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Abstract

The positivity-preserving property for the inverse of the biharmonic operator
under Steklov boundary conditions is studied. It is shown that this property is quite
sensitive to the parameter involved in the boundary condition. Moreover, positivity
of the Steklov boundary value problem is linked with positivity under boundary
conditions of Navier and Dirichlet type.

1. Introduction

Let�be a bounded and smooth domain in R
n (n � 2) and consider the boundary

value problem {
�2u = f in �,
u = 0 and �u = α ∂u

∂ν
on ∂�,

(1)

where α ∈ C(∂�), f ∈ L2(�) and ν is the outside normal (we will also use
uν = ∂u

∂ν
). As usual a domain means an open and connected subset. Elliptic pro-

blems with parameters in the boundary conditions are called Steklov problems from
their first appearance in [29]. In the case of the biharmonic operator, these conditions
were first considered by Kuttler & Sigillito [20] and Payne [25], who studied
the isoperimetric properties of the first (constant) eigenvalue δ1, see its variational
characterization in formula (21) below. As pointed out by Kuttler [18, 19], δ1 is
the sharp constant for a priori estimates for the (second-order) Laplace equation
under nonhomogeneous Dirichlet boundary conditions. More recently, the whole
spectrum of the biharmonic Steklov problem was studied in [11]. We also refer to
[4, 5] for some related nonlinear problems and for a first attempt to describe the
positivity preserving property for (1). We are here interested precisely in which
conditions on α guarantee that (1) is positivity preserving, meaning f � 0 implies
that u � 0.
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A model from elasticity. When � is a planar domain, problem (1) appears in
the description of the deformation of a linear elastic hinged or supported plate. Its
energy is defined by

E (u;�) =
∫
�

(
1
2 (�u)2 + (1 − σ)

(
u2

xy − uxx uyy

)
+ f u

)
dx . (2)

Here f is the exterior force and u the bending of the plate; σ is the Poisson ratio, see
for example [30, Chapter VI] or [10]. The Poisson ratio is defined by σ = λ

2(λ+µ)
with constants λ,µ depending on the material. Usually λ � 0 and µ > 0 hold true
and hence 0 � σ < 1

2 . Some exotic materials have a negative Poisson ratio (see
[21]). For metals the value σ lies around 0.3 (see [22, p.105]). For rubber µ � λ

and σ is near 0.5.
Fixing the position of the plate on the boundary leads to the Hilbert space

H2(�)∩ H1
0 (�). Minimizing the energy E over this space gives the Euler equation∫

�

(
�u�v + (1 − σ)

(
2uxyvxy − uxxvyy − uyyvxx

) + f v
)

dx = 0

for all v ∈ H2(�)∩ H1
0 (�). Assuming u ∈ H4(�) we may integrate by parts and

find, setting ν = (ν1, ν2) the outward normal and using v = 0 on ∂�, that

0 =
∫
�

(
�2u − f

)
v dx+

∫
∂�

(
�u + (1 − σ)

(
2uxyν1ν2 − uxxν

2
2 − uyyν

2
1

))
vν ds.

Note that the term (1 − σ)
(

u2
xy − uxx uyy

)
in (2) has no influence on the differential

equation but does change one of the boundary conditions on none-straight boundary
parts. Indeed one obtains�u + (1 − σ)

(
2uxyν1ν2 − uxxν

2
2 − uyyν

2
1

) = 0 on ∂�.
Let us recall that for u = 0 on ∂� it holds that

�u + (1 − σ)
(

2uxyν1ν2 − uxxν
2
2 − uyyν

2
1

)

= σ�u + (1 − σ)
(

2uxyν1ν2 + uxxν
2
1 + uyyν

2
2

)
= σ�u + (1 − σ) uνν = uνν + σκuν = �u − (1 − σ) κuν.

Here κ is the curvature of the boundary measured from inside, that is, positive
where the boundary of the domain is convex. This implies that the physically
relevant boundary value problem reads{

�2u = f in �,

u = 0 and �u = (1 − σ) κuν on ∂�.
(3)

A system approach. The fourth-order boundary vale problem in (1) can be rewrit-
ten as a system of two coupled second-order equations:{−�v = f in �,

v = −αuν on ∂�,
and

{−�u = v in �,
u = 0 on ∂�.

(4)

For α � 0 this system shares the properties of a cooperative system (see [23])
although here part of the coupling occurs through the boundary condition. This will
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allow us to use Krein–Rutman-type arguments to find a positive first “eigenvalue”
δ1 > 0 such that if 0 � α < δ1 then f > 0 implies u, v > 0. The upper bound will
be sharp.

For α � 0 the system is generically not positivity preserving but nevertheless
we will show that there is δc < 0 such that for δc � α < δ1 an f > 0 implies
that u > 0 (but in general not v > 0). For the plate problem α = (1 − σ)κ which
is negative on concave boundary parts. Since δc < 0 it means that there may exist
nonconvex domains for which upward exterior forces f still guarantee positivity
of the bending u for the hinged plate described by (3). The proof of δc < 0 uses
pointwise estimates for the Green function which need sufficiently smooth domains.
For nonsmooth domains not only uν might not be well-defined but if the domain
has a reentrant corner then by [24] one knows that the H1(�) × H1(�)-solution
of a system not necessarily coincides with the H2(�)-solution for the original
fourth-order problem.

Set-up of the paper. In Section 2 the main results will be stated. The more elaborate
proofs are presented in the following sections. These proofs combine tools from
the Hilbert setting in Section 4, with tools in the Schauder setting in Section 5. The
intricate estimates of the kernels involved, which are necessary for the Schauder
setting, can be found in Section 6.

2. Main results

Let � ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C2 and consider the

space

H(�) := H2(�) ∩ H1
0 (�).

Definition 2.1. For f ∈ L2(�) we say that u is an H-solution of (1) if u ∈ H(�)
and ∫

�

�u�v dx −
∫
∂�

α uνvν dσ =
∫
�

f v dx for all v ∈ H(�). (5)

Note that H-solutions are well defined for α ∈ C(∂�). For u ∈ H4(�) one may
integrate by parts to find indeed that an H-solution of (5) satisfies the boundary
value problem in (1).

Throughout the paper, we will use the following

Notation 2.2. Let φ be a (continuous) function defined on the domain D.

• φ > 0 means φ(x) > 0 for all x ∈ D.
• φ � 0 means φ(x) < 0 for some x ∈ D.
• φ � 0 means φ(x) � 0 for all x ∈ D and φ �= 0.
• φ+ = max(φ, 0) and φ− = max(−φ, 0).

For φ ∈ L p(D) these estimates hold except for the usual almost everywhere. A
function φ is described as being positive if φ � 0. We say φ > ψ(�,�), whenever
φ − ψ > 0(�,�) holds.
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Our first statement describes existence, uniqueness and positivity of an
H-solution. A crucial role is played by a “first eigenvalue”:

Theorem 2.3. Let� ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C2. Then there

are δ1 := δ1(�) ∈ (0,∞) and δc := δc(�) ∈ [−∞, 0) such that the following
holds for a function α ∈ C(∂�).

1. If α � δ1 and if 0 � f ∈ L2(�) then (1) has no positive H-solution.
2. If α = δ1 then there exists a positive eigenfunction, that is, problem (1) admits

a nontrivial H-solution u1 with u1 > 0 in� for f = 0. Moreover, the function
u1 is, up to multiples, the unique solution of (1) with f = 0 and α = δ1.

3. If α � δ1 then for any f ∈ L2(�) problem (1) admits a unique H-solution u.
(a) If δc � α � δ1 then 0 � f ∈ L2(�) implies u � 0 in �.
(b) If δc < α � δ1 then 0 � f ∈ L2(�) implies u > 0 in �.
(c) If α < δc then there are 0 � f ∈ L2(�) with 0 � u.

Proof. The claim follows by taking β = 1 in Theorem 4.1. ��
The result described in Theorem 2.3 quite closely resembles the structure for the
resolvent of the biharmonic operator under Navier boundary conditions or for the
biharmonic operator under Dirichlet boundary conditions in case the domain is a
ball, see [15]. For all these problems the scheme is as follows:

∃ f > 0 with u � 0 ∀ f > 0 : ∃u and u ≥ 0 ∀ f > 0 if ∃u then u � 0

0δc δ1 α −→
For Navier and Dirichlet boundary conditions it is known that the α for which

f � 0 implies u � 0 is in fact an interval; this result is similar to that which we
have obtained for (1).

Theorem 2.4. Let � ⊂ R
n (n � 2) be a smooth bounded domain and let

αi ∈ C(∂�) with i = 1, 2. Suppose that α1 � 0 � α2 are such that both for
α = α1 and α = α2 we have the following: for all f ∈ L2(�) there exists an
H-solution u = ui (i = 1, 2) for (1), and moreover,

f � 0 implies u � 0. (6)

Then for any α ∈ C(∂�) satisfying α1 � α � α2, and for each f ∈ L2(�), a
unique H-solution of (1) exists and (6) holds true.

