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the proposed algorithm is as good or better than Takefuji/Lee’s method
in terms of the solution quality for every tested graph.
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On Positive Realness of Descriptor Systems

Liqian Zhang, James Lam, and Shengyuan Xu

Abstract—In this brief, the positive realness of descriptor systems
is studied. For the continuous-time case, two positive real lemmas are
given, based on a generalized algebraic Riccati equation and inequality
respectively. For the discrete-time case, the positive real lemma is given in
terms of a generalized algebraic Riccati inequality.

Index Terms—Continuous, descriptor systems, discrete, generalized Ric-
cati equation, generalized Riccati inequality, positive real.

I. INTRODUCTION

It is well known that the descriptor form has higher capability to
describe a physical system. Descriptor-system models are often more
convenient and natural than normal (state-space) models in the descrip-
tion of interconnected large-scale systems [5], economic systems [14],
electrical network analysis [16], power systems [17], chemical pro-
cesses [11], and so on [13]. This is the reason why descriptor systems
have attracted much interest in recent years. There are many research
works aimed at generalizing existing theories, especially in the time
domain, from normal systems to descriptor systems. These include
controllability and observability [4], feedback control [3], [12], [18],
bounded real lemma andH1 control [8], [15], [22], [25],H2 control
[21] and Lyapunov equations [20], [23], [27].

An essential property in linear circuit and system theory is pos-
itive realness. It is well known that it has found application in the
analysis of the properties of immittance or hybrid matrices of various
classes of networks, inverse problem of linear optimal control, circle
criterion, Popov criterion and spectral factorization by algebra [2]. Re-
cently, positive realness has also been related to the flexible space struc-
ture [10] and the stability of 2-D systems [1]. Moreover, positive real-
ness plays an important role to study positive real control, which is a
problem to construct an internally stabilizing controller such that the
given closed-loop transfer function is positive real. The main motiva-
tion of this problem comes from robust and nonlinear control. When a
strictly-positive-real controller is connected to a positive real plant in a
negative-feedback configuration, the closed-loop system is guaranteed
to be stable for arbitrary plant variations as long as the plant remains
to be positive real [19].

Positive realness for normal linear systems has been studied by many
researchers [6], [7], [9], [19]. For continuous-time descriptor systems,
the strict positive realness is studied in [24] under the prior conditions
that the systems are impulse-free and there are no finite dynamic modes
on the imaginary axis. In this brief, we will study the positive realness
for both continuous- and discrete-time descriptor systems. Positive real
lemmas, which give the necessary and sufficient conditions for positive
real descriptor systems, are given in terms of generalized algebraic Ric-
cati equations and inequalities.

II. PRELIMINARIES

Throughout the paper, if not explicitly stated, all matrices are as-
sumed to have compatible dimensions. We useM > 0 (resp.M � 0)
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to denote a real symmetric positive definite (resp. semidefinite) matrix
M .

Consider a linear time-invariant continuous-time descriptor system

�c: E _x(t) = Ax(t) +Bu(t) y(t) = Cx(t) +Du(t)

or discrete-time descriptor system

�d: Ex(k + 1) = Ax(k) +Bu(k) y(k) = Cx(k) +Du(k)

whereE, A 2 n�n, B 2 n�m, C 2 m�n, D 2 m�m are
known constant matrices. The transfer function of�c (resp.�d) is

G(s) = C(sE � A)�1B +D

(resp.

G(z) = C(zE � A)�1B +D):

The following terminology may be found in [5].(E; A) is regular
if det(sE�A) (resp.det(zE�A)) is not identically zero. If(E; A)
is regular, there exist two square invertible matricesU andV such that
�c = (E; A; B; C; D) (resp.�d = (E; A; B; C; D)) is trans-
formed to the Weierstrass canonical form

�c = E; A; B; C; D � (UEV; UAV; UB; CV; D)

(respectively,

�d = E; A; B; C; D � (UEV; UAV; UB; CV; D))

with

E =
I 0

0 N
A =

A1 0

0 I

B =
B1

B2

C = [C1 C2 ] (1)

whereN is nilpotent.
The zeros ofdet(sE � A) (resp.det(zE � A)) are called thefi-

nite polesof (E; A). (E; A) is said to bestableif and only if all the
finite poles of(E; A) lie in Re(s) < 0 (resp.jzj < 1). (E; A) is
called impulse-free(resp.causal) if and only if N = 0. (E; A) is
admissibleif it is regular, stable and impulse-free (resp.causal). For
continuous-time system�c, (E; A; B) is calledimpulse controllable
if and only if rank[ E 0 0

A E B
] = n+ rankE; (E; A; B) is calledfinite

dynamics stabilizableif and only if rank[sE � A B] = n for any
finite s with Re(s) � 0; (E; A; C) is calledimpulse observableif
and only if

rank

E A

0 E

0 C

= n+ rankE

(E; A; C) is called finite dynamics detectableif and only if
rank[ sE�A

C
] = n for any finites with Re(s) � 0.

