
On Portability, Performance and Scalability

of an MPI OpenCL Lattice Boltzmann Code

Enrico Calore1, Sebastiano Fabio Schifano2, and Raffaele Tripiccione3

1 Istituto Nazionale di Fisica Nucleare (INFN), Ferrara, Italy
2 Dip. di Matematica e Informatica, Università di Ferrara and INFN, Ferrara, Italy
3 Dip. di Fisica e Scienze della Terra, Università di Ferrara and INFN, Ferrara, Italy

Abstract. High performance computing increasingly relies on hetero-
geneous systems, based on multi-core CPUs, tightly coupled to accelera-
tors: GPUs or many core systems. Programming heterogeneous systems
raises new issues: reaching high sustained performances means that one
must exploit parallelism at several levels; at the same time the lack of a
standard programming environment has an impact on code portability.
This paper presents a performance assessment of a massively parallel and
portable Lattice Boltzmann code, based on the Open Computing Lan-
guage (OpenCL) and the Message Passing Interface (MPI). Exactly the
same code runs on standard clusters of multi-core CPUs, as well as on hy-
brid clusters including accelerators. We consider a state-of-the-art Lattice
Boltzmann model that accurately reproduces the thermo-hydrodynamics
of a fluid in 2 dimensions. This algorithm has a regular structure suitable
for accelerator architectures with a large degree of parallelism, but it is
not straightforward to obtain a large fraction of the theoretically avail-
able performance. In this work we focus on portability of code across
several heterogeneous architectures preserving performances and also on
techniques to move data between accelerators minimizing overheads of
communication latencies. We describe the organization of the code and
present and analyze performance and scalability results on a cluster of
nodes based on NVIDIA K20 GPUs and Intel Xeon-Phi accelerators.

1 Introduction

High performance computer architectures are becoming more and more heteroge-
neous, heavily relying on accelerators, which commonly deliver a major fraction
(e.g., ≃ 70%) of the full system computing power. Virtually all currently avail-
able accelerators (GPUs, many-core CPUs, FPGAs) are independent processing
units, connected to commodity CPUs via standard busses, such as PCI-Express.
The CPU orchestrates the coarse-grained harness of a complex computation,
while accelerators handle compute intensive kernels. In order to use accelerators
efficiently, one must partition an algorithm on many processing cores, each core
in turn heavily using SIMD features: one is then forced to concurrently exploit
several levels of parallelism. Furthermore, accelerators use their own memory
hierarchy, so data transfers between host and accelerators have to be carefully

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 438–449, 2014.
c© Springer International Publishing Switzerland 2014

On Portability, Performance and Scalability 439

scheduled. This is an important issue for code performances as also highlighted
in [1].

Fortunately enough, several large scale computer codes in the scientific and
engineering domain have sufficiently large available parallelism and an algorith-
mic structure that allows to split the code on the compute elements available on
accelerators and to schedule the full computation in a way that tames the prob-
lems highlighted above: some handcrafted codes have delivered unexpectedly
high performance figures.

An obvious and relevant question is whether a similar level of performance
can be obtained using the same programming environment and the same code
for different accelerator architectures and if this approach is also viable when
large scale parallelism (involving many nodes with many accelerators) is needed.

In this paper we address this problem, using OpenCL, a software framework
able to provide a common abstraction over the underlying computing resources,
and MPI, a de-facto standard for multi-node parallel processing. We consider
a fluid-dynamics code based on a state-of-the-art massively parallel Lattice-
Boltzmann method that we have re-written using OpenCL and MPI. We describe
the structure and implementation of the code and present our performance and
scaling results on several state-of-the-art heterogeneous architectures, comparing
with handcrafted versions of the code for the same algorithm.

We find that the performance of our OpenCL implementation is comparable
with that of architecture-specific optimizations, granting, on the other hand,
code portability. Moreover, we eventually study the bottlenecks limiting the
extent of the scaling window for massively parallel implementations.

Our paper is structured in this way: we first introduce the OpenCL framework
and in section 3 we give a short introduction to Lattice Boltzmann methods;
section 4 follows, giving details of our implementation and of our optimization
results. Section 5 contains an analysis of our performance results, followed by
our conclusions and outlook.

