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the proposed algorithm is as good or better than Takefuji/Lee’s method On Positive Realness of Descriptor Systems

in terms of the solution quality for every tested graph.
Ligian Zhang, James Lam, and Shengyuan Xu
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Positive realness for normal linear systems has been studied by many
researchers [6], [7], [9], [19]. For continuous-time descriptor systems,
the strict positive realness is studied in [24] under the prior conditions
that the systems are impulse-free and there are no finite dynamic modes
on the imaginary axis. In this brief, we will study the positive realness
for both continuous- and discrete-time descriptor systems. Positive real
lemmas, which give the necessary and sufficient conditions for positive
real descriptor systems, are given in terms of generalized algebraic Ric-
cati equations and inequalities.

Il. PRELIMINARIES

Throughout the paper, if not explicitly stated, all matrices are as-
sumed to have compatible dimensions. We Uise> 0 (resp.M > 0)
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to denote a real symmetric positive definite (resp. semidefinite) matrix Proposition [8], [26]: For the discrete-time descriptor systéin,
M. (E, A) is admissible if and only if there exists a matix = X7 €
Consider a linear time-invariant continuous-time descriptor systef”*™ such that

e Bi(t) = Az(t) + Bu(t)  y(t) = Ca(t) + Du(t) A'XA<E'XE

1~
or discrete-time descriptor system E°XE >0.

Ba: Br(k+1) = Aw(k) + Bu(k) - y(k) = Co(k) + Du(k) lll. POSITIVE REALNESS OF CONTINUOUS-TIME

whereE, A € R**", B € R*™*™,C € R™*", D € R™*™ are DESCRIPTORSYSTEMS
known constant matrices. The transfer functiortiof(resp.£4) is In this section, we will consider the extended strict positive realness
G(s)=C(sE—A)"'B+D of continuous-time descriptor systems.
Definition 1:
(resp. 1) ¥, is said to bepositive real (PRJf its transfer functionG(s)
o is analytic inRe(s) > 0 and satisfies#(s) + G*(s) > 0 for
G(z)=C(:E—- A)"'B+D). Re(s) > 0.

2) ¥. is said to bestrictly positive real (SPRj its transfer function
G(s) is analytic inRe(s) > 0 and satisfie&(jw) + G* (jw) >
0 forw € [0, oc).

3) ¥. is said to beextended strictly positive real (ESPR)it is
strictly positive real and+(joc) + G*(joc) > 0.

For a normal continuous-time linear systéf A, B, C, D), the

The following terminology may be found in [S{E, A) is regular
if det(sE — A) (resp.det(zE — A)) is notidentically zero. IfE, 4)
is regular, there exist two square invertible matrieandl” such that
Y. = (E, A, B,C, D) (resp.Xs = (E, A, B, C, D)) is trans-
formed to the Weierstrass canonical form

S.=(E,A B, C.D)=(UEV,UAV,UB, CV. D) positive real lemma can be stated as follows.
) Lemma 1 [19]: Consider systemil, A, B, C, D). The following
(respectively, statements are equivalent.
S.=(E. 4, B,C,D)=(UEV,UAV,UB, CV, D)) 1) (I, A, B, C, D) is ESPR.

2) There exists a solutioN’ > 0 such that

ith i "
wit I ) ATX+XA C'-XB
5 _ 0 T[4 0 Ty T
E—{O w} A—{O I} c-B"™X —(D+D")
— B _ r . . . .
B { 1 } Co[C O] 1) 3) D+ D' > 0 and the algebraic Riccati equation
B> T - 7\T ! T
o A X+}1A+(C—B x) (D+D) (C—Bx)zo
whereN is nilpotent.
The zeros oflet(sE — A) (resp.det(zE — A)) are called thdi- has a stabilizing solutio. Thatis,A — B(D + DT)~1(C —
nite polesof (E, A). (E, A) is said to bestableif and only if all the BT X) is stable.

finite poles of (E, A) lie in Re(s) < 0 (resp.|z| < 1). (E, A) is Let

calledimpulse-free(resp.causa) if and only if N = 0. (E, A) is

admissibleif it is regular, stable and impulse-free (resjausa). For B(s) = G(s) + G (=s).
continuous-time systel.., (E, A, B) is calledimpulse controllable o ; e A

if and only if rank[ £ 2 %] = n + rankE; (E, A, B) is calledfinite !t has the realization ob(s) = C'(sE — A)"" B + D, where