Proposition 1 [15], [25]: Consider the continuous-time descriptor
system�c. Suppose the pair(E; A) is regular and(E; A; C) is im-
pulse observable and finite dynamics detectable. Then(E; A) is stable
and impulse-free if and only if there existsX 2 n�n such that

E
T
X = X

T
E � 0

A
T
X +X

T
A+ C

T
C =0:

Proposition 2 [15]: For the continuous-time descriptor system�c,
(E; A) is admissible if and only if there existsX 2 n�n such that

E
T
X = X

T
E � 0

A
T
X +X

T
A < 0:

Proposition [8], [26]: For the discrete-time descriptor system�d,
(E; A) is admissible if and only if there exists a matrixX = XT 2
n�n such that

A
T
XA <E

T
XE

E
T
XE � 0:

III. POSITIVE REALNESS OF CONTINUOUS-TIME

DESCRIPTORSYSTEMS

In this section, we will consider the extended strict positive realness
of continuous-time descriptor systems.

Definition 1:

1) �c is said to bepositive real (PR)if its transfer functionG(s)
is analytic inRe(s) > 0 and satisfiesG(s) + G�(s) � 0 for
Re(s) > 0.

2) �c is said to bestrictly positive real (SPR)if its transfer function
G(s) is analytic inRe(s) � 0 and satisfiesG(j!)+G�(j!) >
0 for ! 2 [0; 1).

3) �c is said to beextended strictly positive real (ESPR)if it is
strictly positive real andG(j1) +G�(j1) > 0.

For a normal continuous-time linear system(I; A; B; C; D), the
positive real lemma can be stated as follows.

Lemma 1 [19]: Consider system(I; A; B; C; D). The following
statements are equivalent.

1) (I; A; B; C; D) is ESPR.
2) There exists a solutionX > 0 such that

ATX +XA CT �XB

C �BTX �(D+DT )
< 0:

3) D +DT > 0 and the algebraic Riccati equation

A
T
X +XA+ C �B

T
X

T

D +D
T

�1

C �B
T
X = 0

has a stabilizing solutionX. That is,A�B(D+DT )�1(C �
BTX) is stable.

Let

�(s) = G(s) +G
T (�s):

It has the realization of�(s) = Ĉ(sÊ � Â)�1B̂ + D̂, where

Ê =
E 0

0 ET
; Â =

A 0

0 �AT
; B̂ =

B

CT

Ĉ = [C �BT ] ; D̂ = D +D
T
: (2)

Lemma 2: If (E; A) is stable and impulse-free, and there exist
X; Q, andW such that

E
T
X =X

T
E (3)

A
T
X +X

T
A =�QTQ (4)

B
T
X +W

T
Q =C (5)

D +D
T =W

T
W (6)

then

�(s) =M
T (�s)M(s)

with M(s) = Q(sE�A)�1B +W . Furthermore, ifM(j!) has full
column rank for all! 2 [0; 1], thenG(s) is ESPR.

Proof: Transform(Ê; Â; B̂; Ĉ; D̂) to an equivalent realization
(T ÊS; T ÂS; T B̂; ĈS; D̂) of �(s), where

T =
I 0

XT I
S =

I 0

�X I
:
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From (3)–(6), we have

T ÊS =
I 0

XT I

E 0

0 ET

I 0

�X I

=
E 0

XTE � ETX ET
=

E 0

0 ET

T ÂS =
I 0

XT I

A 0

0 �AT
I 0

�X I

=
A 0

XTA +ATX �AT
=

A 0

�QTQ �AT

T B̂ =
I 0

XT I

B

�CT
=

B

XTB � CT
=

B

�QTW

ĈS = [C BT ]
I 0

�X I
= [C �BTX BT ]

= [WTQ BT ] :

Then, as shown in the equation at the bottom of the page, where
M(s) = Q(sE � A)�1B +W . Clearly, this implies that

�(j!) =M
T (�j!)M(j!) � 0

and ifM(j!) has full column rank for! 2 [0; 1], we further have
�(j!) > 0 and henceG(s) is ESPR.