2 OpenCL

OpenCL (Open Computing Language) [2] aims to provide a single framework to
develop portable code executable across heterogeneous platforms; it is a hard-
ware oblivious open standard, maintained by the non-profit Kronos Group and
supported by a large set of vendors. OpenCL offers a standard API, providing an
extension of the C99 language to write functions that run on heterogeneous plat-
forms (CPUs, GPUs or other accelerators) exploiting a task-based or data-based
parallel approach. Manufacturer are responsible for providing an OpenCL API
implementation for their devices, following the OpenCL open standard speci-
fication. OpenCL codes run on commodity computers, which may or may not
host accelerators as GPUs, DSPs (Digital Signal processors), FPGAs (Field-
Programmable Gate Arrays), or other processors, in addition to ordinary CPUs.
In order to generalize across different architectures, OpenCL provides an ab-
straction of the actual hardware defining a platform, a memory and an execution

440 E. Calore, S.F. Schifano, and R. Tripiccione

__kernel void saxpy (__global double ∗A , __global double ∗B ,
__global double ∗C , const double s) {

int id = get_global_id (0) ; // get g l oba l thread ID
C [id] = s ∗ A [id] + B [id] ; // compute the id−th element

}

Fig. 1. Sample OpenCL code, computing a saxpy kernel on two vectors

model. How the models map onto the actual hardware is device dependent and
is defined by the corresponding implementation; these aspects can be neglected
by programmers from the point of view of ensuring program correctness, but
they are relevant for performance tuning.

In the OpenCL Platform model, all OpenCL enabled devices in the host are
seen as containers of Compute Units (CU); in turn, each CU is made up of differ-
ent Processing Elements (PE). On the other side, the OpenCL Execution model
is made up of two main components: a host program and one or more kernel
functions which run on devices. Where each kernel runs depends on the so called
OpenCL context, which is defined by the host program as consisting of one or
more devices and one or more command queues associated to them. Commands
(such as kernel launches or memory transfers) submitted to a command queue
may be executed in-order or, optionally, out-of-order; it is possible to define
multiple queues for the same device to issue not synchronized commands, which
may execute concurrently, if the device is able to do so. The main idea behind
OpenCL is the possibility to define an n-dimensional problem domain and then
to run a kernel function for each point of it. Each instance, running on each do-
main point, in the OpenCL taxonomy, is called a work-item and can be thought
as a single thread, executing on a processing element within a device. Multiple
work-items are commonly grouped in what is called a work-group, which runs
on a CU. Each work-item has a global ID and a local ID. The global ID is unique
among all work-items of a Kernel. The local ID identifies a work-item within a
work-group.

Concerning the OpenCL Memory model, a first distinction is made between
the host memory (commonly the host RAM memory) and the device memory
(e.g. a GPU memory bank); the device memory in its turn is divided into four
address spaces which commonly differ for size and access time. Global memory is
commonly the largest area; it is visible by all work-items running on the device,
but it has the highest access latency. Constant memory stores read-only data
and is commonly a relatively small cached part of the Global memory. Local
memory is meant for data sharing by work-items within the same work-group;
it is usually faster than Global memory, but smaller and not globally accessible.
Private memory is accessible only by individual work-items; it is the fastest, but
also smallest available storage (e.g. the registers of a CPU).

On Portability, Performance and Scalability 441

Fig. 2. Left: Velocity vectors for the LB populations in the D2Q37 model. Right:
populations labels identify the lattice hop that they perform in the propagate phase.

Let us assume that a code is broken down into Nwg work-groups and each
work-group has Nwi work-items. When this code executes on a device with
Ncu compute units, each able to compute on Nd data items, at any given time
Ncu×Nd work-items will execute; iterations will be needed to perform all globally
requiredNwg×Nwi work-items. For example, the Xeon-Phi has 60 physical cores,
each supporting up to 4 threads, for a total of 240 virtual cores; it supports AVX
256-bit operations that process 8 double-precision or 16 single-precision floating-
point data. In this case, up to 240 work-groups execute on all cores, each core in
turn processing up to 8 (or 16) work-items in parallel. Similar mappings of the
available parallelism on the computing resources can be worked out for other
architectures.