Proof. The result follows combining Lemma 5.11 and Theorem 4.1. ��
A crucial difference with the biharmonic boundary value problems mentioned above
however is that in those cases it holds that δc(�) ∈ (−∞, 0) while for problem (1)
it might indeed happen that δc(�) = −∞. Nevertheless, for general domains one
cannot expect to have the positivity-preserving property for any negative α. This is
stated in the next results which show that the limit situation where δc(�) = −∞ is
closely related with the positivity preserving property for the biharmonic Dirichlet
problem {

�2u = f � 0 in �,
u = uν = 0 on ∂�.

(7)

To this end, let us recall that the positivity preserving property does not hold in
general domains � ⊂ R

n for (7). The unique solution u ∈ H2
0 (�) of (7) may not
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be positive if f � 0 and� have particular shapes, see for example [7, 12, 27]: these
domains� fail to have the positivity preserving property under Dirichlet boundary
conditions. On the other hand, the problem (7) is positivity preserving when � is
a ball in any dimension [6], when � is some limaçon [9] or when � is a (planar)
small perturbation of a disk [14, 26]. Note that (7) corresponds to the limit case
α = −∞.

Our next statement establishes that positivity may be transmitted from the
Steklov problem to the Dirichlet problem:

Theorem 2.5. Let � ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C2. If for

every m ∈ N and 0 � f ∈ L2(�) the H-solution of (1) with α = −m is positive,
then for every 0 � f ∈ L2(�) the solution u ∈ H2

0 (�) of (7) satisfies u � 0.

Proof. See Section 8. ��
For this result we can only show a partial converse. Instead of just assuming positi-
vity of the solution of (7) we need to assume that this solution is strongly positive,
meaning that the solution lies strictly inside the appropriate positive cone. For a
precise statement we first define the distance to the boundary:

d(x) := min
y∈∂� |x − y| (8)

and the kernel Q(x, y) for problem (7), namely

u(x) =
∫
�

Q(x, y) f (y) dy

solves (7). Then, we have

Theorem 2.6. Let � ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C4,γ . If

Q(x, y) � c d(x)2d(y)2, (9)

then, for all α ∈ C(∂�) with α � δ1 and 0 � f ∈ C(�), the H-solution u of (1)
satisfies u > 0 in �.

Proof. See Section 9. ��
Remark 2.7. When � is a ball, the explicit formula of Boggio in [6] directly
shows (9), which is even sharp for n � 3. The positivity preserving property for
the H-solution in a ball can be found in Corollary 2.9.

We end this section with some explicit bounds for α, together with a discussion
on what happens when α − δ1 changes sign. On any smooth bounded domain �
we may fix

h ∈ C(�) ∩ C2(�) such that �h = 0 in� and h � 0 on ∂�, (10)

to find h > 0 in �, and solve{−�ψ = h in �,
ψ = 0 on ∂�.

(11)

Then by the maximum principle we have ψ > 0 in � and by Hopf’s boundary
point lemma we find that ψν < 0 on ∂�. We have
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Theorem 2.8. Let � ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C2. Let h

and ψ be as in (10)–(11) and let δc be as in Theorem 2.3. Let α ∈ C(∂�) satisfy
α �

h
−ψν and let 0 � f ∈ L2(�). Then there exists a unique H-solution u of (1)

and moreover,

1. if δc � α, then u � 0 in �;
2. if δc < α, then u > 0 in �.

Proof. So β := h
−ψν satisfies 0 � β ∈ C(∂�). Moreover, �2ψ = 0 in � and

�ψ − βψν = −h + h = 0 = ψ on ∂�. Then we find by the second item of
Theorem 4.1 that δ1,β = 1 and u1,β = cψ for some c > 0. Here the notation is
borrowed from that theorem. We now apply twice the third item of Theorem 4.1:
β as above gives the upper bound for α, and β = 1 gives the lower bound δc, see
also Theorems 2.3 and 2.4. ��

In the unit ball of R
n , the following holds:

Corollary 2.9. Let B be the unit ball in R
n (n � 2). Then, for all 0 � f ∈ L2(B)

and all α ∈ C(∂B) such that α � n, the H-solution u of (1) satisfies u > 0 in �.

Proof. By [4] we know that δ1 = n, where δ1 is as in Theorem 2.3. We may also
use Theorem 2.8 with ψ(x) = 1 − |x |2 and h(x) = 2n. For the absence of a bound
from below one notes that the estimates of [6] imply that (9) holds. Therefore,
Theorem 2.6 applies. ��
Remark 2.10. In Theorem 2.3 the bound δ1 is absolute when considering constants.
However, as will be seen in Theorem 4.1, positivity (or existence) is not necessarily
lost when α(x) > δ1 just for some x ∈ ∂� and α(x) < δ1 for some other. Indeed,
some compensation is possible as can be seen from the following example. For

� = B, we may take in (10)–(11) the function ψ(x) = (1 + 2
n + ε + x1)

1−|x |2
2n

where ε > 0 so that h(x) = (1 + 2
n )(1 + x1)+ ε > 0. Put

β(x) := − h(x)

ψν(x)
= n + 2x1

1 + 2
n + ε + x1

for all x ∈ ∂B.

By Theorems 2.6–2.8, we infer that for all α ∈ C(∂B) with α � β the H-solution
u of (1) is positive for 0 � f ∈ L2(B). Notice that on part of the boundary β > n.

3. Regularity and further remarks

• We start this section by addressing the question when an H-solution u is in fact
classical. The Steklov boundary conditions in (1) satisfy the complementing
conditions, see [4]. Therefore, standard elliptic regularity results apply directly
to the fourth-order problem (1). That is, if ∂� ∈ C4 and α ∈ C2(∂�), then the
Agmon et al. [2] type estimates give us that u ∈ W 4,p(�) for all p ∈ (1,∞)

and that for some C = Cα,�,p > 0:

‖u‖W 4,p(�) �
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� C

(
‖u‖L p(�) +

∥∥∥�2u
∥∥∥

L p(�)
+ ‖u‖W 4−1/p,p(∂�) + ‖�u − αuν‖W 2−1/p,p(∂�)

)

(12)

whenever the right-hand side of (12) is bounded. For an H-solution u one may
formally integrate by parts to find

∫
�

�2u v dx +
∫
∂�

(�u − α uν) vν dσ =
∫
�

f v dx for all v ∈ H(�). (13)

Here
∫
�
�2u v dx denotes the pairing between�2u in the dual “negative” Sobolev

space H(�)′ and v ∈ H(�). Similarly,
∫
∂�
�u vν dσ denotes the pairing between

�u|∂� ∈ H−1/2(∂�) and vν ∈ H1/2(∂�), these properties of �u|∂� and vν
following from u, v ∈ H(�). Since (13) holds for all v ∈ H(�)we find�2u = f ∈
L2(�) and�u = αuν ∈ H1/2(�). So, we have u = 0 and�u−αuν = 0 on ∂� and
(12) gives ‖u‖H4(�) � C(‖u‖L2(�) + ‖ f ‖L2(�)). If f ∈ L p(�) with p ∈ (1,∞)

we may bootstrap the solution to u ∈ W 4,p(�) without extra conditions. However,
if we start with f ∈ Cγ (�) and want to get u ∈ C4,γ (�) we need ∂� ∈ C4,γ and
α ∈ C2,γ (∂�).

• As already mentioned, Theorem 2.6 is not the exact converse of Theorem 2.5.
Moreover, the sufficient condition (9) may not be easily verified. We give here
a criterion which enables us to verify this condition. Consider the problem

{
�2u = λu + f in �,
u = uν = 0 on ∂�.

(14)

The criterion directly follows from the following statement:

Lemma 3.1 ([17, Lemma 2]). Let � ⊂ R
n (n � 2) be a bounded domain with

∂� ∈ C4,γ . If (14) is positivity preserving for some λ < 0, then for every 0 �

f ∈ C(�) there exists c f > 0 such that the solution u of (7) satisfies

u(x) � c f d(x)2 for all x ∈ �.

Proof. In [17, Lemma 2] the result has been proven for the first eigenfunction but
one may notice that a similar result holds for all right-hand sides 0 � f ∈ C(�). ��

• Next, we give an alternative proof of Corollary 2.9 in a smooth setting that
makes no use of the machinery of the present paper. It highlights the link bet-
ween the fourth-order problem (1) and a related second-order Steklov problem,
see (19) below.

Proposition 3.2. Let B be the unit ball in R
n (n � 2). If u ∈ C4(B), 0 � f ∈ C(B)

and α ∈ C(∂B) with α � n satisfy (1), then u > 0 in B.
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Proof. Inspired by [5], we consider the auxiliary (smooth) function φ defined by

φ(x) = (|x |2 − 1)�u(x)− 4x · ∇u(x)− 2(n − 4)u(x), x ∈ B.