Consider the following GARE described by

GARE1:
ATX +XTA+ C �BTX

T

� D +DT �1

C �BTX = 0

ETX = XTE

and the pair(E ; A) defined by

E =

E 0 0

0 ET 0

0 0 0

=
Ê 0

0 0

A =

A 0 �B

0 �AT �CT

C �BT � D +DT

=
Â �B̂

Ĉ �D̂
: (7)

A solutionX of GARE1 is called anadmissible solutionif (E; A �
B(D +DT )�1(C � BTX)) is admissible.

Lemma 3 [21]: Suppose that

1) (E; A; B) is finite dynamics stabilizable and impulse control-
lable.

2) (E; A) is regular, impulse-free and has no finite poles on the
imaginary axis.

Then GARE1 has an admissible solution.
Lemma 4 [21]: Suppose(E; A; B) is finite dynamics stabilizable

and impulse controllable,(E; A; C) is finite dynamics detectable and
impulse observable. Then we have

dimker G(s) = dim ker
A � sE B

C D
:

The main result is given in the following theorem.
Theorem 1: Let (E; A; B; C; D) be a realization of�c. Suppose

(E; A) is regular andD + DT > 0. The following statements are
equivalent.

1) (E; A) is admissible and�c is ESPR.
2) GARE1 has an admissible solutionX with ETX � 0.

Proof: (2))(1)AssumeX1 is an admissible solution of GARE1
withETX1 � 0. LetW = (D+DT )1=2 andQ =W�1(C�BTX1).
ThenX1 satisfies (3), (5), (6) and

A
T
X1 +X

T
1 A = �Q

T
Q: (8)

Moreover,(E; A�B(D+DT )�1(C�BTX1)) is admissible. Thus
(E; A; Q) is finite dynamics detectable and impulse observable, and
(E; A; B) is impulse controllable and finite dynamics stabilizable.
From (8) and Proposition 1,(E; A) is stable and impulse-free. Fur-
thermore, from Lemma 4, it is known that

M(j!) = Q(j!E � A)�1B +W

is nonsingular if and only if

N(j!) =
A � j!E B

Q W

is nonsingular. Since(E; A � B(D + DT )�1(C � BTX1)) =
(E; A � BW�1Q) is admissible,j!E � A + BW�1Q is nonsin-
gular, which is equivalent to the nonsingularity ofN(j!). Hence,
M(j!) is nonsingular for all! 2 [0; 1], and then�c is ESPR.

(1))(2) From Lemma 3, if we can show that(E; A) is regular, im-
pulse-free and has no finite poles on the imaginary axis, then GARE1
has an admissible solution. Since(E; A) is admissible and�(j!) > 0
for �1 � ! � 1, from (7), we have

det(j!E � A)

= det
j!Ê � Â B̂

�Ĉ D̂

= det j!Ê � Â det(�(j!))

= det(j!E � A) det j!E
T + A

T det(�(j!)) 6= 0:

Hence, it follows that(E; A) has no finite poles on the imaginary axis.
Furthermore,(E; A) is regular. It is noticed that(E; A) is impulse-free
if and only if sE � A is nonsingular at infinity. Consider

P (s) = sE � A

=

sE � A 0 B

0 sET +AT CT

�C BT (D +DT )

=
P11 P12

P21 P22

�(s) = [WTQ BT ]
sE �A 0

QTQ sET + AT

�1

B

�QTW
+W

T
W

= [WTQ BT ]
(sE �A)�1 0

� sET + AT �1

QTQ(sE � A)�1 sET + AT �1

B

�QTW
+W

T
W

= �B
T

sE
T + A

T
�1

Q
T +W

T (Q(sE �A)�1B +W ) =M
T (�s)M(s)
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where

P11 =
sE �A 0

0 sET + AT
; P12 =

B

CT

P21 = [�C BT ] ; P22 = (D +D
T ):

It is known that(E ; A) has no finite poles on the imaginary axis. Then
P (s) has full normal rank. Notice thatP (s) is nonsingular if and only
if P22 � P21P