In Fig.1 we show an OpenCL implementation of the saxpy operation of the
Basic Linear Algebra Subprogram (BLAS) set. The parameters of the kernel are
three arrays, A, B and C and one double precision number. Pointers to the arrays
are marked as global because they are allocated on the global memory of the
device. Each work-item executes the saxpy kernel computing just one data-item
of the output array: first it computes its unique global identifier id and then
uses it to address the idth data-item of arrays A, B and C.

3 Lattice Boltzmann Methods

Lattice Boltzmann methods (LB) are widely used in computational fluid dynam-
ics, to describe flows in two and three dimensions. LB methods (see, e.g. [3] for
an introduction) are discrete in position and momentum spaces; they are based
on the synthetic dynamics of populations sitting at the sites of a discrete lattice.
At each time step, populations hop from lattice-site to lattice-site and then in-
coming populations collide among one another, that is, they mix and their values
change accordingly.

LB models in x dimensions with y populations are labeled as DxQy; we
consider a state-of-the-art D2Q37 model that correctly reproduces the thermo-
hydrodynamical equations of motions of a fluid in two dimensions, automatically
enforcing the equation of state of a perfect gas (p = ρT) [4,5]; this model has

442 E. Calore, S.F. Schifano, and R. Tripiccione

been extensively used for large scale simulations of convective turbulence (see
e.g., [6,7]).

In the algorithm, a set of populations (fl(x, t) l = 1 · · · 37), defined at the
points of a discrete and regular lattice and each having a given lattice velocity
cl, evolve in (discrete) time according to the following equation:

fl(y, t+∆t) = fl(y − cl∆t, t)−
∆t

τ

(

fl(y − cl∆t, t)− f
(eq)
l

)

(1)

The macroscopic variables, density ρ, velocity u and temperature T are defined
in terms of the fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑

l

fl, ρu =
∑

l

clfl, DρT =
∑

l

|cl − u|
2
fl, (2)

and the equilibrium distributions (f
(eq)
l) are themselves function of these macro-

scopic quantities [3]. In words, populations drift from different lattice sites (prop-
agation), according to the value of their velocities and, on arrival at point y,
they change their values according to Eq. 1 (collision). One can show that,
in suitable limiting cases, the evolution of the macroscopic variables obey the
thermo-hydrodynamical equations of motion of the fluid.

An LB code starts with an initial assignment of the populations, in accordance
with a given initial condition at t = 0 on some spatial domain, and iterates Eq. 1
for each point in the domain and for as many time-steps as needed; boundary-
conditions at the edges of the integration domain are enforced at each time-step
by appropriately modifying the population values at and close to the boundaries.

The LB approach offers a huge degree of easily identified parallelism. Indeed,
Eq. 1 shows that the propagation step amounts to gathering the values of the
fields fl from neighboring sites, corresponding to populations drifting towards
y with velocity cl; the following step (collision) then performs all mathematical
processing needed to compute the quantities appearing in the r.h.s. of Eq. 1,
for each point in the grid. Referring again to Eq. (1), one sees immediately that
both steps above are completely uncorrelated for different points of the grid, so
they can be computed in parallel according to any convenient schedule, if one
ensures that for all grid points step 1 is performed before step 2.

In practice, an LB code executes the following three main steps at each iter-
ation of the loop over time:

– propagate moves populations across lattice sites according to the pattern
of Fig.2 left, collecting at each site all populations that will interact at the
next phase (collide). Consequently, propagate moves blocks of memory loca-
tions allocated at sparse addresses, corresponding to populations of neighbor
cells. propagate can either use a pull scheme or a push scheme; in the first case
populations are gathered at one site as shown in Fig.2; while in the latter
case populations are pushed from one lattice-site towards a set of neigh-
bors. Which of the two is best to use depends on the capability of processor
memory-controller.

On Portability, Performance and Scalability 443

– bc (Boundary Conditions) adjusts the populations at the top and bottom
edges of the lattice to enforce appropriate boundary conditions (e.g., a con-
stant given temperature and zero velocity). This is done after propagation,
since the latter changes the value of the populations close to the boundary
points and hence the macroscopic quantities that must be kept constant. At
the right and left boundaries, we apply periodic boundary conditions. This is
conveniently done by adding halo columns at the edges of the lattice, where
we copy the 3 (in our case) rightmost and leftmost columns of the lattice be-
fore performing the propagate step. Points close to the right/left boundaries
can then be processed as those in the bulk. If needed, boundary conditions
could be enforced in the same way as done for the top and bottom edges.

