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It is known that sampling the diffraction pattern of a ®nite specimen, at a spacing

somewhat ®ner than the Nyquist spacing (the inverse of the size of the

diffracting specimen), corresponds to generating a no-density region

surrounding the electron density of the specimen. This no-density region can

then be used to retrieve the phase information. In earlier papers [Miao, Sayre &

Chapman (1998). J. Opt. Soc. Am. A15, 1662±1669; Sayre, Chapman & Miao

(1998). Acta Cryst. A54, 232±239], it was demonstrated, in the case of non-

crystalline specimens, that this no-density region could be used to retrieve the

phase information; here the same is performed for crystalline and near-

crystalline specimens. By employment of an iterative algorithm, the phase

information could be recovered from computer-generated oversampled

diffraction patterns of small specimens that are (a) perfect or imperfect crystals,

or (b) have a repeated motif without orientational regularity, or (c) are an

unrepeated motif, such as an amorphous glass, a single molecule or a single

biological cell. Cases (a) and (b) represent an extension over work recently

published [Miao, Charalambous, Kirz & Sayre (1999). Nature (London), 400,

342±344]. Our algorithm requires an approximate envelope for the specimen. It

does not require any structural knowledge concerning the specimen and does

not require data to atomic resolution (although it can use such data if present).

After a few hundred to a few thousand iterations, the correct phase set and

image are recovered. The oversampling technique thus greatly extends the

specimen range of X-ray crystallography but it imposes a high radiation dose on

the specimens compared with the situation in crystallography, in which it is usual

for the pattern to be sampled at the (much less ®ne) Bragg spacing (the inverse

of the size of the unit cell). In cases where the specimen is a crystal, there are

also possibilities for oversampling relative to Bragg (instead of Nyquist)

sampling, thus providing a lesser degree of oversampling and the possibility of

lower dosage. Damage of the specimen in consequence of the dose will in many

cases seriously affect the quality and resolution of the imaging, but in at least

one case [the biological cell in (c) above] the imaging obtainable with the aid of

a cryogenic protective technique should surpass any other present method of

whole-cell imaging. In addition, with the possible appearance in the future of

free electron lasers (>1012 photons and <200 fs per pulse), it is possible to

circumvent the radiation-damage problem by recording diffraction patterns

before damage manifests itself.

1. Introduction

When an object is illuminated by a plane wave, the scattered

wave in the far ®eld forms, within the Born approximation, the

Fourier transform of the object. While the magnitude of the

Fourier transform pattern can be recorded by a detector, the

phase of the pattern is lost. To reconstruct the electron density

of the object, however, the phase information must be known.

This constitutes the well known phase problem. The phase

problem is somewhat different for non-crystalline specimens

and crystals. When a specimen is non-crystalline, the diffrac-

tion pattern is faint and continuous. This continuous pattern

can therefore be sampled on a ®ner spatial scale than the

Nyquist frequency, where the Nyquist frequency (fN) is

de®ned as fN � 1=s for a specimen with size s. (It turns out that

² Present address: SSRL, PO Box 20450 MS 69, Stanford, CA 94309-0210,
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the Nyquist frequency is the minimum sampling frequency for

the Fourier transform to invert to the correct image when the

magnitude and phase are known.) Partially following the ideas

from Boyes-Watson et al. (1947), Sayre (1952) and Bruck &

Sodin (1979), Bates (1982) suggested that oversampling the

diffraction pattern could lead to the phase information. Based

on the argument that the autocorrelation function of any sort

of image is twice the size of the image itself in each dimension,

Bates concluded that the phase information could be retrieved

by oversampling the magnitude of a Fourier transform at least

twice as ®nely as Nyquist frequency (meaning 4� for two

dimensions and 8� for three dimensions). Millane (1996)

showed that Bates's sampling criterion can be reduced

somewhat in the three-dimensional or more case. The

suggestion that the oversampling technique could be applied

in X-ray diffraction studies was made by Sayre (1991).

Recently, we have made progress in understanding the

applicability of the oversampling technique to the phase

problem. We proposed a theory to explain the oversampling

technique and showed that, given the magnitude of the

Fourier transform sampled at the Nyquist frequency, the phase

problem is underdetermined by a factor of 2 for one-dimen-

sional, two-dimensional and three-dimensional objects (Miao

et al., 1997, 1998) (instead of factors of 4 and 8 for two-

dimensional and three-dimensional objects).