Hence, since x = ν and u = 0 on ∂B, we have

φ = −4uν on ∂B. (15)

Moreover, for x ∈ B we have

∇φ = (2�u)x + (|x |2 − 1)∇�u + 2(2 − n)∇u − 4〈D2u, x〉, (16)

−�φ = (1 − |x |2) f (x) � 0, (17)

where D2u denotes the Hessian matrix of u. By (16) we find

φν = 2�u + 2(2 − n)uν − 4〈D2u, ν〉 · ν on ∂B.

Now, since 〈D2u, ν〉 · ν = uνν and by recalling that u = 0 on ∂B and using the
expression of�u on the boundary, the previous equation readsφν = −2�u+2nuν .
Finally, taking into account the second boundary condition in (1), we obtain

φν = 2(n − α)uν on ∂B. (18)

So combining (15), (17), and (18) we find that φ satisfies the boundary value
problem

{−�φ = (1 − |x |2) f � 0 in B,
φν + 1

2 (n − α)φ = 0 on ∂B.
(19)

As α � n, by the maximum principle we deduce that φ > 0 in B and hence by
(15) that uν � 0 on ∂B. By the positivity preserving property in B under Dirichlet
boundary conditions of [6], it follows that also �2u � 0 in B with u = 0 and
−uν � 0 on ∂B implies that u > 0 in B. ��

• We conclude this section with an open problem.

Problem. The basic tool in the proof of Theorem 2.6 is Lemma 9.1 below. It
states that the solution of the Dirichlet problem (7) is smaller than the solution of
the corresponding Navier problem [that is, problem (1) with d = 0]. This result
is obtained under the crucial assumption that Dirichlet boundary conditions are
positivity preserving for the biharmonic operator. We conjecture that Lemma 9.1
remains true without this assumption.
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4. Proof of Theorem 2.3

In this section we prove a slightly more general version than Theorem 2.3:

Theorem 4.1. Let � ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C2 and let

0 � β ∈ C(∂�). Then there are δ1,β := δ1,β(�) ∈ (0,∞) and δc,β := δc,β(�) ∈
[−∞, 0) such that the following holds for a function α ∈ C(∂�).

1. If α � δ1,ββ and if 0 � f ∈ L2(�) then (1) has no positive H-solution.
2. If α = δ1,ββ then there exists a positive eigenfunction, that is, problem (1) with

f = 0 admits an H-solution u1,β that satisfies u1,β > 0 and −�u1,β > 0 in
�, ∂

∂ν
u1,β < 0 on ∂�. This eigenfunction u1,β is unique in the following ways.

If u is an H-solution of (1) for α = δβ and f = 0 and
(a) if δ = δ1,β , then u = cu1,β for some c ∈ R;
(b) if u � 0, then δ = δ1,β and u = cu1,β for some c ∈ R+.

3. If α � δ1,ββ, then for any f ∈ L2(�) problem (1) admits a unique H-solution
u.
(a) If δc,ββ � α � δ1,ββ and if 0 � f ∈ L2(�) then u � 0.
(b) If δc,ββ < α � δ1,ββ and if 0 � f ∈ L2(�) then for some c f > 0 it

holds that u � c f d with d as in (8). Furthermore, if α(x0) < 0 for some
x0 ∈ ∂� then −�u � 0 in �, whereas if α � 0 then 0 � f implies
−�u � 0 in �.

(c) If α < δc,ββ then there are 0 � f ∈ L2(�) with 0 � u.

Remark 4.2. In the theorem we compare α with multiples of a fixed function β.
Of course one may read the theorem both with β = βa and with β = βb, where βa ,
βb are two different functions. As a consequence, one will find that the statement
in item 3(a) may start as “If δc,βaβa � α � δ1,βbβb then ... ”.

Remark 4.3. We expect that, under the assumption in 3.(a), it will hold that u > 0
in �, and that for generic α and ∂� only the strong positivity in the sense that
u > cd will only break down at an isolated point. This breakdown is expected
to occur for a Dirac-δ type source term. If it breaks down at an isolated point by
such an isolated source term then by continuity arguments it will follow that for
each fixed 0 � f ∈ C(�) or L2(�) a number δ f

c,β < δc,β will exist such that the

corresponding solutions u f,δ,β are strictly positive in � for all δ > δ
f

c,β .

The proof of Theorem 4.1 follows by combining the lemmas and the proposition
below, as described at the end of the present section.

We assume in the sequel that � ⊂ R
n is a bounded domain with ∂� ∈ C2 and

α ∈ C(∂�). We fix β ∈ C(∂�) such that β � 0 and set

Jβ(u) =
(∫

�

|�u|2 dx

) (∫
∂�

βu2
ν dσ

)−1

for
∫
∂�

βu2
ν dσ �= 0 (20)

and Jβ(u) = ∞ otherwise.
The first statement of the next lemma in the case that β = 1 can be found in [4,

Theorem 1].
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Lemma 4.4. Let 0 � β ∈ C(∂�). The minimum

δ1,β = δ1,β(�) := inf
u∈H(�)

Jβ(u) (21)

is achieved and hence δ1,β > 0. Moreover, the following holds:

1. The minimizer u1,β of (21) is unique up to multiplication by constants. If we fix
u1,β such that u1,β(x0) = 1 for some x0 ∈ �, then −�u1,β � 0 in � so that
∂
∂ν

u1,β < 0 on ∂� and u1,β � cd in �;
2. If β1 � β2 are as above, then δ1,β1 > δ1,β2 .

Proof. For every u ∈ H(�) the functional in (20) is strictly positive, possibly ∞.
Since the linear map H2(�) → L2(∂�) defined by u �→ uν is compact, there
exists a minimizer and δ1,β > 0.

Let u1 ∈ H(�) be a minimizer for (21) and let ũ1 be the unique solution in
H(�) of −�ũ1 = |�u1|. Then, by the maximum principle we infer that |u1| � ũ1
in � and | ∂

∂ν
u1| � | ∂

∂ν
ũ1| on ∂�. If �u1 changes sign then these inequalities are

strict and imply Jβ(u1) > Jβ(ũ1). So �u1 is of fixed sign, say −�u1 � 0, so that
the maximum principle implies ∂

∂ν
u1 < 0 on ∂� and u1 � cd in �. Similarly, if

u1 and u2 are two minimizers which are not multiples of each other then there is a
linear combination which is a sign changing minimizer and one proceeds as above
to find a contradiction.

Finally, let u1 be the minimizer for β1 and u2 the one for β2. Then, since(
∂
∂ν

u1
)2
> 0 on ∂�, we find δ1,β1 = Jβ1(u1) > Jβ2(u1) � Jβ2(u2) = δ1,β2 . ��

Lemma 4.5. Assume that α � δ1,ββ and 0 � f ∈ L2(�). If there exists an
H-solution u of (1) it cannot be positive.

Proof. Suppose that u is a positive solution. Hence, uν � 0 on ∂�. Let u1,β be as
in Lemma 4.4. By taking v = u1,β in (5) one obtains

0 <
∫
�

f u1,β dx =
∫
�

�u�u1,β dx −
∫
∂�

α uν
(
u1,β

)
ν

dσ

�
∫
�

�u�u1,β dx −
∫
∂�

δ1,β β uν
(
u1,β

)
ν

dσ = 0,

a contradiction. The last equality follows by the fact that u1,β minimizes (21). ��
Lemma 4.6. Assume that α � δ1,ββ. Then for every f ∈ L2(�) the system in (1)
admits a unique H-solution.

Proof. On the space H(�) we define the energy functional

I (u) := 1
2

∫
�

|�u|2 dx − 1
2

∫
∂�

α u2
ν dσ −

∫
�

f u dx u ∈ H(�). (22)

Critical points of I are H-solutions of (1) in the sense of Definition 2.1. We will
show that for α � δ1,ββ the functional I has a unique critical point.
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If α < δ1,ββ one sets

ε := min
{
δ1,ββ(x)− α(x); x ∈ ∂�}

max
{
δ1,ββ(x); x ∈ ∂�} > 0, (23)

and finds that α � (1−ε)δ1,ββ. By the definition of δ1,β we have for all u ∈ H(�)
∫
�

|�u|2 dx −
∫
∂�

αu2
ν dσ

� ε

∫
�

|�u|2 dx + (1 − ε)

(∫
�

|�u|2 dx −
∫
∂�

δ1,ββu2
ν dσ

)

� ε

∫
�

|�u|2 dx, (24)

so that the functional I is coercive. Since it is also strictly convex, the functional I
admits a unique critical point which is its global minimum over H(�).

In order to deal with the case that α+
� δ1,ββ, but α+(x) = δ1,ββ(x) for some

x ∈ ∂�, we set

β̃ := 1

2

(
β + δ−1

1,βα
+)
.