– collide performs all the mathematical steps associated to equation 1 and
needed to compute the population values at each lattice site at the new time
step. Input data for this phase are the populations gathered by the previous
propagate phase. This step is the floating point intensive step of the code.

4 Code Implementation

At top level, our code is based on MPI processes, each managing one OpenCL
(OpenCL) device. Actual devices are attached to the host nodes of the cluster,
so MPI communications are either fully within the host or across a commodity
network, such as Infiniband. This is managed transparently and in a uniform
way by the MPI run-time support, so our code runs both on single-host and
multi-host multi-device systems.

We split a lattice of size Lx × Ly on N devices along the X dimension; each
device allocates a sub-lattice of size Lx/N × Ly. On each device the lattice is
stored using the SoA (Structure of Arrays) scheme, where arrays of populations
are stored in memory one after the other. This allows to exploit data-parallelism
and enable data-coalescing in accessing data when executing several work items
in parallel. Each array of population is stored in columns-major order, and we
keep in memory two copies of it, prv and nxt. Each kernel reads from prv and
update results on the nxt copy; nxt and prv swap their roles at each iteration.
This solution needs more memory, but it allows to map one work-item per lattice
site, and then to process many sites in parallel. The lattice splitting implies a
virtual ordering of the MPI-processes along a ring, so each process exchanges
its borders of its own sub-lattice with its adjacent processes. One could consider
a different decomposition (e.g. Ly/N × Lx, reducing communication overheads
if Ly ≥ Lx); however, since we plan to use our code for physics simulations
in a wide range of aspect-ratios (both Lx > Ly and Lx < Ly), we arbitrarily
select only one of the two possibilities. Moreover, since our lattice is stored in
column-major order, splitting along X means that lattice columns are allocated
sequentially in memory, improving memory access time when copying halos.

Each device allocates a sub-lattice of NX ×NY lattice points, NX = Hx +
Lx + Hx, and NY = Hy + Ly + Hy, including vertical and horizontal halos
of size Hx and Hy. Left and right halos keep copies of the three rightmost and

444 E. Calore, S.F. Schifano, and R. Tripiccione

Fig. 3. Bandwidth vs. buffer size for h2d (left) and d2h (right) transfers between host
and an NVIDIA K20 GPU device.

leftmost columns of the sub-lattices allocated on the neighbor nodes. This makes
the computation uniform for all lattice sites, avoiding divergences of work-items
which lead to performance degradation. Bottom and top halos are adjusted to
keep memory accesses by work-items aligned, enabling memory coalescing.

Each MPI process runs a loop over time; at each iteration it executes four
main-steps: first pbc (Periodic Boundary Conditions) updates the left and right
halo columns, and then three kernels – propagate, bc and collide – run on the
device to perform the required computational tasks.

Based on previous results in coding with CUDA [8], a language for GPUs not
widely different from OpenCL, we configure the OpenCL kernels for propagate,
bc and collide as a grid of (Ly × Lx) work-items; each work-group is a uni-
dimensional array of Nwi work-items, processing data at successive locations in
memory. In this way memory coalescing can be easily exploited.

In the following we describe in details the combination of pbc and propagate,
which is critical to scalability when running on multi-device multi-host systems
configuration. The key point to consider is that the propagate step for the bulk
of the lattice (all lattice points except for three columns at right and left) has
no data dependency with pbc (while propagate on the edges depend on fresh
data moved to the halos by pbc). Our strategy therefore leverages on i) speeding
up data transfers and ii) overlapping as much as possible data transfers with
propagate (on the bulk). Let us consider these two points in order. pbc copies
the three leftmost and rightmost columns of the lattice respectively into the right
and left halos of the neighbor sub-lattices. In a multi-device implementation this
implies moving data between OpenCL devices. This task implies the following
steps:

1. copy data corresponding to the left and right borders from the device to two
host buffers;

2. send data to the previous and the next node in the ring;
3. receive data from neighbors and store them into two host buffers;
4. copy the just received data from host buffers into the halo columns of the

device.