�1

11
P12 is nonsingular provided thatP11 is nonsingular.

Since(E; A) is admissible,(sE�A) and(sET+AT ) are nonsingular
at infinity, which impliesP11 is nonsingular at infinity. It can be seen
that

P22 � P21P
�1

11 P12

= D +D
T
� [�C BT ]

(sE � A)�1B

sET +AT �1

CT

= D +D
T + C(sE � A)�1B �B

T (sET + A
T )�1CT

= �(s):

By assumption,�(j1) > 0. This impliesP22 � P21P
�1

11
P12 is

nonsingular at infinity, which is equivalent to the nonsingularity of
P (s) at infinity. Thus,(E; A) is impulse-free. Hence we have shown
that GARE1 has an admissible solutionX. To show thatETX � 0,
without loss of generality, suppose that(E; A; B; C; D) is in the
Weierstrass canonical form(E; A; B; C; D), andX is an admissible
solution of

A
T

X +X
T

A + C �B
T

X
T

D +D
T
�1

� C �B
T

X = 0 (9)

E
T
X = X

T

E:

PartitionX = [
X X

X X
] conformally to (1). FromE

T

X = X
T

E,

we haveX11 = X
T

11 andX12 = 0. Hence, by (9), we have

A
T

1X11 +X11A1 + C1 �B
T

1 X11 �B
T

2 X21

T

� D +D
T
�1

C1 �B
T

1 X11 �B
T

2 X21 = 0:

Notice thatA1 is stable, then

X11 =
1

0

e
A t

C1 �B
T

1 X11 �B
T

2 X21

T

� D +D
T
�1

C1 �B
T

1 X11 �B
T

2 X21 e
A t

dt � 0

and thusE
T

X � 0 follows.

Theorem 1 gives a necessary and sufficient condition for the contin-
uous-time descriptor system�c to be ESPR in terms of a generalized
Riccati equation when�c is regular andD + DT > 0. It is known
that the regularity of a descriptor system can be destroyed by feedback
input, which causes problems for controller synthesis. In the following
theorem, we will give a necessary and sufficient condition in terms of
a generalized Riccati inequality without the regularity assumption.

Theorem 2: The following statements are equivalent.

1) (E; A) is admissible and�c is ESPR, andD +DT > 0.
2) There exists a solutionX to

GARI:

ATX +XTA C �BTX
T

C �BTX � D +DT
< 0

ETX = XTE � 0:

Proof: (2))(1) From Proposition 2, it can be easily seen
that (E; A) is admissible. Without loss of generality, we as-
sume that(E; A; B; C; D) is in the Weierstrass canonical form
(E; A; B; C; D), andX is the solution to

A
T

X +X
T

A (C �B
T

X)T

C �B
T

X � D +DT
< 0 (10)

E
T

X = X
T

E � 0: (11)

Conformally to the structures ofE andA, partitionX as[X X

X X
].

By (11), we haveX11 = XT

11 � 0,X12 = 0. Then (10) can be written
as shown in the inequality at the bottom of the page. Postmultiplying
and premultiplying this inequality by

I 0 0

0 B2 I

0 I 0

and its transposition respectively, we obtain as shown in the inequality
at the bottom of the page which impliesM1 < 0. LetX1 = X11 +
�I > 0, where� > 0 is small enough such that

AT1X1 +X1A1 CT

1 �X1B1

C1 �BT

1 X1 C2B2 +BT

2 C
T

2 � (D +DT )

=
AT1X11 +X11A1 CT

1 �X11B1

C1 �BT

1 X11 C2B2 +BT

2 C2 � (D+DT )

+ �
AT1 + A1 �B1

�BT

1 0
< 0:

Hence,�c is ESPR by Lemma 1.

AT1X11 +X11A1 XT

21 CT

1 �X11B1 �XT

21B2

X21 X22 +XT

22 CT

2 �XT

22B2

C1 �BT

1 X11 �BT

2 X21 C2 �BT

2 X22 �(D+DT )

< 0

M1 M2

MT

2 M3

=

AT1X11 +X11A1 CT

1 �X11B1 XT

21

C1 �BT

1 X11 C2B2 +BT

2 C
T

2 � (D +DT ) BT

2 X
T

22 + C2

X21 X22B2 + CT

2 X22 +XT

22

< 0
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(1))(2) Let �̂ := inf! �(G(j!) + GT (�j!)) > 0 where�(�)
denotes the smallest singular value of a matrix and

