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It is very interesting and important to investigate the relations among
curvatures, volumes and topological structures on Riemannian manifolds
of positive curvature. The following theorems are well known.

THEOREM A. (Bishop-Crittenden [5]) Let M be an n-dimensίonal
complete Riemannian manifold with sectional curvature K ^ 1. Then we
have

vol M ^ vol Sn ,

and equality holds only if M is isometric to a sphere Sn with constant
curvature 1, where we denote the volume of M by vol M.

THEOREM B. (Heim [7]) Let M be an n-dίmensional complete Rie-
mannian manifold with sectional curvature K^>1 and vol M > (1/2) vol Sn.
Then M is a homotopical sphere.

In this paper we give a simple proof of Theorem B and prove the
following theorem.

THEOREM C. Let M be an n-dimensional complete Riemannian man-
ifold with sectional curvature K^l and vol M ^ (1/2) vol Sn. Then M is
a homotopical sphere or isometric to the real protective space with constant
curvature 1.

1. Preliminaries.
(a) Volumes (cf. Berger-Gauduchon-Mazet [4]). Let I be a com-

pact Riemannian manifold, g be its Riemannian metric and vg be the
canonical measure on M. For a point me Mlet vm be the volume element
of the tangent space Mm to M at m, expm be the exponential mapping of
Mm onto M and let Um be the maximal open neighborhood around the
origin of Mm which expm maps diffeomorphically onto its image. ; We call
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Um the injective neighborhood of m. Let θ(x) be the Jacobian determinant
of expa. for any point xe Um. Then we have

vόlM =[

We use Jacobi fields to calculate volume. Let Uε(m) be a normal neighbor-
hood around m with radius ε > 0. For 0 < r < ε and a unit vector u on
M we give the expression of θ(τv). Let cu be the geodesic starting from
m, with the initial direction u. Let {y2, •• 9yn] be an orthonormal basis
of orthogonal complement uL of u. Let Y^s) be the Jacobi field along cu

such that Yi(0) = 0, F (0) = W^ T h e n we have

(2) 0(ru) = det « Yi(r), ^(r))) 1 ' 2 , i, i - 2, . . . , n

where < , > is the inner product on M.

(b) Rauch's comparison theorem (cf. [6]). For a point m e M l e t Gm

be the set of all 2-dimensional linear subspaces of Mm and we put GM =
Umevif Gm. If c: [0, I] —> M is a differentiate curve, we denote by Gc the
set of all 2-dimensional linear subspaces of Mcit) each of which contains
a tangent vector to c. For any σ e GM let (u, v) be a basis of σ. Then
we denote the sectional curvature by Kσ = UL(M, V).

THEOREM. (Rauch) Lei Sn be an n-dίmensional sphere with constant
curvature 1 and M be an n-dimensional Riemannίan manifold (n^2).
Let c: [0, I] —* M and c; [0, I] —> S% δe geodesies. Let Y (resp. Ϋ) be the
Jacobi field along c (resp. c) such that

Γ(0) = ?(0) = 0 ,

where Y' is the covariant derivative with respect to the direction c and
|| 11 is the norm. Furthermore we assume Kσ ^ 1 for all t e [0, I] and
σ e Gc{t), and c has no conjugate points on the interval (0, I). Under these
conditions we have the inequality

\\Y(t)\\^\\Ϋ(t)\\

for all te[0, I].
If we have | |F( ί o ) | | = 11 Ϋ(to)\\ Φ 0 for some toe (0, I], the equality

K(Y(t), έ(t)) = 1 holds good for all t e [0, t0].

(c) Diameter. Let d(M) be the diameter of M. Then the following
two theorems are well known.
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THEOREM. (Myers) Let M be a complete Riemannian manifold with
sectional curvature K ^ k > 0, k = constant. Then M is compact and
d(M) ^ π/VΎ holds good.

THEOREM. (Berger [3]) Let M be a complete Riemannian manifold
with sectional curvature K ^ k > 0, k = constant. If d(M) is larger than
π/2λ/ k , then M is a homotopical sphere.

We give a new proof of Berger's theorem in the appendix.

2. Proof of Theorem B. We assume that M is not a homotopical
sphere. By Berger's theorem we have d(M) S π/2. Let m be an arbitrary
point of M and Um be the injective neighborhood of m. Then Um is con-
tained in the open ball with center 0 in Mm and radius π/2. By using
(1), (2), Rauch's comparison theorem and a property of Gramian determinant
we have

S i
θ'Vm^ — vol Sn .

Um 2

This contradicts our assumption: vol M > (1/2) vol Sn. Hence I is a
homotopical sphere.

3. Proof of Theorem C. We assume that M is not a homotopical
sphere. By Theorem B and Berger's theorem we have vol M = (1/2) vol Sn

and d(M) ^ π/2. Let m be an arbitrary point of M and Um be the injective
neighborhood of m. Then Um is contained in the open ball with center 0
in Mm and radius π/2. By using (1), (2), Rauch's comparison theorem and
a property of Gramian determinant we have

vol M < — vol Sn .
~ 2

On the other hand we have vol M = (1/2) vol Sn. Hence it follows
from (1), (2) and Rauch's comparison theorem that Um coincides with the
open ball with center 0 and radius π/2, and for any geodesic arc c: [0, π/2] —>
M starting from m we have Kσ = 1 for all σ e Gc. In particular we have
Kσ — 1 for all σ e Gm. So M is a space of constant curvature 1. Since
vol M is equal to (1/2) vol Sn, M is isometric to a real projective space with
constant curvature 1.