All these steps are performance critical, as they use data paths with limited
bandwidth and large latency (see later for accurate figures). MPI communi-

On Portability, Performance and Scalability 445

Fig. 4. Concurrent scheduling of the various steps of the propagate and pbc kernels

cations are handled by the MPI run-time support, so there is not much the
programmer can do there. On the other hand, OpenCL has several options to
allocate memory and to perform device-to-host (d2h) and host-to-device (h2d)
copies.

OpenCL has routines to allocate memory in pageable or pinned mode; the
former option is a standard allocation in virtual space that can be swapped out of
physical memory by the operating system, while the latter mode forces memory
to be always resident in real memory; the OpenCL function clCreateBuffer()

function with the CL MEM ALLOC HOST PTR flag performs this operation. Memory
access can be mapped or direct. In mapped mode, buffers on the device are
mapped onto the address space of the host node, while in direct mode, data is
moved by specific OpenCL routines such as clEnqueueReadBuffer() to read
from the device and clEnqueueWriteBuffer() to write data into it.

We have tested all four combination of allocation and access modes; Fig. 3
shows the bandwidth as a function of the buffer size for h2d and d2h transfers
between a host and an NVIDIA GPU K20 device. Perhaps not unexpectedly,
one obtains the best performance using pinned memory allocation and direct

memory access. In this case, the transfer time (µsec) as a function of the data
block size s (bytes) is well fitted by the following expressions:

Th2d(s) = 14.16 + 0.00017× s, Td2h(s) = 14.21 + 0.00015× s

corresponding to a latency of ≈ 14 µsec (in both directions), and an asymp-
totic bandwidth of ≈ 6 GB/s for h2d and ≈ 6.6 GB/s for d2h. The asymptotic
bandwidth is ≈ 75% of the aggregate raw bandwidth of a 16 lanes (16X) GEN2
PCi-Express bus (8 GB/s). The large value for the latency means that it is useful
to gather all data into one block before starting the d2h operation (and scatter
back at destination), rather than paying the latency overhead 37 times.

We now consider how to schedule operations in order to overlap (bulk) prop-
agate and pbc. We define two OpenCL queues Q1 and Q2: the first schedules
the execution of (bulk) propagate, while Q2 schedules the sequence of operations
corresponding to pbc. There is no data dependency between Q1 and Q2, so both
queues can in principle fully overlap in time. In practice, we have seen that this
option cannot be fully exploited because the execution over the bulk uses all
resources of the device; the best it can do is to overlap host-device transfers and
computations on the device. According to our measurements the best scheduling
is indeed that shown in Fig. 4:

446 E. Calore, S.F. Schifano, and R. Tripiccione

1. the host starts the gather kernel; this operation collects the 37 left and right
borders into two contiguous buffers allocated on the device (Q2 queue).

2. the host starts propagate on the bulk of the lattice (Q1 queue)
3. as soon as gather completes, the host starts the D2H L and D2H R operations

in asynchronous mode to copy the two buffers on the host side memory;
these operations do not fully overlap because they use the same channel bus,
but the host is not blocked (Q2 queue);

4. as each of the two D2H transfers finishes the host starts the corresponding
MPI communication – first MPI L and then MPI R – to send and receive
border data to/from the left and right neighbours;

5. as each MPI communication completes, the host starts the corresponding
H2D L or H2D R steps and moves back the buffers onto its device (Q2 queue);

6. the scatter kernel moves the content of the buffers onto the left and right
halos (Q2 queue).

7. propagate executes on the lattice columns not handled by Q1, using fresh
halo data (Prop’, in Fig. 4). This is a Q2 step, but in practice it does not
start before propagate on Q1 finishes.

Inspection of Fig. 4 shows that all data transfer overheads can be hidden
behind the execution of (bulk) propagate. The effective time for the combined
pbc and propagate steps on the whole lattice is given by max{Tα, Tβ}, where

Tα = TGath + TProp + TScat + TProp′

Tβ = TGath + TD2h(L) + TMPI(L) + TMPI(R) + TH2d(R) + TScat + TProp′

As we split the lattice on more and more devices, propagate becomes faster and
faster, while data transfers are approximately constant in time, so hiding will be
partial. We assess this quantitatively in the next section.