"̂ :=
2��̂

k(sE �A)�1Bk1
> 0

for some constant� > 0. We will show that if0 < " < "̂, then
(E; A; ~B; ~C; ~D) is ESPR, where

~B = [B 0]; ~C =
C

"I
~D =

D 0

0 �I
:

The transfer function of(E; A; ~B; ~C; ~D) is

~G(s) =
G(s) 0

"(sE �A)�1B �I
:

Since0 < " < "̂, that is,"2 k(sE � A)�1Bk2
1

< 2��̂, which is
equivalent to

"
2
B
T �j!ET �A

T
�1

(j!E � A)�1B < 2��̂ I;

for all ! 2 [0; 1). It is also known that

�̂ I � � G(j!) +G
T (�j!) I � G(j!) +G

T (�j!):

Hence,

"
2
B
T �j!ET � A

T
�1

(j!E �A)�1B

< 2� G(j!) +G
T (�j!)

which implies

~G(j!) + ~GT (�j!) > 0

for ! 2 [0; 1). Furthermore,

~G(j1) + ~GT (�j1) =
G(j1) +GT (�j1) 0

0 2�I
> 0:

Then,(E; A; ~B; ~C; ~D) is ESPR.
Since(E; A; ~B; ~C; ~D) is admissible and ESPR, by Theorem 1,

there existsX such that

A
T
X +X

T
A+ ~C� ~BT

X
T

~D + ~DT
�1

~C� ~BT
X = 0

E
T
X = X

T
E � 0:

This is equivalent to

A
T
X +X

T
A+ C �B

T
X

T

D +D
T
�1

� C �B
T
X +

"2

2�
I = 0;

E
T
X = X

T
E � 0:

The proof is then finished.

IV. POSITIVE REALNESS OFDISCRETE-TIME DESCRIPTORSYSTEMS

The extended strict-positive realness of discrete-time descriptor sys-
tems will be considered in this section.

Definition 2:

1) �d is said to bepositive real (PR)if its transfer functionG(z) is
analytic injzj > 1 and satisfiesG(z) +G�(z) � 0 for jzj > 1.

2) �d is said to bestrictly positive real (SPR)if its transfer function
G(z) is analytic injzj � 1 and satisfiesG(ej�) +G�(ej�) > 0
for � 2 [0; 2�].

3) �d is said to beextended strictly positive real (ESPR)if it is
strictly positive real andG(1) + G�(1) > 0.

For the normal discrete-time linear system(I; A; B; C; D), the
positive real lemma can be stated as follows:

Lemma 5 [7]: Consider the normal discrete-time linear system
(I; A; B; C; D). The following statements are equivalent.

1) (I; A; B; C; D) is ESPR.
2) There exists a solutionX > 0 such that

ATXA�X C �BTXA
T

C �BTXA � D +DT �BTXB
< 0:

Now, we may consider the positive realness of discrete-time de-
scriptor system�d.

Theorem 3: For discrete-time descriptor system�d, the following
statements are equivalent.

1) (E; A) is admissible and�d is ESPR.
2) There exists a solutionX = XT such that

ATXA� ETXE C �BTXA
T

C �BTXA � D +DT �BTXB
< 0

E
T
XE � 0:

Proof: (2))(1) From Proposition 3, it can be easily seen
that (E; A) is admissible. Without loss of generality, we as-
sume that(E; A; B; C; D) is in the Weierstrass canonical form
(E; A; B; C; D), andX is the solution to

A
T
X A�E

T
X E C �B

T
XA

T

C �B
T
XA � D +DT �B

T
XB

< 0 (12)

E
T
XE � 0: (13)

Conformally to the structures ofE andA, partitionX as[X X

X X
].

By (13), we haveX11 � 0. Then (12) can be written as shown in the
equation at the bottom of the page. Postmultiplying and premultiplying
this inequality by

I 0 0

0 B2 I

0 I 0

AT
1X11A1 �X11 AT

1X12 C1 �BT
1 X11A1 �BT

2 X
T
12A1

T

XT
12A1 X22 C2 �BT

1 X12 �BT
2 X22

T

C1 �BT
1 X11A1 �BT

2 X
T
12A1 C2 �BT

1 X12 �BT
2 X22

�D �DT +BT
1 (X11B1 +X12B2)