4. Appendix: Proof of Berger's theorem. The second author gave
previously a new proof of Berger's theorem in Japanese [9], which we
reproduce here. We divide the proof into several steps.

(i) M is simply connected.
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PROOF OF (i). We assume that M is not simply connected. Let ikf—>
M be the universal covering manifold and M have the natural Riemannian
metric induced by the Riemannian metric on M. Then we have the
inequalities K ^ k > 0 for all σ e Cfe. Let p and q be two points on M
such that d{p, q) = d(M). Since M is not simply connected, the set π~\p)
contains at least two different points pλ and p2. Let G be a shortest
geodesic arc joining px to p2. By Myer's theorem we have the inequality
L(G) ^ π/Vlc, where L(G) is the length of G. Then the curve G = π(G)
is a geodesic loop starting at p and satisfies the inequalities L(G) — L(G) ^
TΓ/T/T. We denote G by c: [0, l]-+M,l = L(G), c(0) = c(ί) = p. From
now on we mean the parameter of geodesic by the arc length measured
from its initial point. Because of d(p, q) — d(M) there exists a shortest
geodesic α: [0, m] —•* M which joins p to q and satisfies α(0) = p, a(m) = g
and <c(0), ά(0)> ^ 0 (c.f [2], [8]), where ά(0) is the unit tangent vector to
the curve a at α(0). Let r0 be a nearest point on G to q, i.e, d(q, r0) =
d(q,G). Then we may assume r o ^ i ) , because of d(p, g) = d{M). We
denote a shortest geodesic between r0 and q by 6: [0, M] —> M, 6(0) = φ 0 ) =
r0, 6(%) = g. Then we have <6(0), c(s0)) = 0 and u ^ πβVk , (cf. [1]). Two
points p and r0 divide G into two subarcs. We denote the shorter one
by Gi For instance we assume that Gx is c: [0, s0] —* -M. Let 0 = sz <
sz_i < < sί < s0 be a subdivision such that each subarc c \ [s{, s^J is
a shortest geodesic. We put φ*) = r< (i = 0,1, , i). In particular we
have rz = p. Now we construct geodesic triangles Δqrorl9 Δqrfa, ,
Δqfi^fi on a 2-dimensional sphere S2(k) with constant curvature &, each
of which is isometric to geodesic triangles Δqrorl9 Δqrγr2, , Δqrι_1rι on M:
the corresponding sides of the corresponding triangles have same length
respectively. And we attach geodesic triangles Δqrorl9 Δqrιr29 , Δqrx^ι
on S2(k) and obtain a geodesic polygon qror1 rι__ιrι on S2(k). We may
consider the point q as the north pole of S2(k). By using Toponogov's
comparison theorem (c.f [6]) we have the following relations of the
angles:

( a ) ^C^f of l ^ *>C #?Vi = 7Γ/2,

(b) <^ f of if 2 — ^ f of l ί + *>C ̂ f if 2 = *>C τ0Vιq + <^ qTιΓ2 = TΓ, - ^ f if 2 f 3 ^

π, •• ,<f,_2fι_1fI ^ π,
(c) the length of the geodesic polygon rorι f, = L(Gi) ^ π/2τ/T.

By the relations (a), (b) and (c) we can see that the point rι is contained
in the_northern hemisphere of S2(k). Hence we have d(p, q) = d(q, f,) ^
τr/2i/T. This contradicts our assumption d(p, g) = d(M) > πβVk. M
is simply connected.

(ii) For two points r and s on M let Ωr>s be the set of all piecewise
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differentiable curves joining r to s. Let r and s be two points on M such
that ΩTiS be non-degenerate. If M is not a homotopical sphere, Ωrt8 contains
a geodesic with length I, π/Va ^ I ̂  π/V k , where a = Maxσe(?i(f Kσ.

PROOF OF (ii). If ΩriS contains only geodesies with length I, I > π/V k
or I < π/V a, then their indices are not less than n — 1 or equal to 0.
By the fundamental theorem of Morse theory we have 7Γi(Ωrt8) = 0,1 ^
i ^ n — 2. On the other hand, by homotopy exact sequence of path space
we have π^M) = π ^ β ^ ) . Hence we have π<(Af) = 0, 2 ^ i ^ n — 1.
Since M is simply connected, we have τc{(M) = 0, l ^ ί ^ w — 1. Hence
M i s a homotopical sphere. This contradicts our assumption. Hence £?r,s

contains a geodesic with length ϊ, π/i/ α ^ ϊ ^ τr/τ/ &.

(iii) If M is not a homotopical sphere, we have a geodesic loop at p
with length I ̂  π/i/ k for all points pe M.

PROOF OF (iii). The set {qeM\Ωp,q is non-degenerate} is dense in M.
Let {gi}i=i,2,... be a sequence of points on M such that each Ωp,q. is non-
degenerate and the sequence (^)ί=i,2,... converges to the point p. By (ii) we
have a geodesic c{ of ΩPtq., i = 1, 2, whose length I satisfies π/τ/ a ^ £ ̂
π\V k. We can choose a converging subsequence of {cj. The limit geo-
desic c is a geodesic loop at p with length i, π/i/ α ^ £ ig π/l/ fc.

(iv) Proof of Berger's theorem.

We assume that M is not a homotopical sphere. Let p and g be two
points on M such that d(p, q) = d(M). By (iii) we have a geodesic loop
at p with length I, π/l/a ^ £ ̂  π/V k. By the same argument as (i),
we have d(M) g π/2)/Ίc. This contradicts our assumption. Hence M
is a homotopical sphere.
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