5 Results

We have tested our OpenCL code on the Eurora cluster, installed at CINECA
(Italy). Eurora is a cluster of nodes interconnected through a standard Infiniband
network. Each node has two Intel processors of the Xeon-E5 family, based on the
Sandybridge micro-architecture, and two accelerators, either two Kepler K20s
NVIDIA GPUs or two Intel Xeon-Phi 5100 devices. The double-precision peak

Table 1. Performance comparison of the main critical kernels of the code, using a
common OpenCL (OCL) code or architecture-specific CUDA and C versions; execution
times are in µsec.

OCL - GPU CUDA - GPU OCL - PHI C - PHI

TPbc+Prop 17.64 15.40 39.40 37.70

TCollide 104.65 83.33 81.12 79.14

On Portability, Performance and Scalability 447

Table 2. Time break-down of all steps of our OpenCL code running on two K20s GPUs
for lattice sizes of Lx × 2048. All times are milli-seconds and the lattice is sliced along
X-dimension. Values in bold identify the performance limiting factor for scalability.

Lx 3840 1920 960 480 240 120 64 32 16

TPbc+Prop 17.64 8.93 4.56 2.39 2.07 2.10 2.11 2.03 2.06

TBc 7.91 3.98 2.02 1.04 0.56 0.30 0.20 0.11 0.11
TCollide 104.65 52.35 26.61 13.15 6.64 3.35 1.82 0.94 0.49
Ttot 130.21 65.25 33.19 16.58 9.27 5.74 4.13 3.08 2.66

TGath 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
TD2h(L) 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

TD2h(R) 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

TMPI(L) 0.70 0.67 0.61 0.60 0.60 0.62 0.64 0.61 0.63

TH2d(L) 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

TMPI(R) 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.59 0.59

TH2d(R) 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.32

TScat 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
TProp′ 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

TProp 17.38 8.65 4.31 2.13 1.04 0.50 0.25 0.11 0.04

Tα 17.60 8.86 4.53 2.35 1.25 0.71 0.46 0.32 0.25
Tβ 2.10 2.06 2.01 2.00 2.00 2.02 2.03 2.04 2.04

performance of both accelerators is ≈ 1 Tflops. We first assess the performance
penalty, if any, of an OpenCL code w.r.t. architecture-optimized codes written
using programming languages closer to the specific architecture (i.e. CUDA for
GPUs, C and intrinsics for commodity CPUs and Xeon-Phi).

In Table 1 we compare the execution times of the two most critical kernels,
propagate and collide, for our OpenCL code and for highly optimized codes writ-
ten in CUDA for GPUs [10] and C for Xeon-Phis [9]. The GPU CUDA code
was compiled using the same configuration options supported by the current
NVIDIA OpenCL library. We remark that other options (not supported by the
current version of the OpenCL library) allows significantly better performances
for the collide kernel [10]. Data is for a lattice large enough (1920 × 2048 per
device) that communications are well overlapped with computation. We see that
the performances of the same OpenCL code are only slightly worse than those
of codes specifically optimized for each device. We also notice that the two ac-
celerators have roughly the same performance in the computing intensive kernel
(collide), while the PHI processor is slower in the propagate step; this will have
an impact on scalability, that we discuss next.

448 E. Calore, S.F. Schifano, and R. Tripiccione

Fig. 5. Weak and strong scalability of our OpenCL code on the EURORA cluster for
GPUs and MICs. In the strong regime, the code runs on a lattice of 1024× 8192 cells;
in the weak regime each device handles a sub-lattice of constant size (256×8192 cells).

Table 2 contains the time break-down of all operations of our OpenCL code on
a dual-K20s system (results are qualitatively similar for the Intel Xeon-Phi) as
we reduce the value of Lx. The first part shows the execution time of the main
steps of our code. TPbc+Prop refers to the execution of pbc and propagate

scheduled as discussed in the previous section; while Ttot is the total execution
time of the code. The following section of the table shows the full break down
of all steps associated to pbc and propagate, while the last section shows the
values of Tα and Tβ appearing in the time model of the previous section. Note
that our time model describes very well the behavior of TPbc+Prop in terms