Since 0 � β̃ � β we find by Lemma 4.4 that δ1,β̃ > δ1,β . Instead of (23) we set

ε := 1 − δ1,β/δ1,β̃ > 0,

find for x ∈ ∂� that α � α+ = δ1,β(2β̃−β) � δ1,β β̃ = (1−ε)δ1,β̃ β̃ and proceed

by replacing all β in (24) with β̃.
If α+ = δ1,ββ and α−

� 0, then one may not proceed as directly as before.
However, instead of the functional in (20), one may use

Jα
−

β (u) =
(∫

�

|�u|2 dx +
∫
∂�

α−u2
ν dσ

) (∫
∂�

βu2
ν dσ

)−1

.

Then, defining δα
−

1,β for Jα
−

β as in (21), this minimum is assumed, say, by uα
−

1,β . Since

δα
−

1,β = Jα
−

β (uα
−

1,β) � Jβ(u
α−
1,β) � Jβ(u1,β) = δ1,β ,

with the last inequality strict if uα
−

1,β �= c u1,β and with the first inequality strict if

uα
−

1,β = c u1,β since (u1,β)
2
ν > 0, we find δα

−
1,β > δ1,β . So

∫
�

|�u|2 dx +
∫
∂�

α−u2
ν dσ � δα

−
1,β

∫
∂�

βu2
ν dσ for all u ∈ H(�)

and by setting

ε := 1 − δ1,β/δ
α−
1,β > 0

we find the result that replaces (24). Indeed
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∫
�

|�u|2 dx −
∫
∂�

αu2
ν dσ

=
∫
�

|�u|2 dx +
∫
∂�

α−u2
ν dσ −

∫
∂�

δ1,ββu2
ν dσ

� ε

∫
�

|�u|2 dx + (1 − ε)

(∫
�

|�u|2 dx +
∫
∂�

α−u2
ν dσ

−
∫
∂�

δα
−

1,ββu2
ν dσ

)

� ε

∫
�

|�u|2 dx .

Hence I is coercive and strictly convex and we may conclude as before.
��

Lemma 4.7. Assume that α � δ1,ββ. If α �� 0, then for any f ∈ L2(�) the unique
H-solution u of (1) cannot satisfy −�u � 0 in �. If α � 0 and 0 � f ∈ L2(�)

then the H-solution u of (1) satisfies −�u � 0 in �.

Proof. Assume that there exists x0 ∈ ∂� such that α(x0) < 0. If the H-solution u
were superharmonic, then by Hopf’s boundary Lemma we would have uν(x0) < 0.
Using the second boundary condition in (1), we would then obtain �u(x0) > 0, a
contradiction.

If α � 0 and f � 0, then as in the proof of Lemma 4.4 we define ũ as the
unique solution in H(�) of −�ũ = |�u| in �. Since ũ > u or ũ = u in �, and
|ũν | � |uν | on ∂�, for f � 0 one finds that

I (ũ)− I (u) = −1

2

∫
∂�

α
(

ũ2
ν − u2

ν

)
dσ −

∫
�

f (ũ − u) dx � 0.

Equality occurs only when ũ = u. Since I is strictly convex there is at most
one critical point which is a minimum. So u = ũ > 0 and −�u = −�ũ =
|�u| � 0. ��
Proposition 4.8. There exists δc,β := δc,β(�) ∈ [−∞, 0) such that the following
holds for an H-solution u of (1).

1. for δc,ββ � α � δ1,ββ it follows that if 0 � f ∈ L2(�) then u � 0;
2. for δc,ββ < α � δ1,ββ it follows that if 0 � f ∈ L2(�) then u � c f d for

some c f > 0 (depending on f ), d being the distance function from (8);
3. for α < δc,ββ there are 0 � f ∈ L2(�) with u somewhere negative.

The proof of Proposition 4.8 will be given in Section 7. It will use estimates for the
kernels involved and for this reason it seems more suitable to employ a Schauder
setting and to finish by approximation.

Proof of Theorem 4.1. The first item is a direct consequence of Lemma 4.5. In
item 2, existence of an eigenfunction and the first uniqueness property (a) are
consequences of the first item of Lemma 4.4. The second uniqueness property (b)
follows from Lemma 4.6 for δ < δ1,β and from Lemma 4.5 for δ > δ1,β . Existence
and uniqueness in item 3 follow from Lemma 4.6. The sign results (a) and (b)
follow from Lemma 4.7 and Proposition 4.8. ��
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5. The Schauder setting

5.1. On the operators in the Schauder setting

Consider the Green operator G and the Poisson kernel K, that is,w = G f +Kg
formally solves {−�w = f in �,

w = g on ∂�.

Moreover, let (Pw)(x) := −ν · ∇w(x) = −wν(x) for x ∈ ∂�. We will fix the
appropriate setting so that G, K and P are well-defined positive operators. Let d
denote the distance to ∂� as defined in (8).

Notation 5.1. Set

Cd(�) = {
u ∈ C(�); there exists w ∈ C(�) such that u = dw

}
with norm

‖u‖Cd (�)
= sup

{ |u(x)|
d(x)

; x ∈ �
}
.

Set also C0(�) = {
u ∈ C(�); u = 0 on ∂�

}
so that Cd(�) � C0(�).

We consider the three above operators in the following setting:

G : C(�) → Cd(�), K : C(∂�) → C(�), P : Cd(�) → C(∂�).

The space Cd(�) is a Banach lattice, that is, a Banach space with the ordering
such that |u| � |v| implies ‖u‖Cd (�)

� ‖v‖Cd (�)
, see [3] or [23]. The positive cone

Cd(�)
+ = {

u ∈ Cd(�); u(x) � 0 in �
}

(25)

is solid (namely, it has nonempty interior) and reproducing (that is, every w ∈
Cd(�) can be written asw = u −v for some u, v ∈ Cd(�)

+). Similarly, we define
C(∂�)+ and C(�)+.

Note that the interiors of the cones in these Schauder-type spaces are as follows:

C(∂�)+,◦ = {
v ∈ C(∂�); v(x) � c for some c > 0

}
,

C(�)+,◦ = {
u ∈ C(�); u(x) � c for some c > 0

}
,

Cd(�)
+,◦ = {

u ∈ Cd(�); u(x) � c d(x) for some c > 0
}
.

Definition 5.2. The operator F : C1 → C2 is described as

• nonnegative, F � 0, when g ∈ C+
1 ⇒ Fg ∈ C+

2 ;
• strictly positive, F � 0, when g ∈ C+

1 \{0} ⇒ Fg ∈ C+
2 \{0};

• strongly positive, F > 0, when g ∈ C+
1 \{0} ⇒ Fg ∈ C+,◦

2 .

If F � 0 and F �= 0, that is, for some g ∈ C+
1 we find Fg � 0, we call F positive.

Similarly, two operators are ordered through � (respectively � or >) whenever
their difference is nonnegative (respectively strictly or strongly positive).

The main purpose of this section is to prove the following:
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Proposition 5.3. Suppose that ∂� ∈ C2 and α ∈ C(∂�). Let G, K, and P be
defined as above. Then GKαP : Cd(�) → Cd(�) is a well-defined compact linear
operator. If in addition α � 0, then GKαP is positive, even to the extent that

u ∈ Cd(�)
+ implies either GKαPu = 0 or GKαPu ∈ Cd(�)

+,◦. (26)

Proposition 5.3 will be a consequence of the following three lemmas.

Lemma 5.4. The operator G : C(�) → Cd(�) is a compact linear operator and
it is strongly positive.

Proof. Take γ ∈ (0, 1), p > n(1 − γ )−1 and fix the imbeddings I1 : C(�) →
L p(�), I2 : W 2,p(�) → C1,γ (�), and I3 : C1,γ (�) ∩ C0(�) → Cd(�). Since
∂� ∈ C2, for every p ∈ (1,∞) there exists a bounded linear operator Gp :
L p(�) → W 2,p(�) ∩ W 1,p

0 (�) such that −�Gp f = f for all f ∈ L p(�), see
[13, Theorem 9.15 and Lemma 9.17]. If Id denotes the imbedding Cd (�) → C(�),
then the Green operator from Cd(�) to Cd(�) should formally be denoted by GId ,
where G = I3 I2Gp I1. Note that the imbedding I1 : C(�) → L p(�) is bounded
and the imbedding I2 : W 2,p(�) → C1,γ (�) is compact, see [1, p.144]. Since
W 2,p(�) ∩ W 1,p

0 (�) ↪→ C1,γ (�) ∩ C0(�) and I3 : C1,γ (�) ∩ C0(�) → Cd(�)

is bounded, G is not only well defined but also compact. The strong maximum
principle and Hopf’s boundary point Lemma imply that G is strongly positive. ��
Lemma 5.5. The operator K : C(∂�) → C(�) is a strictly positive bounded
linear operator.

