigma(a) \gg \sqrt{a} \quad \text { for large } a \in \mathcal{A} \tag{3}
\end{equation*}
$$

By applying the Lemma to the polynomial $P(Y):=G(a, y(a)+Y)$ we find that

$$
\begin{equation*}
\sigma(a) \geq c_{1} \sum_{j \geq 0}\left|G^{(j)}(a, y(a))\right| \tag{4}
\end{equation*}
$$

where $G^{(j)}$ denotes the j th derivative with respect to Y and $c_{1}>0$ depends only on d.

In the preceding notation we have $G(X, Y)=\varphi_{1}(X)+2 \varphi_{2}(X) Y+\ldots+$ $d \varphi_{d}(X) Y^{d-1}$ 。

In what follows, c_{2}, c_{3}, \ldots will denote positive numbers depending only on F. We distinguish two cases.

CASE 1: There exists $i \in\{1, \ldots, d\}$ such that $\varphi_{i}(X)$ has positive degree (i.e. $\operatorname{deg}_{X} G>0$). In this case, let q be the maximum index i with this property. If $q=d$, then there exists a positive number c_{2} such that $\sigma(a) \geq$ $c_{2}|a|$ for all large $a \in \mathcal{A}$: in fact, by (4), we have $\sigma(a) \geq c_{1} d!\left|\varphi_{d}(a)\right|$, and (3) follows.

If $q<d$, then $q<d-1$ in view of the opening normalization. Observe that $G^{(q)}(X, Y)$ is a polynomial in Y alone, of degree $d-q-1>0$, whence $\left|G^{(q)}(a, y(a))\right| \geq c_{2}|y(a)|^{d-q-1}-c_{3}$. In view of (4) we obtain $\sigma(a) \geq$
$c_{1} c_{2}|y(a)|^{d-q-1}-c_{1} c_{3}$, whence

$$
\begin{equation*}
|y(a)| \leq c_{4}(\sigma(a)+1)^{1 /(d-q-1)} \tag{5}
\end{equation*}
$$

Further,

$$
G^{(q-1)}(X, Y)=q!\varphi_{q}(X)+\sum_{i=1}^{d-q} \frac{(i+q)!}{i!} \varphi_{i+q} Y^{i}
$$

In particular,

$$
\left|G^{(q-1)}(a, y(a))\right| \geq\left|q!\varphi_{q}(a)\right|-c_{5}|y(a)|^{d-q}
$$

Since $\varphi_{q}(X)$ is not constant by assumption, (4) and (5) imply that, for large $a \in \mathcal{A}$,

$$
\sigma(a) \geq c_{6}|a|-c_{7}(\sigma(a)+1)^{(d-q) /(d-q-1)} .
$$

Since $(d-q) /(d-q-1) \leq 2$ for $q<d-1$ we again deduce (3).
Case 2: $G(X, Y)$ does not depend on X. In this case we can assume that $F(X, Y)=\varphi_{0}(X)+\psi(Y)$ for a polynomial $\psi \in \mathbb{Q}[Y]$, so $G(X, Y)$ $=\psi^{\prime}(Y)$. If $\varphi_{0}(X)$ is constant, Theorem 2 follows immediately by letting $f(X)$ be any constant polynomial. Similarly if $d=1$. Also, the case $d=0$ was previously excluded, and therefore we assume $\operatorname{deg}_{X} F>0$ and $d=$ $\operatorname{deg}_{Y} F>1$.

By (4) we have $\sigma(a) \geq c_{1}\left|\psi^{\prime}(y(a))\right| \geq c_{8}|y(a)|^{d-1}-c_{9}$, whence

$$
|y(a)| \leq c_{10}(\sigma(a)+1)^{1 /(d-1)}
$$

Moreover, since φ_{0} is not constant, we have

$$
|F(a, y(a))| \geq c_{11}|a|-c_{12}(|y(a)|+1)^{d} \geq c_{11}|a|-c_{13}(\sigma(a)+1)^{d /(d-1)}
$$

On the other hand we have $|F(a, y(a))|=o(\sqrt{a})$ by assumption, whence

$$
c_{14} \sqrt{a} \geq c_{11}|a|-c_{13}(\sigma(a)+1)^{d /(d-1)} .
$$

Now, as before, (3) follows by noting that $d /(d-1) \leq 2$ for $d>1$.
By combining (3) with the assumption $|F(a, y(a))|=o(\sqrt{a})$ for $a \in \mathcal{A}$, we find that

$$
|F(a, y(a))|=o\left(\sup _{|\xi-y(a)| \leq 1}\left|\frac{\partial}{\partial Y} F(a, \xi)\right|\right) \quad \text { for } a \in \mathcal{A} .
$$

Since the set \mathcal{A} is assumed to be of positive upper density, Theorem DZ then implies the existence of a polynomial f with rational coefficients and of a set $\mathcal{B} \subset \mathcal{A}$ with the same upper density as \mathcal{A}, such that $|F(b, f(b))| \leq$ $|F(b, y(b))|=o(\sqrt{b})$ for $b \in \mathcal{B}$. Since \mathcal{B} is infinite, it follows that $F(X, f(X))$ must be constant, concluding the proof of Theorem 2 .