v B
dynamics stabilizablé and only if rank[sE — A B] = n for any . E 0 . A 0 R B
finite s with Re(s) > 0; (E, A, C) is calledimpulse observablé k= {O E'T} A= {0 —AT} b= {CT}
and only if ¢=[c -B"], D=D+D" )
E 4 Lemma 2:If (E, A) is stable and impulse-free, and there exist
rank [ 0 E | =n4rankFE X, Q, andW such that
0 C o
(B, A, C) i lled finite d ics d bléf and only if EX=XE ®
, A, C) is called finite dynamics detecta and only i (T | Ty AT
rank[*“ ] = n for any finites with Re(s) > 0. AT A + XTA =-QQ ()
Proposition 1 [15], [25]: Consider the continuous-time descriptor B X+wW Q=C (5)
systemX.. Suppose the pailE, A) is regular and E, A, C) is im- D+DT =wTw (6)
pulse observable and finite dynamics detectable. THenA) is stable
and impulse-free if and only if there exist € R"*" such that then
E'X=X"FE>0 B(s) = M"(—s)M(s)
ATX+x"Ta+c"C =0 with M (s) = Q(sE — A)~"' B + W. Furthermore, itV (jw) has full

column rank for allv € [0, oc], thenG(s) is ESPR.

_Proof: Transform(E, A, B. C', D) to an equivalent realization
(TES, TAS, TB, CS, D) of ®(s), where
nid _ T
EX=X"E>0 p_[L 0 g_[ 10
ATxX+x74a<0. Xt o Tl-x I

Proposition 2 [15]: For the continuous-time descriptor syst&m
(E, A) is admissible if and only if there exisf§ € R™*" such that
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From (3)—(6), we have The main result is given in the following theorem.
R "I 0l[E o0 I 0 Theorem l:Let(E, A, B, g D)bea realizat_ion OoE.. Suppose
TES = X7 I} {0 El} {—X I} (E. A) is regular andD + D" > 0. The following statements are
L= equivalent.
_ E 0 _ {E 0 } 1) (E, A) is admissible an&. is ESPR.
X"E—-E"X ET 0 E' 2) GAREL1 has an admissible solutidhwith E” X > 0.
R r I 0 A 0 I 0 Proof: (2)=(1)AssumeX; is an admissible solution of GARE1
TAS = | o7 I} {0 _AT} {_X 1} with "X, > 0.LetW = (D+D")"/?andQ = W' (C-B" X)).
r A 0 } { A 0 } ThenX,; satisfies (3), (5), (6) and
:XTA—|—AT/X —AT -QTQ -—AT ATX, 4 XTA=—Q"Q. ®)
TH — I 0 B 1_ B _ B
| xT 1] |-CcT xXT'p-c”* -QTw Moreover(E, A— B(D+D")~'(C - B'X,))is admissible. Thus

N . 7 I 0 T ., (E, A, Q) is finite dynamics detectable and impulse observable, and
¢s=[C B'] {_ } =[C-B X B] (E, A, B) is impulse controllable and finite dynamics stabilizable.
= [w'Q BY]. From (8) and Proposition 1,E, 4) is stable and impulse-free. Fur-
thermore, from Lemma 4, it is known that
Then, as shown in the equation at the bottom of the page, where
M(s) = Q(sE — A)~1 B 4+ W. Clearly, this implies that M(jw)=QGwE—A)"'B+W

P(jw) = M"(—jw)M(jw) >0 is nonsingular if and only if

and if M (jw) has full column rank fors € [0, oc], we further have .. _[A-juE B
®(jw) > 0 and henc&(s) is ESPR. n Njw) = { Q W}
Consider the following GARE described by
is nonsingular. SincéE, A — B(D + DT)"Y(C — BTX,)) =

. T
A'X+X"A+ (C-B'X) (E, A — BW™'Q) is admissiblejwFE — A + BW~'Q is nonsin-
GAREL < . (D + DT)‘l (c - BTX) =0 gular, which is equivalent to the nonsingularity 8f(jw). Hence,
BTY = XTE M (jw) is nonsingular for allo € [0, oo], and ther®. is ESPR.
_ _ - (1)=(2) From Lemma 3, if we can show thef, A) is regular, im-
and the pai(&, A) defined by pulse-free and has no finite poles on the imaginary axis, then GARE1
has an admissible solution. Sindg, A) is admissible an@(jw) > 0
E 0 0 -
c—lo " ol = E 0 for —>~ < w < oo, from (7), we have
“ 00
0 0 0 det(jwE — A)
A0 -B i _B jwE—A B
A= 0 -A" -c’ = {é —f)} .M = det ¢ b
¢ -B" —(D+D")

o ) o o = det (JuE — A) det(P(jw))
A solution X of GAREL is called aradmissible solutionf (E, 4 —
B(D + D")~'(C - B* X)) is admissible. = det(jwE — A) det (waT + A’T) det(®(juw)) # 0.
Lemma 3 [21]: Suppose that
1) (E, A, B) is finite dynamics stabilizable and impulse controlHence, it follows that&, A) has no finite poles on the imaginary axis.
lable. Furthermore(&, A) isregular. Itis noticed that, A) isimpulse-free
2) (&€, A) is regular, impulse-free and has no finite poles on thiéand only if s&€ — A is nonsingular at infinity. Consider
imaginary axis.