Historically, the phase problem in crystallography has been

different, in that normally the Bragg peaks but not the

intensity between the Bragg peaks have been recorded.

Constructive interference among the large number of identical

unit cells generates strong Bragg peaks, which facilitates the

data collection and makes the radiation-damage problem to

the specimen much less severe than for the non-crystalline

specimens. Because of the extreme importance of structure

determination by X-ray crystallography, the crystallographic

phase problem has been intensively studied and a consider-

able number of phasing techniques have been developed to

retrieve the phase from the Bragg peaks alone (Woolfson,

1987; Millane, 1990). The situation explored in the present

paper, however, is what occurs if intensities can also be

measured between the Bragg points.

In recent papers (Miao et al., 1999a,b), we have shown that,

by oversampling the diffraction pattern, non-crystals can be

imaged by crystallography methods. In this paper, we now

extend this remark to the specimens that are (a) perfect or

imperfect crystals, or (b) have a repeated motif without

orientational regularity, as well as the previously discussed

case of an unrepeated motif, such as an amorphous glass, a

single molecule or a single biological cell. When a crystalline

specimen is small, both the Bragg peaks and the intensity

between the Bragg peaks (an oversampled pattern) can be

measured. When a specimen is non-crystalline, the Bragg

peaks disappear and the diffraction intensity continuously

distributes in reciprocal space that can be oversampled. In

either case, the oversampled diffraction pattern can then be

used to recover the phase information. In x2, we will discuss

the oversampling theorem. In x3, we will show some examples

of phase retrieval from both noise-free and noisy oversampled

diffraction patterns. Since the whole diffraction pattern, and

not just the strong Bragg peaks, is employed for phase

retrieval, the oversampling technique faces a major hurdle ±

the radiation-damage problem, which we will discuss in x4.

2. The oversampling technique

The oversampling technique can be explained by considering a

non-crystalline specimen. Fig. 1(b) shows a ®nite specimen

and Fig. 1(a) its Fourier transform or diffraction pattern. If the

latter is sampled at the Nyquist sampling frequency, producing

an N � N array, and the array is re-inverted by fast Fourier

transform (FFT) (here we use the term FFT instead of DFTat

a reviewer's request to eliminate confusion between discrete

Fourier transform and difference Fourier transform), the

result is an N � N array in which the specimen essentially ®lls

the array. However, if the sampling is at twice the Nyquist

frequency, the reinversion produces a larger array in which the

specimen image is as before, but is now bordered by a no-

density region (see Appendix A). Obviously, the higher the

oversampling degree, the bigger the no-density region. To

characterize the degree of oversampling, we de®ne the over-

sampling ratio (�) in real space as

� �
electron density region� no-density region

electron density region
: �1�
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Figure 1
Comparison of Nyquist sampling and ®ner-than-Nyquist sampling. (a)
The Fourier transform (diffraction pattern) of a specimen (b). The
pattern is sampled at the Nyquist frequency and the resulting array will be
submitted to inverse fast Fourier transform processing (FFTÿ1). (b)
Result of the processing. The specimen essentially ®lls the result array. (c)
The pattern sampled at twice the Nyquist frequency. [The array sizes in
(c) and (d) are 4� larger than in (a) and (b), but for convenience are
shown here at the same size.] (d) The specimen now is surrounded by an
extensive no-density region, which can be used (see Fig. 2 and the
discussion in x3) to produce the correct phases and image.
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We previously showed that the phase retrieval from an over-

sampled diffraction pattern is possible only if � > 2 (Miao et

al., 1998). Emphasis should be made here that (1) represents a

no-density region surrounding the whole crystal, which is

somewhat different from surrounding the molecule in the

unit cell by solvent (see e.g. Millane, 1993). Oversampling a

diffraction pattern alone cannot lead to a unique phase,

however. This is because one cannot distinguish a phase and

its conjugate from the diffraction intensity alone, leading to an

ambiguity analogous to the twin image problem in holography.

To remove this ambiguity, we employ positivity constraints.