of the contributions of all steps involved. As expected, as we vary the sub-
lattice size all operations belonging to Q2 take approximately the same time, as
they handle the same amount of data. However, as the sub-lattice size becomes
smaller and smaller (Lx ≤ 480), TProp for the bulk is too short to successfully

hide communication latencies, so violations to scaling start to appear.
Fig. 5 shows scalability results obtained for both GPUs and PHIs. We have

measured strong scalability on a lattice of 1024×8192 points. On this purposely
small lattice, we see that communications quickly become the major bottlenecks,
so there is no real advantage in using more than 32 GPU devices. For PHIs the
situation is even worse and we have a performance improvement only up to 16
devices. Here the major bottleneck comes from data transfers between host and
PHIs that are slower than for GPUs. For weak scaling we have allocated a lattice
of 256× 8192 on each device, a typical size for physics simulations. In this case
communication overheads are fully overlapped with computation of propagate,
and the code enjoys perfect scalability both for GPUs and PHIs in the whole
range considered, up to 32 devices.

On Portability, Performance and Scalability 449

6 Conclusions and Outlook

An important result of this work is that the same OpenCL code runs on different
accelerators, either based on GPUs or MICs, with single-node performance sim-
ilar to that obtained with programming languages closer to each architecture.
This provides an higher portability w.r.t. architecture specific implementations.
However, in today heterogeneous cluster architectures, performance scalability
of codes is seriously limited by the poor integration at hardware level between
accelerators, the host node and the network; this translates to high latencies
to move data between accelerators. In our implementation we have shown how
computation and commnication can be efficiently overlapped in order to mini-
mize impact of transfer latencies. In a future work we plan to use these results to
design and optimize a portable 3D Lattice Boltzmann code using the OpenCL
framework, or higher level languages such as OpenACC.

Acknowledgements. This work has been done in the framework of the COKA
and Suma projects, supported by INFN. We have used the computing facilities
of INFN-CNAF (Bologna, Italy) and CINECA (Bologna, Italy). We thank J.
Kraus for useful suggestions and comments.

References

1. Obrecht, C., et al.: Scalable lattice Boltzmann solvers for CUDA GPU clusters.
Parallel Computing 39 (2013)

2. Kronos Group, The open standard for parallel programming of heterogeneous sys-
tems, http://www.khronos.org/opencl

3. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford
University Press (2001)

4. Sbragaglia, M., et al.: Lattice Boltzmann method with self-consistent
thermo-hydrodynamic equilibria. J. Fluid Mech. 628, 299–309 (2009),
doi:10.1017/S002211200900665X

5. Scagliarini, A., et al.: Lattice Boltzmann methods for thermal flows: Continuum
limit and applications to compressible Rayleigh-Taylor systems. Phys. Fluids 22,
055101 (2010), doi:10.1063/1.3392774

6. Biferale, L., et al.: Second-order closure in stratified turbulence: Simulations and
modeling of bulk and entrainment regions. Phys. Rev. E 84, 1, 2, 016305 (2011),
doi:10.1103/PhysRevE.84.016305

7. Biferale, L., et al.: Reactive Rayleigh-Taylor systems: Front propagation and non-
stationarity. EPL 94, 5, 54004 (2011), doi:10.1209/0295-5075/94/54004

8. Biferale, L., et al.: An Optimized D2Q37 Lattice Boltzmann Code on GP-GPUs.
Comp. and Fluids 80 (2013), doi:10.1016/j.compfluid.2012.06.003

9. Crimi, G., et al.: Early Experience on Porting and Running a Lattice Boltz-
mann Code on the Xeon-phi Co-Processor. Proc. Comp. Science 18 (2013),
doi:10.1016/j.procs.2013.05.219

10. Kraus, J., et al.: Benchmarking GPUs with a Parallel Lattice-Boltzmann Code.
In: Proc. of 25th Int. Symp. on Computer Architecture and High Performance
Computing, SBAC-PAD (2013), doi:10.1109/SBAC-PAD.2013.37

http://www.khronos.org/opencl

	On Portability, Performance and Scalability of an MPI OpenCL Lattice Boltzmann Code
	1Introduction
	2OpenCL
	3Lattice Boltzmann Methods
	4Code Implementation
	5Results
	6Conclusions and Outlook
	References