Then GARE1 has an admissible solution. P(s)=s8 - A
Lemma 4 [21]: Suppos€ E, A, B) is finite dynamics stabilizable sE—A TO - BT
and impulse controllablé E, A, C') is finite dynamics detectable and = 0 sE" + A C
impulse observable. Then we have -C BT (D+D")
Pll PlZ
. L A—-sE B _
dim ker G(s) = dim ker |: c D:| . Py Pa
sE— A 0 ! B
d(s)=[wWrQ BT N P { , } +wiw
(O =1WTQ BT L e | |—etw

(sBE—A)! 0 B e
T 7y—1 T _1 T 7y—1 |:_ T.W/.:| + I/I/ XT/
—(SET+AT) QTQ(E—-A)"" (sET 4+ A7) Q

- <—BT (sET 4 AT)fl Q" + WT) (Q(sE—A)"'B+W) =M"(—s)M(s)

=(W'Q B")
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where Theorem 1 gives a necessary and sufficient condition for the contin-
uous-time descriptor systeF. to be ESPR in terms of a generalized
sFE— A 0 B : . ) . 7 ;
Py = 0 GET 4 AT | Py = T Riccati equation wheX. is regular andD + D* > 0. It is known

that the regularity of a descriptor system can be destroyed by feedback
Py =[-C B"], Pn=(D+D"). input, which causes problems for controller synthesis. In the following

. - . . . theorem, we will give a necessary and sufficient condition in terms of
Iltjl(s;l)( Ezg?tflkl]ﬁgfr;];ll)r:r?lf rl]\looftlir(lgetr?;?lff)ci)g :2?;?3%&??2:&;? e generalized Riccati inequality without the regularity assumption.
o ) . o o 9 . Y Theorem 2: The following statements are equivalent.

if P,o — Poy Py, P12 is nonsingular provided thd®; is nonsingular. ; o ] p

Since(E, A) is admissible(sE— A4) and(sEX + A" ) arenonsingular ) (£ 4) is admissible an&.. is ESPR, and) + D" > 0.

at infinity, which impliesP;; is nonsingular at infinity. It can be seen 2) There exists a solutioX to

that ATX +xTA (C-B"x)" .
. | <
C-B'X - (D+D")

ETX=XTE>0.

Py —lepﬁlplz GARI:
(sE—A)"'B

-T T\~1 ~T
(SE +4 ) ¢ Proof: (2)=(1) From Proposition 2, it can be easily seen
=D+D"+CGE-—A)'B-B"(sE" +A")"'C" that (E, A) is admissible. Without loss of generality, we as-
= &(s). sume that(E, A, B, C, D) is in the Weierstrass canonical form

(E, A, B, C, D), andX is the solution to

=D+D" —[-C BT]

By assumption®(joo) > 0. This implies Pss — Py P, P2 is

Tl ovi'T A_pmler
nonsingular at infinity, which is equivalent to the nonsingularity of A X+X4 (€-B X) <0 (10)
P(s) atinfinity. Thus,(&, A) is impulse-free. Hence we have shown c-B'xX - (D+D")
that GARE1 has an admissible solutidh To show thatE” X > 0,
without loss of generality, suppose thaf, A, B, C. D) is in the E'X=X"E>o0. (11)
Weierstrass canonical forti, A, B, C, D), andX is an admissible . B . ) )
solution of Conformally to the structures df and A, partition X as[i; )\(;z]
r o p . g AT - By (11), we haveX1; = X{; > 0, X1, = 0. Then (10) can be written
ATX+ X A+ (C -B /X) (D +D ) as shown in the inequality at the bottom of the page. Postmultiplying
. =T and premultiplying this inequality b
-(C—BTX>:O ) p plying quality by
1 I 00
E" X=X E. 0 B, I
Partition X = [%l %z] conformally to (1). FronE ' X = X ' E, 0 I 0
we haveX ;; = Yfl andX» = 0. Hence, by (9), we have and its transposition respectively, we obtain as shown in the inequality
. at the bottom of the page which implid$, < 0. Let X, = X1 +
ATX  + XA+ (01 - BTX,, - B;)TYM) nI > 0, wherep > 0 is small enough such that
—1 o o AT v - T -
-(D+DT) (cl—BlTXM—BEXgl)zo. A X+ X4 Ci - XiB
Ci—B{X, (:Bs+BIC] - (D+D")
Notice that4, is stable, then - -
! AT X1 + X1 Ay cf = X1 By
o Jee) . o T = _ .
X = / M (cl - BI'X, - B{Xm) Ci—BIXi1  C:Bo+BICy— (D4 D7)
0 2T A
7\t T T Aqt A +4r -B
-(D+D) (Cl—Blel—Bg)szl)cldtzo +p gt .0 | <°
andthusE ' X > 0 follows. m HenceX. is ESPR by Lemma 1.
-"HXM + X4 X2T1 C1T - XubB —X2T1 B>
Xo Xoo + X1 Cy — X7,B> <0
C, —B¥X, - B¥X, C,— BiXy —(D+D")
-"1¥‘X11 + X114 C;[ —Xub: X211
[Ml Mz} _| ¢ -BIxw  CB.+BIC] - (D+D") | BIXL+Ca|
MI Ms