+BT
2 XT

12B1 +X22B2

< 0
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M1 M2

MT

2 M3

=

AT1X11A1 �X11 C1 �BT

1 X11A1

T

AT1X12

C1 �BT

1 X11A1 C2B2 +BT

2 C
T

2 � D +DT +BT

1 X11B1 C2 �BT

1 X12

XT

12A1 C2 �BT

1 X12

T

X22

< 0

and its transposition respectively, we obtain the equation as shown at
the top of the page which impliesM1 < 0. LetX1 = X11 + �I > 0,
where� > 0 is small enough such that

AT1X1A1 �X1 C1 �BT

1 X1A1

T

C1 �BT

1 X1A1 C2B2 +BT

2 C
T

2 � D +DT +BT

1 X1B1

=M1 + �
AT1 A1 � I �AT1 B1

�BT

1 A1 BT

1 B1

< 0:

Hence�d is ESPR by Lemma 5.
(1))(2) Without loss of generality, we also suppose

(E; A; B; C; D) is in the Weierstrass canonical
form (E; A; B; C; D). Since A1 is stable and
G(z) = C(zE � A)�1B +D = C1(zI � A1)

�1B1 � C2B2 +D

is ESPR, from Lemma 5 there existsX11 = XT

11 > 0 such that
M1 < 0. If let X22 = ��I , where� > 0 is large enough such that

M1 �M2M
�1

3 M
T

2 < 0;

thenX = [X 0

0 X
] = X

T

is the solution to (12) and (13).

V. ILLUSTRATIVE EXAMPLE

Due to the space limitations, we consider a continuous-time
descriptor model in Weierstrass canonical form (1), where

E =

1 0 0

0 1 0

0 0 0

A =

�1 0 0

0 �2 0

0 0 1

B =

1

1

b

C = [ 1 1 j 1 ] ; D = 1

2

andb is a constant. It can be seen that this model is regular, stable, and
impulse-free. Its transfer function is

G(s) =
1

s+ 1
+

1

s+ 2
� b+

1

2
:

From

G(j!) +G(�j!) =
2

!2 + 1
+

4

!2 + 4
� 2b+ 1

G(s) is ESPR whenb = 0, and not ESPR whenb = 1.
Consider the solution of GARE1 forb = 0 andb = 1 with ETX �

0, which is supposed to have the form of

X =
X11 X12

X21 X22

(14)

partitioned conformally to (1). FromETX = XTE � 0, we have
X11 = XT

11 � 0 andX12 = 0. Hence GARE1 becomes

A
T

1X11 +X11A1 + C1 �B
T

1 X11 � bX21

T

� C1 �B
T

1 X11 � bX21 = 0

X21 + (1� bX22) C1 �B
T

1 X11 � bX21 = 0

2X22 + (1� bX22)
2 = 0: (15)

Whenb = 0, a solution is given by

X =

0:2055 0:1534 0

0:1534 0:1288 0

�0:6411 �0:7178 �0:5

which is an admissible solution to GARE1 since

E; A �B D +D
T
�1

C �B
T
X

=

1 0 0

0 1 0

0 0 0

;

�1:6411 �0:7178 �1

�0:6411 �2:7178 �1

0 0 1

is regular, stable (with finite poles ats1 = �1:3134 and
s2 = �3:0455) and impulse-free. That is, an admissible solu-
tion of GARE1 has been obtained. However, whenb = 1, (15)
becomesX2

22 + 1 = 0, which has no real solution. Hence, from
Theorem 1,G(s) is ESPR whenb = 0, and not ESPR whenb = 1.

Now consider the solution of GARI whenb = 0 andb = 1 respec-
tively. Whenb = 0, one solution of GARI is

X =

1:4926 �0:0281 0

�0:0281 0:8443 0

0:3333 0:3333 �1:3986

:

From Theorem 2,G(s) is ESPR. Notice that a necessary condition for
X to be a solution of GARI is

2X22 + (1� bX22)
2
< 0

if X has the form of (14). It can be easily seen that whenb = 1, this
inequality has no solution. Hence, from Theorem 2,G(s) is not ESPR.

VI. CONCLUSIONS

We have derived necessary and sufficient conditions for descriptor
systems to be admissible and ESPR. The conditions are given based
on generalized algebraic Riccati inequalities for continuous- and dis-
crete-time descriptor systems. For the continuous-time case, we also
give the necessary and sufficient condition based on a generalized Ric-
cati equation under the condition of regularity.
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