When the incident X-rays are high-energy photons (hard

X-rays) and also away from the absorption edges, the electron

density of the specimen is real and positive. When the incident

X-rays are low-energy photons (soft X-rays), the electron

density is complex. The real part of the complex density

represents the effective number of electrons that diffract the

X-rays in phase. It is usually positive and only goes negative

when the energy of the incident X-rays is near an absorption

edge. The imaginary part represents the absorption of the

X-rays by the specimen and thus is always positive. These

observations were experimentally veri®ed by Henke et al.

(1993). We thus can apply the positivity constraints on either

the real part or the imaginary part to eliminate the conjugate

ambiguity. (Our computer modeling seems to show that

enforcing the positivity constraints on both parts is not as

effective as enforcing them on either the real or the imaginary

part.)

The oversampling technique, at least in principle, also solves

the phase problems of perfect or imperfect crystals (see the

examples of the next section). The method is probably most

practical for very small crystals. For large crystals, the added

sampling points between the Bragg points will be extremely

numerous and faint compared to the Bragg points. This is due

to the difference of the two sampling frequencies: the Nyquist

frequency (fN) and the Bragg-peak frequency (fB). They are

related by

fN � fBM; �2�

where M is the number of unit cells in one dimension.

Equation (2) shows that the Nyquist frequency is equal to the

Bragg-peak frequency for non-crystalline specimens (M � 1),

but is much higher than the Bragg-peak frequency for large

crystals (M � 1). In the case of a perfect crystal, only the

electron density inside a unit cell is to be retrieved. The

necessary sampling frequency can therefore be reduced to a

value that is only somewhat larger than the Bragg frequency.1

3. Computer modeling examples

To apply the oversampling technique to the problem of phase

retrieval, we developed an iterative algorithm by modifying

the algorithm used in optics, astronomy and imaging (Gerch-

berg & Saxton, 1972; Fienup, 1982; Millane & Stroud, 1997).

The algorithm employs an oversampled diffraction pattern

and outputs a correct electron density, and is schematically

shown in Fig. 2. Each iteration of the algorithm consists of the

following steps.

(I) From the magnitude of an oversampled Fourier trans-

form and a current set of phases (a random phase set for the

initial iteration), a Fourier transform [Fj(k)], shown in Fig.

2(a), is assembled where subscript j represents the jth itera-

tion.

(II) By applying the inverse FFT to the assembled Fourier

transform, we get a density [�0
j�x�] shown in Fig. 2(b).

(III) We de®ne a boundary to separate the electron density

region and the no-density region. Owing to the experimental

dif®culty of precisely determining the envelope of the

specimen, we choose the boundary somewhat bigger than the

envelope, i.e. a loose support, to allow for uncertainties in

determining the envelope. We then enforce constraints in real

space. For the density outside the loose support, where the

loose support is the small square shown in Fig. 2(c), we drive it

close to zero based on the following equations:

�j�1�x� � �j�x� ÿ �1�
0
j�x�; x 2 S1 or S2 �3a�

or

�j�1�x� �
�j�x� ÿ �2�

0
j�x�; x 2 S1

�j�x� ÿ �3�
0
j�x�; x 2 S2,

�

�3b�

where S1 and S2 are the regions shown, �1, �2 and �3 are

constants that in our reconstructions are set to 0.9, 0.7 and 0.9,

respectively. While (3a) represents a symmetrical reconstruc-

Figure 2
An iterative algorithm for phase retrieval of oversampled diffraction
patterns. (a) An oversampled Fourier transform combining the
magnitude of the Fourier transform and a current phase set. (b) An
electron density obtained by applying the inverse FFT to (a). (c) The
electron density in regions S1 and S2 is driven close to zero and the
negative part of the electron density in region S is pushed close to zero,
where the little square is a loose support. (d) A new oversampled Fourier
transform obtained by applying the FFT to (c).

1 This sampling will produce the unit cell surrounded by a no-density region.
Again, if the ratio (�) is bigger than 2, i.e. the no-density region is bigger than
the electron-density region, the phase information of the unit cell can be
retrieved.
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tion, (3b) is an asymmetrical one and can sometimes speed up

the convergence of the reconstruction by quickly eliminating

the ambiguity of a phase and its conjugate. We adopt (3b) for

most of our reconstructions. Inside the ®nite support, if both

the real part and imaginary part of the electron density are

positive, we leave the density as it is. Otherwise, the negative

part of the electron density is pushed close to zero by the

following equation:

�j�1�x� � �j�x� ÿ �4�
0
j�x�; x 2 S and �0

j�x�< 0; �4�

where S represents the region inside the loose support and �4
is set to 0.9 in our reconstructions.