Proof. Since ∂� ∈ C2 and � is bounded, all boundary points are regular. Accor-
ding to [13, Theorem 2.14] the Dirichlet boundary value problem is solvable for
arbitrary continuous boundary values by

(Kφ) (x) = sup
{
v(x); v � φ on ∂� and v subharmonic in �

}
.

For φ ∈ C(∂�) one obtains Kφ ∈ C(�) ∩ C2(�) and by the maximum principle

sup
x∈�

(Kφ) (x) = max
x∈∂� φ(x) and inf

x∈� (Kφ) (x) = min
x∈∂� φ(x)

implying not only that ‖Kφ‖L∞(�) = ‖φ‖L∞(∂�), but also that K is strictly positive.
��
Lemma 5.6. The operator P : Cd(�) → C(∂�) is a positive bounded linear
operator.

Proof. It follows at once from the fact that every function u ∈ Cd(�) can be written
as u = dw for some w ∈ C(�) and Pdw = w|∂�. ��
Proof of Proposition 5.3. Compactness, and positivity of GKαP when α � 0, is
an immediate consequence of the last three lemmata. By Lemma 5.4 it follows that
KαPu � 0 implies that GKαPu ∈ Cd(�)

+,◦. ��
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5.2. Relation between the Hilbert and Schauder settings

Let us now explain how we will make use of Proposition 5.3. Instead of (1) or
(4) we consider an integral equation. Let again Id : Cd(�) → C(�) denote the
imbedding operator, then the system in (4) turns into

u = GKαPu + GIdG f. (27)

Definition 5.7. For f ∈ C(�) we say that u is a C-solution of (1) if u ∈ Cd(�)

satisfies (27).

For continuous f , C-solutions coincide with the H-solutions from Definition 2.1:

Proposition 5.8. Suppose that� is a bounded domain in R
n (n � 2) with ∂� ∈ C2

and let α ∈ C(∂�). If f ∈ C(�) then a C-solution of (1) is also an H-solution.

Proof. If f ∈ C(�) and u ∈ Cd(�) then by (27) it follows that w = KαPu +
IdG f ∈ C(�) ⊂ L2(�) and hence u = Gw ∈ H(�). Moreover, for such u and
for any v ∈ H(�) we have

∫
�

�u�v dx =
∫
�

(KαPu + G f )�v dx =
∫
∂�

αuνvν dσx +
∫
�

f v dx,

which is precisely (5). ��
A theorem named after Krein–Rutman tells us that a strictly positive compact linear
operator on a Banach lattice such as GKβP : Cd(�) → Cd(�) has a spectral
radius rσ (GKβP) > 0 that is an eigenvalue with a positive eigenfunction φ1, and
moreover this eigenvalue has multiplicity one and is the only one with a positive
eigenfunction; see, for example, [3, Theorem 3.2]. This would supply us with an
alternative proof of Theorem 4.1 in a C(�)-setting when α � 0.

In the following subsection we deal with C-solutions in order to provide the
tools needed in Proposition 4.8 that will take care of the case where α � 0. The
proof of this proposition is given in Section 7.

5.3. Sign-changing and negative weights

We first note that (possibly by changing its sign) the minimizer u1,β from
Lemma 4.4 lies in Cd(�)

+,◦.

Lemma 5.9. Let ∂� ∈ C2 and suppose that α ∈ C(∂�) is such that α � δ1,ββ.
Then

EαG := (I − GKαP)−1 GIdG : C(�) → Cd(�), (28)

EαK := (I − GKαP)−1 GK : C(∂�) → Cd(�), (29)

are well-defined operators. Moreover, the following holds;

• For f ∈ C(�) the unique C-solution of problem (1) is u = EαG f .
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• u1,β is a positive eigenfunction of EαK
(
δ1,ββ − α

) P : Cd(�) → Cd(�)

with eigenvalue 1. Any other nonnegative eigenfunction ũ of EαK
(
δ1,ββ − α

) P
satisfies

(
δ1,ββ − α

) P ũ = 0 on ∂�.

Remark 5.10. Notice that for α � δ1,ββ we have a positive eigenfunction for
EαK

(
δ1,ββ − α

) P , and hence also for PEαK
(
δ1,ββ − α

)
, without assuming positi-

vity of EαG or EαK.

Proof. By Lemma 4.6 one finds for α � δ1,ββ that µ = 1 is not an eigenvalue of
the (compact) operator GKαP . Therefore, the operator (I − GKαP) is invertible
in L2(�) and hence in Cd(�).

• Equation (27) reads u = (I − GKαP)−1 GIdG f .

• One directly checks that u1,β is an eigenfunction of EαK
(
δ1,ββ − α

) P with
λ = 1 for all α � δ1,ββ. By Lemma 4.4, up to its multiples, it is the unique
eigenfunction with λ = 1. Let ũ be another nonnegative eigenfunction of
EαK

(
δ1,ββ − α

) P corresponding to some eigenvalue λ �= 1. One finds that
λ = 0 if and only if (δ1,ββ − α)P ũ = 0. For λ �= 0 it holds that

ũ − GKδ1,ββP ũ =
(
λ−1 − 1

)
GK(δ1,ββ − α)P ũ. (30)

We have u1,β , ũ ∈ H(�); this fact allows us to combine (30) with an argument
similar as in Lemma 4.5 to find a contradiction in the case that (δ1,ββ−α)P ũ � 0:

0 =
∫
�

�u1,β�ũ dx −
∫
∂�

δ1,ββ(u1,β)ν ũν dσ

=
∫
�

�u1,β�
(
ũ − GKδ1,ββP ũ

)
dx

=
(
λ−1 − 1

) ∫
�

�u1,β GK(δ1,ββ − α)P ũ dx

=
(

1 − λ−1
) ∫

�

u1,β K(δ1,ββ − α)P ũ dx,

and this last expression has a sign if λ �= 1. ��
Lemma 5.11. Let ∂� ∈ C2 and suppose that α ∈ C(∂�) is such that α � δ1,ββ.
Let EαG and EαK be as in Lemma 5.9 and suppose that EαG is a positive operator.

1. Then EαG , EαK, PEαG , and PEαK are strictly positive operators.

2. If α̃ ∈ C(∂�) is such that α � α̃ � δ1,ββ, then E α̃G � EαG , E α̃K � EαK,

PE α̃G � PEαG , and PE α̃K � PEαK.

3. If α̃ ∈ C(∂�) is such that α < α̃ � δ1,ββ, then E α̃G > EαG , E α̃K > EαK,

PE α̃G > PEαG , and PE α̃K > PEαK.

Proof. In the following items we will assume that 0 � f ∈ C(�) and 0 �

ϕ ∈ C(∂�). Moreover, we will write uα = EαG f and vα = EαKϕ, so

(I − GKαP) uα = GIdG f and (I − GKαP) vα = GKϕ (31)



On Positivity for the Biharmonic Operator under Steklov Boundary Conditions 415

1. If uα = EαG f = 0 for f � 0, then

uα = GKαPuα + GIdG f = GIdG f > 0 (32)

by the maximum principle, a contradiction. So EαG positive implies that EαG is

strictly positive. Since K (x, y∗) = limt↓0 G(x, y∗−tν)/t for x ∈ �, y∗ ∈ ∂�
and ν the exterior normal at y∗, we find that positivity of EαG implies that
EαK is positive. We even have strict boundary positivity. Indeed, if Puα = 0
then uα = GIdG f and Hopf’s boundary point lemma gives Puα > 0, a
contradiction. A similar argument holds for vα . This proves the first set of
claims.

2. Let α � α̃ � δ1,ββ. We have

(I − GKαP) uα̃ = GK (α̃ − α)Puα̃ + GIdG f

and, in turn, since (I − GKαP) is invertible in view of Lemma 5.9,
(I − EαK(α̃ − α)P)

uα̃ = uα. (33)

For ‖α̃ − α‖L∞(∂�) small enough (say ‖α̃ − α‖L∞(∂�) < ε) one may invert
the operator in (33) and find an identity with a convergent series:

E α̃G = EαG +
∞∑

k=1

(EαK (α̃ − α)P)k EαG . (34)

Since EαK (α̃ − α)P � 0 holds, one finds that uα̃ = E α̃G f � EαG f = uα . The
series formula (34) holds for ‖α̃−α‖L∞(∂�) < ε. However, if ‖α̃−α‖L∞(∂�) �
ε, then the above argument can be repeated by considering some intermediate
α := α0 � α1 � · · · � αk := α̃ such that ‖αi+1 − αi‖L∞(∂�) < ε for all i . A
similar reasoning applies to vα̃ , vα . This proves the second set of claims.