Proof of Theorem 1. We let \mathcal{A} be a set as in the statement. In view of the definition of lower density, there exists a positive number c such that $\# \mathcal{A}(T)>c T$ for all $T>T_{0}$, say.

We shall prove the existence of a polynomial $f(X)$ with the stated property, under the assumption that $S_{\mathcal{A}, F}(T) \gg \sqrt{T}$ does not hold true. This means that there exist positive integers $T_{1}<T_{2}<\ldots$ such that $S_{\mathcal{A}, F}\left(T_{n}\right) \leq(1 / n) \sqrt{T_{n}}$ for all positive integers n. We may also assume that $T_{1}>T_{0}$.

For $a \in \mathbb{N}$ we define $g(a):=\min _{y \in \mathbb{Z}}|F(a, y)|$. The numbers $|F(a, y)|$ for $a, y \in \mathbb{Z}$ are nonnegative rational numbers with bounded denominators, so the minimum is attained for every $a \in \mathbb{N}$ and we may write $g(a)=$ $|F(a, y(a))|$ for a suitable rational integer $y(a)$.

In view of our definitions we have

$$
\max _{a \in \mathcal{A}\left(T_{n}\right)} g(a) \leq \frac{1}{n} \sqrt{T_{n}}
$$

Define the set \mathcal{A}^{\prime} to be the union of the sets $\mathcal{A} \cap\left[(c / 2) T_{n}, T_{n}\right]$, over all positive integers n. Since $\# \mathcal{A}\left(T_{n}\right) \geq c T_{n}$ for all $n \in \mathbb{N}$, the interval $\left[(c / 2) T_{n}, T_{n}\right]$ contains at least $(c / 2) T_{n}$ elements of \mathcal{A}, so \mathcal{A}^{\prime} has positive upper density.

We contend that $g(a)=o(\sqrt{a})$ for $a \in \mathcal{A}^{\prime}$. In fact, if $a \in \mathcal{A}^{\prime}$ then a lies in some interval $\left[(c / 2) T_{n}, T_{n}\right]$, and $a \in \mathcal{A}$. Therefore

$$
g(a) \leq \max _{x \in \mathcal{A}\left(T_{n}\right)} g(x) \leq \frac{1}{n} \sqrt{T_{n}} \leq \frac{1}{n} \sqrt{2 a / c}
$$

since $a \geq(c / 2) T_{n}$. This proves our contention.
Finally, recalling that $g(a)=F(a, y(a))$ for $a \in \mathcal{A}^{\prime}$, we may apply Theorem 2 to get the desired conclusion.

Remarks. (i) We observe that it is not possible to replace lower density with upper density in the statement of Theorem 1 . It suffices to take \mathcal{A} to be any set containing large intervals of integers and then large gaps, to produce a counterexample. Take, e.g., \mathcal{A} to be the union of the intervals $\left[2^{n!}, 2^{2 \cdot n!}\right]$ for $n \in \mathbb{N}$; this set clearly has upper density equal to 1 and lower density equal to 0 . Also, let $F(X, Y)$ be any polynomial. Plainly, for any positive integer a, we have $\min _{y \in \mathbb{Z}}|F(a, y)| \leq|F(a, 0)| \ll a^{h}$ (where $h=\operatorname{deg}_{X} F$). Then, if $T=2^{(n+1)!}-1$, we have $\max _{a \in \mathcal{A}(T)} \min _{y \in \mathbb{Z}}|F(a, y)| \ll \max _{a \leq 2^{2 \cdot n!}} a^{h} \ll$ $2^{2 h n!} \ll T^{2 h / n}$. Hence a lower bound $S_{\mathcal{A}, F}(T) \gg T^{c}$ does not hold, no matter the value of $c>0$. On the other hand, for suitable F, e.g. $F(X, Y)=Y^{2}-X$ there does not exist a polynomial $f(X)$ such that $F(X, f(X))$ is constant.
(ii) By using the full force of the proof of Theorem DZ (as given in [DZ]), both Theorem 1 and Theorem 2 can be sharpened: one can add to the first alternative of the conclusion of Theorem 1 and to the conclusion of Theorem 2 that f is integral-valued on a sequence \mathcal{B} with $\mathcal{A} \backslash \mathcal{B}$ of zero density.

References

[DZ] R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments, Acta Arith. 42 (1983), 189-196.
[S] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia Appl. Math. 77, Cambridge Univ. Press, 2000.
[T] S. P. Tung, Max-min of polynomials and exponential Diophantine equations, to appear.

Dipartimento di Matematica
Via Buonarroti, 2
Department of Mathematics
56127 Pisa, Italy
E-mail: dvornic@dm.unipi.it
Ist. Univ. Arch. - D.C.A.
S. Croce, 191
30135 Venezia, Italy
E-mail: zannier@iuav.unive.it

Received on 17.5.2001
and in revised form on 21.6.2002

[^0]: 2000 Mathematics Subject Classification: Primary 12E05.