(IV) By applying FFT on the new density, we get a new

Fourier transform. We adopt the phases from the Fourier

transform (also restoring the phase of the central pixel to

zero) and thereby obtain a new phase set. It turns out that the

constraint of setting the phase of the central pixel to zero can

greatly speed up the convergence of our algorithm. (For a

complex electron density, the re-setting of the phase of the

central pixel to zero may not be applicable.)

The algorithm iterates between reciprocal and real space. In

reciprocal space, the magnitude of the Fourier transform is

employed in each iteration. In real space, the electron density

outside the loose support is gradually pushed close to zero,

and the negative part of electron density inside the loose

support is driven close to zero. We previously showed that a

non-trivial unique phase set exists in an oversampled diffrac-

tion pattern provided � > 2 and positivity constraints on the

electron density (Miao et al., 1998). Usually, after a few

hundred to a few thousand iterations, the correct phase set can

be retrieved.

By employing the algorithm mentioned above, we have

performed a few computer modeling reconstructions of

specimens with real and positive electron density. The ®rst

example is a two-dimensional small crystal with a 300 � 300

pixel array shown in Fig. 3(a). The crystal consists of 15 � 15

unit cells and has a size of 75 � 75 nm. Each unit cell (Fig. 3b)

has a size of 5 � 5 nm and 25 randomly distributed `atoms'.

We then border the electron density of the crystal with zero-

valued pixels and generate a 512 � 512 pixel array. By

applying a FFT to the array, we calculate the oversampled

diffraction pattern of the small crystal. This process is math-

ematically equivalent to calculating the oversampled diffrac-

tion pattern directly from the crystal structure of Fig. 3(a) by

using Fourier integration instead of FFT (see Appendix A).

Fig. 3(c) shows the oversampled diffraction pattern in linear

scale of which we truncate the value of the central pixel in

order to display all of the Bragg peaks. Although one cannot

see the intensity between Bragg peaks in Fig. 3(c), it clearly

shows up in Fig. 3(d), where the same diffraction pattern is

displayed on a logarithmic scale. To reconstruct this diffraction

pattern, we de®ne a loose support of a 312 � 312 pixel (or

78 � 78 nm) square, which corresponds to � � 2:7. By

employing the loose support, a random phase set and the

positivity constraints on the real part of the electron density,

we reconstruct the electron density of the whole small crystal.

Figs. 3(e), ( f) and (g) show the reconstructions after 0, 50 and

400 iterations, respectively, where the white area represents

the no-density region. After 400 iterations, a perfect recon-

struction is obtained and the reconstructed unit cell is shown

in Fig. 3(h). The computing time of 400 iterations is ~10 min

on a 450 MHz Pentium II Workstation. Fig. 3(i) illustrates the

convergence of the reconstruction. The error function used to

identify convergence of a solution for an unknown structure is

de®ned as

Ej �
P

x=2s

j�0
j�x�j

2
.

P

x2s

j�0
j�x�j

2

" #1=2

: �5�

We have performed a few more reconstructions of the same

diffraction pattern with different initial random phase sets and

®nd that the reconstructions always succeed, but the conver-

gence speed is somewhat different in each case.

To examine the applicability of this approach to experi-

mental data, we have to study the sensitivity of the algorithm

to noise. In our computer modeling, we add a random noise

de®ned as

Noise � Signal=SNR� Random �6�

to the diffraction pattern, where Signal refers to the intensity

of the diffraction pattern, SNR is the desired signal-to-noise

ratio and the Random function generates an array with its

dimension the same as that of the diffraction pattern and each

pixel value randomly selected between ÿ0.5 and 0.5. We then

add the array of Noise on the diffraction pattern of Fig. 3(c)

with SNR � 20, 10 and 5, respectively. Our algorithm

successfully reconstructs them all. Figs. 3( j) and (k) show the

reconstructed electron density of the whole small crystal and

the unit cell with SNR � 10. [For simplicity, we de®ne SNR

here as a constant instead of a function of signal. A better

noise model would be SNR � �Signal�1=2. Future work on this

aspect of the method is in progress.]