3. Let us consider the sequence {ϕm}∞m=0 ⊂ Cd(�), defined by

ϕ0 = EαG f,

ϕm+1 = EαK
(
δ1,ββ − α

) Pϕm for m � 0.

Since EαG f � 0, we find that ϕm � 0 for all m � 0. Moreover, since
EαK

(
δ1,ββ − α

) P is compact, either
i. there exists m0 > 0 such that ϕm � 0 for m < m0 and ϕm = 0 for all

m � m0, or
ii. ϕm/ ‖ϕm‖Cd (�)

→ ϕ∞ where ϕ∞ is a nonnegative eigenfunction (with
λ = 1) of:

EαK
(
δ1,ββ − α

) Pϕ∞ = λϕ∞.

If EαK
(
δ1,ββ − α

) Pϕm0 = 0 then we find by item 1. that
(
δ1,ββ − α

) Pϕm0 =
0 and hence Pϕm0 = 0. We find a contradiction since as in the proof of the
first item it follows that ϕm0 = GIdGϕm0−1 and Pϕm0 > 0 holds by Hopf’s
boundary point lemma.
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In the second case ϕ∞ is a multiple of the unique positive eigenfunction u1,β ,
see Lemma 5.9. So for sufficiently large m1 there exist c2 > c1 > 0 such that

c1u1,β � ϕm

‖ϕm‖Cd (�)

� c2u1,β for all m � m1.

Now set
ψ0 = EαG f,

ψm+1 = EαK (α̃ − α)Pψm for m � 0.
(35)

Since for some ε > 0 it holds that

ε
(
δ1,ββ − α

)
� α̃ − α � δ1,ββ − α,

we obtain ψm � εmϕm for all m and by (35)

ψm � εmϕm � c1ε
m‖ϕm‖Cd (�)

u1,β for all m � m1.

Then, from (34) it follows that there exists c3 > 0 such that

E α̃G f � EαG f + c3u1,β .

In a similar way we proceed with vα̃ and vα . ��
With the result derived in Lemma 5.9 it will suffice to have positivity preserving
for a negative α ∈ C(∂�) in order to ensure that this property will hold for any
sign-changing α̃ with α � α̃ � δ1,ββ. So we may restrict ourselves to α � 0.

We now prove a crucial “comparison” statement in the case where GKαP has
a small spectral radius:

Lemma 5.12. Let ∂� ∈ C2 and suppose that 0 � α ∈ C(∂�) is such that
rσ (GKαP) < 1. If there exists M > 0 such that

GKPGIdG � M GIdG, (36)

and if ‖α‖L∞(∂�) < M−1 then EαG > 0.

Proof. Clearly, α = −α−. Since rσ
(GKα−P)

< 1 the Equation (27) can be
rewritten as a Neumann series

u = (I + GKα−P)−1 GIdG f =
∞∑

k=0

(−GKα−P)k GIdG f,

which reads

u =
( ∞∑

k=0

(GKα−P)2k

) (I − GKα−P)GIdG f (37)

after joining the odd and even powers. Next, notice that in view of (37) it suffices
to show that the operator

(I − GKα−P)GIdG is strongly positive. This fact is a
direct consequence of (36) and

∥∥α−∥∥
L∞(∂�) � M−1. ��
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Lemma 5.12 guarantees the existence of strictly negative α ∈ C(∂�) for which (1)
is positivity preserving provided one can show the existence of M > 0 such that
(36) holds. We will prove the existence of such M in Proposition 7.1; to this end,
we need fine estimates of the kernels related to G and K. These are given in the
next section.

Remark 5.13. The operator
(I − GKα−P) : Cd(�) → Cd(�) on its own cannot

be expected to be positivity preserving. Indeed, although the identity I is strictly
positive it is just pointwise positive. For example if we take� = {|x | < 1} and the
positive function f (x) = |x |2 − |x |4, then GKα−P f > 0 and

(I − GKα−P)
( f ) (0) = − (GKα−P f

)
(0) < 0.

Even
(I − GKα−P) G : C(�) → Cd(�) is not positivity preserving for any small

α−
� 0. A counterexample to positivity can be obtained by taking a sequence

{ fm} such that {d fm} converges to a Dirac delta distribution δy for some y ∈
∂� with α−(y) > 0. In Section 6 we show that an additional G is sufficient in
order to have for α− small the positivity preserving property, in other words, that(I − GKα−P)GIdG is strongly positive.

6. Kernel estimates

In this section, we prove some new kernel estimates. Since they are of inde-
pendent interest, we prove them under the slightly weaker assumption that ∂� ∈
C1,1. Indeed, for C1,1-domains, the operators G and K defined in Section 5.1 can
be represented by integral kernels which we denote by G and K , namely

(G f )(x) =
∫
�

G(x, y) f (y) dy and (Kg)(x) =
∫
∂�

K (x, y)g(y) dσy . (38)

Moreover, it holds that

K (x, y) = −∂
∂νy

G(x, y) for all (x, y) ∈ �× ∂�. (39)

We will estimate the kernels in (38) by using the following

Notation 6.1. Let f, g be functions defined on the same domain D. We write f � g
if there exists c > 0 such that f (x) � cg(x) for all x ∈ D. We write f � g if both
f � g and g � f .

Based on several estimates due to Zhao [31, 32] (see also [28, 8]) one may
show:
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Proposition 6.2 ([16, Lemmas 3.1 and 3.2]). Let � ⊂ R
n be a bounded domain

with ∂� ∈ C1,1. Then the following uniform estimates hold for (x, y) ∈ �×�:

if n � 5:
∫
�

G(x, z)G(z, y) dz � |x − y|4−n min
(

1, d(x)d(y)
|x−y|2

)
, (40)

if n = 4:
∫
�

G(x, z)G(z, y) dz � log
(

1 + d(x)d(y)
|x−y|2

)
, (41)

if n = 3:
∫
�

G(x, z)G(z, y) dz � √
d(x)d(y)min

(
1,

√
d(x)d(y)
|x−y|

)
, (42)

if n = 2:
∫
�

G(x, z)G(z, y) dz � d(x)d(y) log
(

2 + 1
|x−y|2+ d(x)d(y)

)
. (43)

In order to use these estimates in our proofs, we also need the following
geometric result:

Lemma 6.3. Let � ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C1,1. For

x ∈ � let x∗ ∈ ∂� be any point such that d(x) = |x − x∗|.
• Then there exists r� > 0 such that for x ∈ � with d(x) � r� there is a unique

x∗ ∈ ∂�.
• Then the following uniform estimates hold:

if (x, y) ∈ �×� : |x − y| � d(x)+ d(y)+ ∣∣x∗ − y∗∣∣ , (44)

if (x, y)∈�×� : d(x)

d(x)+ d(y)+ |x∗ − y∗| �min

(
1,

d(x)

|x − y|
)
, (45)

if (x, z) ∈ �× ∂� : |x − z| � d(x)+ ∣∣x∗ − z
∣∣ . (46)

And for (x, y, z) ∈ �×�× ∂�:

if d(y) � d(x) and
∣∣x∗ − y∗∣∣ � d(x)+d(y) then |x − z| � d(x)+ ∣∣y∗ − z

∣∣ .
(47)

Proof. Since ∂� ∈ C1,1 there exists r1 > 0 such that � can be filled with balls of
radius r1. Set r� = 1

2r1. For x ∈ � with d(x) � r� there is a unique x∗ ∈ ∂�.
Estimate (44) is just the triangle inequality. Estimate (46) follows from the three

inequalities

|x − z| �
∣∣x − x∗∣∣ + ∣∣x∗ − z

∣∣ = d(x)+ ∣∣x∗ − z
∣∣ ,

d(x) � |x − z| and
∣∣x∗ − z

∣∣ �
∣∣x∗ − x

∣∣ + |x − z| � 2 |x − z| .
In order to prove (47), we first remark that under the assumptions made we have

d(x) � 1
2 |x∗ − y∗|. This yields the two inequalities

d(x)+ |x∗ − z| � d(x)+ |x∗ − y∗| + |y∗ − z| � 3d(x)+ |y∗ − z|
� 3(d(x)+ |y∗ − z|),

d(x)+ |y∗ − z| � d(x)+ |x∗ − y∗| + |x∗ − z| � 3d(x)+ |x∗ − z|
� 3(d(x)+ |x∗ − z|).

In turn, these inequalities read d(x)+ |x∗ − z| � d(x)+ |y∗ − z|. This, combined
with (46), proves (47).
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To prove (45), we distinguish two cases. If |x − y| � max(d(x),d(y))
2 , then

1
2 d(x) � d(y) � 2d(x) and |x − y| � d(x) � d(y). It follows that

d(x)

d(x)+ d(y)+ |x∗ − y∗| � 1 � min

(
1,

d(x)

|x − y|
)

and a similar estimate with x and y interchanged. If |x − y| � max(d(x),d(y))
2 , we

use (44) to find that

d(x)

d(x)+ d(y)+ |x∗ − y∗| � d(x)

|x − y| � min

(
1,

d(x)

|x − y|
)

and a similar estimate with x and y interchanged. ��
We are now ready to prove the new estimates which are needed for our purposes.