Xo XooBs + CF Xoo + X4,
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(1)=(2) Lets := inf, o(G(jw) + GT(—jw)) > 0 whereg(-) The proof is then finished.
denotes the smallest singular value of a matrix and

| |
286 IV. PosSITIVE REALNESS OFDISCRETETIME DESCRIPTORSYSTEMS
CTGE—A) B,

for some constand > 0. We will show that if0 < ¢ < £, then

(E, A, B, C, D) is ESPR, where

The extended strict-positive realness of discrete-time descriptor sys-
tems will be considered in this section.

Definition 2:
1) ¥, is said to bepositive real (PRJf its transfer function7(z) is
Bo(B o, Co C b D 0o analytic in|z| > 1 and satisfies?(z) + G*(z) > 0 for |z| > 1.
N ' T lel Lo eI
The transfer function ofE, A, B, C, D) is

2) ¥, is said to bestrictly positive real (SPRY its transfer function
G(z) is analytic in|z| > 1 and satisfiei(e?”) + G*(e??) > 0
for ¢ € [0, 27].

3) ¥, is said to beextended strictly positive real (ESPR)it is

& G(s) 0 strictly positive real ands(oo) + G*(o0) > 0.

W(s) = L(sE -A)7'B ﬁ[} ’ For the normal discrete-time linear systéi A, B, C, D), the

positive real lemma can be stated as follows:

Sinced < = < £, thatis,s> ||(sE — A)~'B||% < 26¢, which is

equivalent to

Lemma 5 [7]: Consider the normal discrete-time linear system
(I, A, B, C, D). The following statements are equivalent.

- 1) (I, A, B, C, D) is ESPR.

=2’ (—waT - AT) (jwE— A)"'B <2841,

2) There exists a solutioN > 0 such that
ATXA-X

forallw € [0, o0). Itis also known that

1< o (Gljw)+ G (=jw)) T < Gljw) + G (—juw).

(C-B"xA4)"
Hence,

C-B'XA —(D+D"-B"XB)

Now, we may consider the positive realness of discrete-time de-
scriptor systent,.
- . o N — 1L
2B’ (—waf —Al) (jwE - A)'B

Theorem 3: For discrete-time descriptor systeéy, the following
statements are equivalent.

1) (E, A) is admissible an&, is ESPR.
<26 (G(jw) + G (jw))
which implies

2) There exists a solutioN = X' such that
ATXA-ETXE
G(jw)+ G (=jw) >0

for w € [0, oo). Furthermore,

(C-BTxA)"

- (D+ D" -B'XB)
E'XE>0.

C-BYXA

- Proof: (2)=(1) From Proposition 3, it can be easily seen
Gljoc) + G (—jn0) = {G(JOO)-I-OG (=joo) 22[} > 0. that (E, A) is admissible. Without loss of generality, we as-

sume that(E, A, B, C, D) is in the Weierstrass canonical form

o (E, A, B, C, D), andX is the solution to
Then,(E, A, B, C, D) is ESPR.