The next test specimen is the same small crystal but with a

few defects inside as Fig. 4(a) shows. We then border the

300 � 300 pixel array specimen with zero-valued pixels and

generate a 512 � 512 pixel array. By applying a FFT to the

array, we calculate an oversampled diffraction pattern shown

in Fig. 4(b). By enforcing the positivity constraints on the real

part of the electron density and using the same loose support

of a 312 � 312 pixel square (� � 2:7) and a random initial

phase set, we reconstruct the electron density from the

diffraction intensity. Fig. 4(c) shows a perfect reconstruction

after 1500 iterations. We then add noise of SNR � 20 on the

diffraction pattern. Fig. 4(d) shows a good reconstruction after

2500 iterations. We have also performed a few more recon-

structions with different initial random phase sets and some-

times get the reconstructed density with the six defects at the

centrosymmetrically inverted positions. We believe that this

alternate solution is due to the ambiguity of the phase and its

conjugate and will further study this phenomenon.

In the next example, we use the same specimen but with

each unit cell at random orientation as shown in Fig. 5(a). Fig.

5(b) illustrates the calculated oversampled diffraction pattern

of the specimen. Owing to the random orientation of the unit

Acta Cryst. (2000). A56, 596±605 Miao and Sayre � Pattern oversampling 599
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Figure 3
Phase retrieval of the oversampled diffraction pattern from a small 2D crystal. (a) The density of a small crystal with 15 � 15 unit cells (a 300 � 300 pixel
array). (b) The electron density of the unit cell with a size of 5 � 5 nm and 25 randomly distributed `atoms'. (c) The calculated oversampled diffraction
pattern (a 512 � 512 pixel array) of the small crystal in linear scale. (d) Same as (c) but on logarithmic scale. (e) A density combining the diffraction
pattern of (c) and a random initial phase set. ( f ) and (g) The reconstructed density after 50 and 400 iterations, respectively, with a loose support of a
312 � 312 pixel array. (h) The reconstructed unit cell after 400 iterations. (i) The convergence of the reconstruction. ( j) The reconstructed density of the
small crystal with SNR = 10. (k) The reconstructed unit cell with SNR = 10.
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cells, this pattern displays a ring structure. By using positivity

constraints on the real part, a random initial phase set and the

same loose support, our algorithm perfectly reconstructs the

electron density after 2800 iterations as shown in Fig. 5(c). We

then add noise of SNR � 20 on the oversampled diffraction

pattern and also nicely reconstruct the electron density.

The ®nal example employs a single unrepeated motif.

Fig. 6(a) shows the original density of a two-dimensional

`molecule' with a diameter of 75 nm and a total of 5625 atoms

inside a 300 � 300 pixel array. We then calculate the over-

sampled diffraction pattern of the molecule shown in Fig. 6(b).

By employing a random initial phase set, a loose support of a

78 � 78 nm (or 312 � 312 pixel) square with � � 2:7 and

positivity constraints on the real part, our algorithm recon-

structs the density after 1800 iterations as shown in Fig. 6(c).

We also succeed in reconstructing the density from a noisy

diffraction pattern with SNR � 20. In the last three examples,

we have also performed a few more reconstructions with

different random initial phase sets and always succeed in

recovering the phase, though the convergence speed is

different in each case.

4. Radiation-damage problem

In x3, we showed that the oversampling technique is so

powerful that it can retrieve the phase directly from the

diffraction patterns of small crystals (either perfect or imper-

fect), repeated motif without orientational regularity, or single

molecules. The crystallinity limitation of X-ray crystallography

can thus be removed. Moreover, this technique is simple to

employ and is generally successful without requiring any

knowledge of the specimen's structure except for a loose

support. The oversampling technique, however, has the

disadvantage that it imposes a high radiation dose compared

to the Bragg-point-only techniques. (At the Bragg points, the

periodicity of the crystal produces, through constructive

interference, a very large ampli®cation of the intensity, of the

order of the number of unit cells in the crystal.) This large

coherency gain can greatly reduce the radiation damage to the

specimens. With the oversampling technique, the intensity

between Bragg peaks as well as the Bragg peaks for small

crystals and the whole continuous and weak pattern for non-

crystalline specimens have to be employed for phase retrieval.