Lemma 6.4. Let � ⊂ R
n(n � 2) be a bounded domain with ∂� ∈ C1,1. Then the

following uniform estimates hold for (x, z) ∈ �× ∂�:

∫
�

G(x, ξ)K (ξ, z) dξ �
{

d(x) |x − z|2−n for n � 3,

d(x) log
(

2 + 1
|x−z|2

)
for n = 2.

Proof. Let

H(x, z) :=
∫
�

G(x, ξ)G(ξ, z) dξ for all (x, z) ∈ �× ∂�.

In view of (39), and since H(x, z) = 0 for z ∈ ∂�, we have
∫
�

G(x, ξ)K (ξ, z) dξ = −∂
∂νz

H(x, z) = lim
t→0

H(x, z − tνz)

t
. (48)

Note also that if r� is as in Lemma 6.3, then d(z − tνz) = t for all z ∈ ∂� and
t � r�. Hence, by (40) we obtain for n � 5

lim
t→0

H(x, z − tνz)

t
� lim

t→0

|x − z + tνz |4−n min
(

1, td(x)
|x−z+tνz |2

)
t

= d(x) |x − z|2−n .

For n = 4, we use (41) to obtain

lim
t→0

H(x, z − tνz)

t
� lim

t→0

log
(

1 + td(x)
|x−z+tνz |2

)
t

� d(x) |x − z|−2 .

For n = 3, we use (42) to obtain

lim
t→0

H(x, z − tνz)

t
� lim

t→0

√
td(x) min

(
1,

√
td(x)

|x−z+tνz |
)

t
= d(x) |x − z|−1 .
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And finally for n = 2, we use (43) to obtain

lim
t→0

H(x, z − tνz)

t
� lim

t→0

td(x) log
(

2 + 1
|x−z+tνz |2+td(x)

)
t

= d(x) log

(
2 + 1

|x − z|2
)
.

By (48), the statement is so proved for any n � 2. ��
Lemma 6.5. Let � ⊂ R

n (n � 2) be a bounded domain with ∂� ∈ C1,1. Then the
following uniform estimates hold for (x, y) ∈ �×�:∫

�

∫
∂�

∫
�

G(x, ξ)K (ξ, z)
−∂
∂νz

G(z, w)G(w, y) dξ dσz dw

�
⎧⎨
⎩

d(x)d(y) (d(x)+ d(y)+ |x∗ − y∗|)2−n for n � 3,

d(x)d(y) log
(

2 + 1
d(x)+d(y)+|x∗−y∗|)

)
for n = 2,

(49)

respectively, for (x, y) ∈ �× ∂�:∫
�

∫
∂�

∫
�

G(x, ξ)K (ξ, z)
−∂
∂νz

G(z, w)K (w, y) dξ dσz dw

�
⎧⎨
⎩

d(x) |x − y|2−n for n � 3,

d(x) log
(

2 + 1
|x−y|)

)
for n = 2.

(50)

Proof. Setting

R(x, y) :=
∫
�

∫
∂�

∫
�

G(x, ξ)K (ξ, z)
−∂
∂νz

G(z, w)G(w, y) dξ dσz dw,

and using (39) and the estimates from Lemma 6.4, the following holds:

R(x, y) � d(x)d(y)
∫
∂�

|x − z|2−n |z − y|2−n dσz if n � 3,

R(x, y) � d(x)d(y)
∫
∂�

log

(
2 + 1

|x − z|2
)

log

(
2 + 1

|y − z|2
)

dσz if n = 2.

Let r� be as in Lemma 6.3. We distinguish three cases, according to the positions
of x, y ∈ �.

• Case 1: max(d(x), d(y)) � r�.

By symmetry we may assume that d(y) � r� and find for n � 3 that∫
∂�

|x − z|2−n |z − y|2−n dσz �
∫
∂�

|x − z|2−n dσz �
∫ 1

0

rn−2

(d(x)+ r)n−2 dr � 1,

and for n = 2∫
∂�

log
(

2 + 1
|x−z|2

)
log

(
2 + 1

|z−y|2
)

dσz �
∫ 1

0
log

(
2 + 1

(d(x)+r)2

)
dr � 1,

which imply (49) since d(y) � r�.
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• Case 2: max(d(x), d(y)) < r� and |x∗ − y∗| � d(x)+ d(y).

In this case, in view of Lemma 6.3, we have that (46) holds for both x and y.
So, for n � 3 we have

∫
∂�

|x − z|2−n |z − y|2−n dσz

�
∫
∂�

1

(d(x)+ |x∗ − z|)n−2

1

(d(y)+ |y∗ − z|)n−2 dσz .

We split this integral as Ix + Iy where Ix is the integral over

∂�x = {
z ∈ ∂�; ∣∣x∗ − z

∣∣ �
∣∣y∗ − z

∣∣}

and Iy over ∂�y = ∂�\∂�x . Over ∂�x we have

|x∗ − z| + |x∗ − y∗| � |x∗ − z| + |x∗ − z| + |y∗ − z| � 3|y∗ − z|.

Hence, we find

Ix �
∫
∂�x

1

(d(x)+ |x∗ − z|)n−2

1

(d(y)+ |x∗ − z| + |x∗ − y∗|)n−2 dσz

� 1

|x∗ − y∗|n−2

∫ 1

0

rn−2

(d(x)+ r)n−2 dr � ∣∣x∗ − y∗∣∣2−n

� (
d(x)+ d(y)+ ∣∣x∗ − y∗∣∣)2−n

where, in the last estimate, we used |x∗ − y∗| � d(x)+ d(y).
Similarly, for n = 2 we find

Ix �
∫
∂�x

log

(
2 + 1

d(x)+ |x∗ − z|
)

× log

(
2 + 1

d(y)+ |x∗ − z| + |x∗ − y∗|
)

dσz

� log

(
2 + 1

d(y)+ |x∗ − y∗|
) ∫ 1

0
log

(
2 + 1

d(x)+ r

)
dr

� log

(
2 + 1

d(y)+ |x∗ − y∗|
)

� log

(
2 + 1

d(x)+ d(y)+ |x∗ − y∗|
)
.

Analogous estimates hold for Iy . All together these estimates prove (49) in Case 2.

• Case 3: max(d(x), d(y)) < r� and |x∗ − y∗| � d(x)+ d(y).
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By symmetry, we may assume that d(y) � d(x). Then, we may use both (46)
and (47). So, for n � 3 we find∫

∂�

|x − z|2−n |z − y|2−n dσz

�
∫
∂�

1

(d(x)+ |y∗ − z|)n−2

1

(d(y)+ |y∗ − z|)n−2 dσz

�
∫ 1

0

rn−2

(d(x)+ r)n−2

1

(d(y)+ r)n−2 dr

� 1

d(x)n−2 � (
d(x)+ d(y)+ ∣∣x∗ − y∗∣∣)2−n

,

and for n = 2∫
∂�

log

(
2 + 1

|x − z|
)

log

(
2 + 1

|y − z|
)

dσz

�
∫
∂�

log

(
2 + 1

d(x)+ |y∗ − z|
)

log

(
2 + 1

d(y)+ |y∗ − z|
)

dσz

�
∫ 1

0
log

(
2 + 1

d(x)+ r

)
log

(
2 + 1

d(y)+ r

)
dr

� log

(
2 + 1

d(x)

)
� log

(
2 + 1

d(x)+ d(y)+ |x∗ − y∗|
)
.

This proves (49) in Case 3.
For the estimates in (50) one divides the estimates in (49) by d(y), takes the

limit for d(y) → 0, and uses (46), namely that d(x) + |x∗ − y| � |x − y| for
y ∈ ∂�. ��

7. Proof of Proposition 4.8

We first use the kernel estimates of Section 6 to prove:

Proposition 7.1. Let � be a bounded domain with ∂� ∈ C1,1. Then there exists a
constant M� > 0 such that

GKPGIdG � M�GIdG and GKPGK � M�GIK.
Proof. We know that the integral kernel R that corresponds to GKPGIdG satisfies
the estimates in Lemma 6.5. By Proposition 6.2 we know estimates from below
for GIdG. We have to compare these estimates. To this end, we use the following
trivial fact

min(1, α)min(1, β) � min(1, αβ) for all α, β � 0,

combined with (45) and (44). Considering the different dimensions separately we
then have the following. For n � 5,

(
d(x)+ d(y)+ ∣∣x∗ − y∗∣∣)2−n

d(x)d(y) � |x − y|4−n min

(
1,

d(x)d(y)

|x − y|2
)
.
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This, combined with Lemma 6.5 and (40), proves the statement for n � 5.
For n = 4 we argue as for n = 5 to find

(
d(x)+ d(y)+ ∣∣x∗ − y∗∣∣)−2

d(x)d(y)

� min

(
1,

d(x)d(y)

|x − y|2
)

� log

(
1 + d(x)d(y)

|x − y|2
)
.