Since(E, A, B, C, D) is admissible and ESPR, by Theorem 1,
there existsY such that

[ S

A'XA-E'XE ( /
ATX + XA+ (C‘-BTX)T (D 4 DT)_1 (C—BTX) -0

<0 (12)
C-B'Xa2 - (D+D"-B'XB)
- — T ——
E'x =x'E>o0. E"XFE>O0. (13)
JF y AN X X1 Xiz
This is equivalent to Conformally to th? structures df and A, partltlo_n)i as[XlT2 )<22_]'
By (13), we haveX;; > 0. Then (12) can be written as shown in the
T < T 7\ 7\ ! equation at the bottom of the page. Postmultiplying and premultiplying
AX+X A+ (C -B A) (D +D ) this inequality by
2
-(C—BTX>+;—6[:0, I 0 0
0 By I
E'X=X"E>o0. 0o I 0
AT XA - X Af X1o (C1 = B X114y — Bf XThA1)"
XA Xo2

T+ T
(Co — B X12 — By X2) <0
~D— D" + Bl (X11B) + X12B>)
+B3 (X{2B1 + X20By)

Cy — Bf X114, — BI XA, Oy — BY X1 — B X,
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AT XA — X (Cl - B1TX11441)T Al X1s
My My _ | Ci— B;[Xufh Cs B> + BfCQI - (D + DT) + B;[XuBl Cy — B;[Xlz <0
M$ M
; ; T
XA (Cz - BlTXlz) X

and its transposition respectively, we obtain the equation as showrpattitioned conformally to (1). FronE“ X = X*E > 0, we have
the top of the page which implie’l; < 0.LetX, = X + I >0, X = X{; > 0andX,. = 0. Hence GARE1 becomes
wherep > 0 is small enough such that

ATX A4 - X, (€1 — B X, 41)" ATX) + XA+ (O1 ~BTX,, — qu)T
Ci—B{X14, C:B:+B3Cy —(D+D")+ B/ X|B
ATA -1 —AlB,

-BT4, BB,

: (01 — BT X\ — me) -
Xo1 + (1 = bX22) (Cl - Bl X, — me) =0
2X00 + (1= bX22)> = 0. (15)

=M +p < 0.

HenceX; is ESPR by Lemma 5.

(1)=(2) Without loss of generality, we also suppos&yhens = 0, a solution is given by
(E, A, B, C, D) is in the Weierstrass canonical

foom (E, A, B,C,D). Since A, is stable and

G(z) = C(:E— A)"'B+ D =Ci(z1 — A))"'By — CsBs + D 0.2055 015340
is ESPR, from Lemma 5 there exisl¥;; = XI, > 0 such that X =1 0.1534 0'12§8 0 )
M, < 0.Iflet X252 = —al, wherea > 0 is large enough such that —0.6411 —-0.7178 0.5

1T which is an admissible solution to GAREL1 since
My, — MsMg " M; <0,

A \~! T <
thenX = [} 7] = X7 is the solution to (12) and (13). n <E’ A-B (D +D ) (O - B X))
1 0 0 —1.6411 -0.7178 -1
V. ILLUSTRATIVE EXAMPLE = 01 0], |-06411 -2.7T178 -1
Due to the space limitations, we consider a continuous-time 000 0 0 1
descriptor model in Weierstrass canonical form (1), where
is regular, stable (with finite poles at, = —1.3134 and
1010 1 0 0 1 s = —3.0455) and impulse-free. That is, an admissible solu-
) tion of GARE1 has been obtained. However, when= 1, (15)
E=|01]0p 4= 0 =210 g1 becomesX? + 1 = 0, which has no real solution. Hence, from
00 1lo 0 0 1 b Theorem 1{(s) is ESPR whetbh = 0, and not ESPR wheh= 1.
Now consider the solution of GARI whén= 0 andb = 1 respec-
C=[1 1| 1], D= % tively. Whenb = 0, one solution of GARI is

1.4926 —0.0281 0
X =|-0.0281 0.8443 0
0.3333  0.3333 -—1.3986

andb is a constant. It can be seen that this model is regular, stable, and
impulse-free. Its transfer function is

() = 1 n 1 b 1 From Theorem 2¢(s) is ESPR. Notice that a necessary condition for
T s+1 542 2° X to be a solution of GARI is
From 2X20 4 (1= bX22)* <0
4 if X has the form of (14). It can be easily seen that when 1, this

Gjw)+ G(—jw) = + —2b+1 inequality has no solution. Hence, from Theoren2s) is not ESPR.

w2+l w244
VI. CONCLUSIONS
G(s) is ESPR whe = 0, and not ESPR wheh= 1.

Consider the solution of GARE1 fér= 0 andb = 1 with ET X >
0, which is supposed to have the form of

We have derived necessary and sufficient conditions for descriptor
systems to be admissible and ESPR. The conditions are given based
on generalized algebraic Riccati inequalities for continuous- and dis-
crete-time descriptor systems. For the continuous-time case, we also
Y — {Xu X12:| (14) give the necessary and sufficient condition based on a generalized Ric-
T Xy X cati equation under the condition of regularity.
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