The coherency gain thus disappears and the specimens are

subjected to a high radiation dose. A calculation by Sayre &

Chapman (1995) showed that, in the case of X-ray diffraction

of non-crystalline specimens, the dose rises approximately as

the eighth power of the resolution. While material science

specimens can withstand a high radiation dose, biological

specimens are very sensitive to the dose. Gilbert & Pine

(1992) demonstrated that a radiation dose of 105 Gray

(1 Gray�100 rad) produces immediate morphological

changes and structural deterioration in wet and living cells.

X-ray microscopy studies have shown that, by using chemical

®xation, wet biological specimens can stand up to 106 Gray

radiation dose (Bennett et al., 1993; Williams et al., 1993) and

dry biological specimens can be stable with radiation doses up

to 107 Gray (Williams et al., 1993).

To increase the radiation dose without affecting the

observed structure of biological specimens, more advanced

Acta Cryst. (2000). A56, 596±605 Miao and Sayre � Pattern oversampling 601
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Figure 4
Phase retrieval of the oversampled diffraction pattern from a small crystal with six defects. (a) The density of a small crystal with six defects. (b) A
calculated oversampled diffraction pattern (on logarithmic scale) from (a). (c) The reconstructed density after 1500 iterations with a random initial phase
set and a loose support of � = 2.7. (d) The reconstructed density with SNR = 20 after 2500 iterations.

techniques have to be employed. By cooling the specimens to

liquid-nitrogen temperature, experiments (Maser et al., 1998;

Schneider & Niemann, 1998) have shown that the specimen

can withstand a radiation dose up to 1010 Gray without

observable morphological damage, which, according to Sayre

and Chapman's result, corresponds to ~10 nm three-dimen-

sional resolution. By combining the oversampling and the

cryogenic technique, our previous work (Miao et al., 1999a,b)

should thus be extendable to image whole biological cells and

large subcellular structures at ~10 nm resolution in three

dimensions.

To achieve higher resolution, ¯ash X-ray sources might be

used to record the diffraction pattern. Theoretical studies by

Solem & Baldwin (1982) and by London et al. (1989)

concluded that, with exposure duration of a picosecond,

biological specimens remain morphologically unchanged to an

accuracy of 10 nm. With an even shorter pulse such as may be

obtainable from free-electron lasers (>1012 photons and

<200 fs per pulse), better than 10 nm resolution may be

achieved, though further studies of radiation damage to

biological specimens by hard X-rays are needed. Free-electron

lasers, however, cannot be used in a conventional tomographic

scheme to reconstruct three-dimensional structures from a

single specimen because the specimen will be completely

destroyed after a powerful single pulse. To get a three-

dimensional structure, multiple accurate copies of a specimen

are thus needed. Fortunately, some very important biological

specimens such as single protein or virus molecules can

provide such copies. By combining the oversampling tech-

nique and free-electron lasers, we might therefore obtain high-

resolution three-dimensional structure information of single

protein or virus molecules. Apart from the alleviation of the

radiation-damage problem, free-electron lasers also have

other advantages over other X-ray sources such as synchro-

tron radiation. First, the combination of the oversampling

technique and free-electron lasers can provide the structure

electronic reprint



determination not only of high spatial resolution but also of

time resolution at the sub-picosecond level. Second, the

oversampling technique has to record the weak intensity for

phase retrieval where thermal motion of the atoms inside the

specimen may disturb the high-resolution diffraction pattern.

With free-electron lasers, the thermal-motion problem is a

problem no more, since only a very fast snapshot of the

specimen structure is caught in a diffraction pattern.

5. Conclusions

It is shown, in computer experiments, that the phase problem

can be generally overcome in ®nite specimens (viz in small

perfect or imperfect crystals; repeated motifs without orien-

tational regularity; and unrepeated motifs, such as amorphous

glasses, single molecules or single biological cells) by spatially

®ner measurement of diffraction-pattern intensity than has

been customary in crystallography; i.e. by sampling at spatial

®nenesses in diffraction space corresponding to specimen

(rather than unit-cell) dimensions. The technique requires no

ab initio information beyond approximate knowledge of the

specimen envelope, and appears to have a fair degree of

robustness against noise in the intensity data. It requires,

however, the measurement of many weak diffraction inten-

sities and accordingly involves high radiation dosage to the

specimen; it thus shifts the crystallinity and phasing problems

of X-ray crystallography to the radiation-damage problem.