This, combined with Lemma 6.5 and (41), proves the statement for n = 4.
For n = 3 we have

(
d(x)+ d(y)+ ∣∣x∗ − y∗∣∣)−1

d(x)d(y)

�
√

d(x)d(y)min

(
1,

d(x)d(y)

|x − y|2
)

= √
d(x)d(y)min

(
1,

√
d(x)d(y)

|x − y|
)
.

This, combined with Lemma 6.5 and (42), proves the statement for n = 3.
For n = 2, by using (44) we find as a variation of (45) that

log

(
2 + 1

d(x)+ d(y)+ |x∗ − y∗|
)

� log

(
2 + 1

|x − y|2 + d(x)d(y)

)
.

This, combined with Lemma 6.5 and (43), proves the statement for n = 2. ��
We can now prove the ‘C-version’ of Proposition 4.8:

Lemma 7.2. There exists δc,β := δc,β(�) ∈ [−∞, 0) such that the following holds
for a C-solution u of (1).

1. for δc,ββ � α � δ1,ββ it follows that if 0 � f ∈ C(�) then u � 0;
2. for δc,ββ < α � δ1,ββ it follows that if 0 � f ∈ C(�) then u � c f d for

some c f > 0 depending on f ;
3. for α < δc,ββ there are 0 � f ∈ C(�) with u somewhere negative.

Proof. Let M� be as in Proposition 7.1 and δ := − (M� maxx∈∂B β(x))−1 < 0.
Then, by Lemmas 5.9 and 5.12 we infer that

if δβ � α � δ1,ββ and f � 0 then u � 0 in �, (51)

where u is the unique C-solution of (1). Let δc,β be the (negative) infimum of all
such δ which satisfy (51). Then, nonnegativity of the solution follows.

Moreover, if δc,ββ < α, then Lemma 5.11 yields the existence of c f as in the
second statement.

In order to prove the the third statement of the lemma, we argue for contradiction.
Assume that α < δc,β and that for any 0 � f ∈ C(�) the unique C-solution u is
positive. Then, we would contradict the above definition of δc,β . ��

Using a density argument we can finally give the
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Proof of Proposition 4.8. Let δc,ββ � α � δ1,ββ and let 0 � f ∈ L2(�). Let
u ∈ H be the unique H-solution of (1), according to Lemma 4.6. Let f0 ∈ C(�) be
such that 0 � f0 � f and let u0 denote the unique C-solution of (1) corresponding
to f0, according to Lemma 5.9. Since (I − GKαP)−1GIdG is a positive operator,
we have

0 � f0 � f =⇒ (I − GKαP)−1GIdG f � (I − GKαP)−1GIdG f0 in �.

Hence, u(x) � u0(x) � 0 in view of Lemma 5.11, proving the first statement in
Proposition 4.8.

If δc,ββ < α � δ1,ββ and 0 � f ∈ L2(�), then the same arguments as
above show that u(x) � u0(x) � c f0 d for some c f0 > 0 depending on f0 and,
therefore, also on f . The third statement follows directly from the third statement
in Lemma 7.2 combined with Proposition 5.8. ��

8. Proof of Theorem 2.5

Let us first recall the two boundary value problems addressed in the statement:{
�2u = f in �,
u = (

�+ m ∂
∂ν

)
u = 0 on ∂�,

and

{
�2u = f in �,
u = uν = 0 on ∂�.

(52)

For all m > 0 let um ∈ H(�) be the unique H-solution of the problem on the left
in (52). Then, according to (5) we have∫

�

�um�φ dx + m
∫
∂�

∂um

∂ν

∂φ

∂ν
dσx =

∫
�

f φ dx for all φ ∈ H(�). (53)

Taking φ = um in (53) and using Hölder and Poincaré inequalities, gives (for all
m > 0)

‖�um‖2
L2(�)

� ‖�um‖2
L2(�)

+ m
∫
∂�

∣∣∣∣∂um

∂ν

∣∣∣∣
2

=
∫
�

f um dx � c‖ f ‖L2(�)‖�um‖L2(�). (54)

Inequality (54) shows that the sequence {um} is bounded in H2(�) so that, up to a
subsequence, we have

um ⇀ u in H2(�) as m → ∞ (55)

for some u ∈ H(�). Once boundedness is established, if we let m → ∞ then (54)
also tells us that

∂um

∂ν
→ 0 in L2(∂�) as m → ∞.

Therefore, u ∈ H2
0 (�). Now take any function φ ∈ H2

0 (�) in (53) and let m → ∞:
by (55) we obtain ∫

�

�u�φ =
∫
�

f φ for all φ ∈ H2
0 (�).

Hence, u is the unique solution of the corresponding Dirichlet problem (7). Since
(55) also implies that, up to a subsequence, um(x) → u(x) for almost everywhere
x ∈ �, one finds that u � 0.
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9. Proof of Theorem 2.6

Throughout this section we denote by Q be the solution operator for (7): u =
Q f . We first compare these solutions with the solutions of the corresponding Navier
problem. The next statement extends the comparison result of Lemma 5.11 to the
limit case where α̃ = 0 and α = −∞:

Lemma 9.1. Let� ⊂ R
n (n � 2) be a bounded domain with ∂� ∈ C4,γ . If Q > 0,

then GIdG > Q. It even holds true that for each 0 � f ∈ C(�) there exists c f > 0
such that

(GIdG f )(x) � (Q f )(x)+ c f d(x) for all x ∈ �.
Proof. Since we assumed that ∂� ∈ C4,γ , the functions GIdG f and Q f are in
W 4,p(�) for all p ∈ (1,∞) and hence in C3(�). The function w = G f +�Q f
satisfies −�w = 0 in � and w = �Q f on ∂�. Since Q f = ∂

∂ν
Q f = 0 on ∂�

and Q f � 0 in � we have �Q f = ∂2

∂ν2 Q f � 0 on ∂�. The maximum principle
for harmonic functions implies that w � 0 in �.

Next we set v = GIdG f − Q f and find −�v = w in � and v = 0 on
∂�. Again, by the maximum principle we find v � 0 in �. Moreover, by Hopf’s
boundary point Lemma either there exists c > 0 with v(x) � cd(x) for all x ∈ �
or v = 0. Since −∂

∂ν
GIdG f > 0 and −∂

∂ν
Q f = 0 on ∂� we have v �= 0. ��

Proof of Theorem 2.6. Let 0 � f ∈ C(�) and note that (9) readily implies

∂2

∂ν2 Q f (x) > 0 for all x ∈ ∂�. (56)

Let t � 0; then, by Lemma 5.9, the following problem admits a unique C-solution
which we denote by ut :

{
�2u = f in �,
u = 0 and �u = −tuν on ∂�.

By Lemma 9.1 we find that u0(x) � (Q f ) (x) + c f d(x). Since all “eigenvalues”
of (1) are strictly positive (see [11]), the map t �→ ut : [0,∞) → Cd(�) is
continuous. Using elliptic regularity we also have that t �→ ut : [0,∞) → C2(�)

is continuous. Let t0 be the supremum of the numbers t such that ut � Q f for all
t < t0. Theorem 2.6 follows if we show that t0 = +∞. For contradiction, assume
that t0 < +∞. Then, we find that w := ut0 − Q f satisfies

⎧⎨
⎩
�2w = 0 in �,
w = 0 on ∂�,
−wν = −ut0

ν =: ψ � 0 on ∂�.

Since t0 is maximal we have that either w(x0) = 0 for some x0 ∈ � or ψ(x0) = 0
for some x0 ∈ ∂�. If x0 ∈ � we find a contradiction since

w(x) =
∫
∂�

K1(x, z)ψ(z) dσz
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with K1(x, z) = �z Q(x, z) = ∂2

∂ν2
z

Q(x, z) > c d(x)2 for z ∈ ∂� and x ∈ �. So

we find thatψ(x0) = 0 for some x0 ∈ ∂�. Hence, using the well-known expression
of �ut0 on ∂� and the fact that ut0 = 0 on ∂�, we obtain

∂2

∂ν2 ut0(x0) = �ut0(x0)− (n − 1)κ(x0)u
t0
ν (x0)

= − (t0 + (n − 1)κ(x0)) ut0
ν (x0) = 0, (57)

where κ(x0) denotes the mean curvature of ∂� at x0. Since w(x0) = wν(x0) = 0
and using both (57) and (56), at x0 we have that

0 � ∂2

∂ν2w(x0) = ∂2

∂ν2 ut0(x0)− ∂2

∂ν2 Q f (x0) < 0,

a contradiction. ��
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