The problem can be somewhat reduced by using cryogenic

techniques and it may become possible to image biological

specimens such as whole cells and large subcellular structures

at ~10 nm resolution in three dimensions. In the long run, by

employing free-electron lasers, it may be possible to circum-

vent the radiation-damage problem and allow the over-

sampling technique to open a new ®eld for imaging biological

specimens such as single protein or virus molecules at both

high spatial resolution and sub-picosecond time resolution.

A main thrust of this paper is to go beyond Miao et al.

(1999a) in pointing out that the imaging of (a) crystalline and

(b) near-crystalline specimens, as well as of (c) non-crystalline

specimens as treated in that paper, can be assisted by over-

sampling methods; in other words, to point out that over-

sampling may be able to assist within crystallography, as well

as in extensions of crystallography. Speci®cally, this paper

emphasizes that there are not one, but three, types of

samplings that may be of interest in crystal structure analysis

itself. The classical one of course is Bragg sampling, which

provides the ultimate in low-dose/high-resolution imaging but

which also faces the phase problem. The remaining two,

through oversampling, are in principle freed from the phase

problem. In one of these, the sampling is somewhat ®ner than

Bragg sampling (see footnote at the end of x2), and thus must

deal with higher, but perhaps not extremely higher, dose

levels. In the third, the sampling is the ®ner-than-Nyquist

sampling; the dosage level that must be dealt with is then very

high indeed but the method is so general that the imaging can
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Figure 5
Phase retrieval of the oversampled diffraction pattern from a periodically
translated and randomly oriented specimen. (a) The density of the
specimen. (b) A calculated oversampled diffraction (on logarithmic scale)
from (a). (c) The reconstructed density after 2800 iterations with a
random initial phase set and a loose support of � = 2.7.
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extend to arbitrary defect variations on crystallinity (see Figs.

4 and 5).

APPENDIX A
Oversampling theorem

For convenience and brevity, we are here replacing the usual

argument, which is through the convolution theorem and the

reciprocal properties of lattices, by a short direct proof. If the

density of an object is assumed to be �(x), its Fourier trans-

form is

F�k� �
R

1

ÿ1

��x� exp�2�ik � x� dx; �7�

where x is the three-dimensional spatial coordinate in real

space and k the three-dimensional frequency coordinate in

reciprocal space. If we sample F(k) at Nyquist frequency, we

get

F�k� �
P

Nÿ1

x�0

��x� exp�2�ik � x=N�; k � 0; . . . ;N ÿ 1; �8�

where x and k are discretized and range from 0 to N ÿ 1 in

each dimension. If we sample F(k) at twice the Nyquist

frequency, we have

F�k� �
P

Nÿ1

x�0

��x� exp�2�ik � x=�2N��; k � 0; . . . ; 2N ÿ 1:

�9�

We then introduce a new function

g�x� �
��x� 0 � x � N ÿ 1

0 N � x � 2N ÿ 1.

�

�10�

By substituting (10) into (9), we have

F�k� �
P

2Nÿ1

x�0

g�x� exp�2�ik � x=�2N��; k � 0; . . . ; 2N ÿ 1:

�11�

Equation (11) represents the relation between a density

function of g(x) and its fast-Fourier-transform pattern sampled

at Nyquist frequency. This process shows that oversampling

the Fourier transform more densely than the Nyquist

frequency generates a no-density region surrounding the

electron density of the specimen.

The decision to try oversampling as a phasing technique was

arrived at in a conversation between DS and G. Bricogne in

the late 1980's. Dr G. Bon®glioli, working independently in

Italy, has recently been arriving at concepts similar to our own

(private communications). The authors gratefully acknowl-

edge Professor Janos Kirz, Physics Department, State

University of New York at Stony Brook, for his invaluable

contribution to the paper, and Professor Chris Jacobsen, of the

same department, for the use of his computer facility. This

work was supported by the US Department of Energy under

grant DE-FG02-89ER60858.

Figure 6
Phase retrieval of the oversampled diffraction pattern from a single
unrepeated motif (molecule, amorphous glass, biocell etc.). (a) The
density of the `molecule'. (b) A calculated oversampled diffraction (on
logarithmic scale) from (a). (c) The reconstructed density after 1800
iterations with a random initial phase set and a loose support of � = 2.7.
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