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On post-glacial sea level: I. General theory
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S U M M A R Y
Modern analyses of sea level changes due to glacial isostatic adjustment (GIA) are based on the
classic sea level equation derived by Farrell & Clark (1976, Geophys. J.R. astr. Soc., 46, 647–
667). The connection between global sea level variations and changes to ocean height that is as-
sumed within this equation breaks down in the presence of a time-varying shoreline geometry.
We present a generalized sea level equation that overcomes this difficulty. We also derive ana-
lytic expressions for, and present schematic illustrations of, the error in the ocean height change
over finite time intervals introduced in published efforts to incorporate shoreline evolution into
the theory of GIA-induced sea level change. This comparison includes studies of shoreline
migration due to either local sea level changes or the growth and ablation of marine-based
ice. We conclude that the theories applied by Johnston (1993, Geophys. J. Int., 114, 615–634),
Milne (1998, PhD thesis, University of Toronto, Toronto) and co-workers are more accu-
rate than the procedure advocated by Peltier (1994, Science, 265, 195–201; 1998a, Geophys.
Res. Lett., 25, 3955–3958; 1998b, Rev. Geophys., 114, 615–634), although an improvement
in the latter has recently been reported (Peltier & Drummond (2002, Geophys. Res. Lett., 29,
10.1029/2001GL014273). Our generalized theory is valid for any Earth model. In a companion
paper we derive the equations necessary to treat the special case of a spherically symmetric,
linear viscoelastic and rotating Earth, and we quantify errors associated with previous work.
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1 I N T RO D U C T I O N

The calculation of gravitationally self-consistent sea level changes
driven by the melting of ice sheets is a classic problem in geophysics.
Woodward (1988), following earlier work, showed that melting of
ice sheets would be accompanied by highly non-uniform (or non-
eustatic) changes in sea level as a consequence of the direct grav-
itational effects of the surface load. His rigid Earth calculations
were extended by a variety of authors (e.g. Daly 1925) to include
the effects of solid-Earth deformation, culminating in the seminal
treatment of Farrell & Clark (1976) in which an ‘exact method
(was) presented for calculating the changes in sea level that occur
when ice and water masses are rearranged on the surface of elastic
and viscoelastic non-rotating Earth models’ (Farrell & Clark 1976,
p. 647). The ultimate aim of the Farrell & Clark (1976) paper was to
provide a formalism for predicting sea level changes driven by the
growth and ablation of the Late Pleistocene ice complexes. In this
regard, their formalism was intended to replace earlier, more ad hoc,
methods of analysing geological markers of post-glacial sea level
change in applications involving inferences of Late Pleistocene ice
geometries and/or Earth rheology.

The Farrell & Clark (1976) formalism remains a standard pillar
of modern research in glacial isostatic adjustment (henceforth GIA)
and interest in post-glacial sea level change has broadened to re-

flect an ever-increasing set of geophysical applications. Since the
redistribution of ocean mass constitutes, together with the ice load,
the total surface mass load, a robust prediction of any GIA-related
observable, whether it involves sea level markers or not, requires an
accurate prediction of the sea level change.

Farrell & Clark (1976) derived the following ‘sea level equation’
governing GIA-induced perturbations in global sea level, �SL(θ ,
ψ , t):

�SL(θ, ψ, t) = ρI

g
�∗

I I + ρW

g
�∗

O�SL + CSL (t), (I1)

where ρI and ρW are the densities of ice and water, respectively, g
is the gravitational acceleration, θ is the co-latitude and ψ is the
longitude of the sea level change and t is the time. The space–time
evolution of the ice cover is given by I . The symbol � represents a
Green’s function for the potential perturbation that is constructed by
suitably combining viscoelastic surface load Love numbers (Peltier
1974) and the superscript ∗ denotes a convolution over both geo-
graphic coordinates and time. In this case, the subscripts I and O
refer to convolutions limited to the geometry of the ice cover and
oceans, respectively. Finally, CSL is a time-varying and geograph-
ically uniform shift in the geoid that is constrained by invoking
conservation of mass. Integrating the above equation over the ocean
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Figure 1. Schematic illustration of sea-level changes on a viscoelastic earth model, taken from Farrell & Clark (1976, Fig. 6).

geometry yields

CSL (t) = − MI(t)

AOρW
− 1

AO

〈
ρI

g
�∗

I I + ρW

g
�∗

O�SL

〉
O

, (I2)

where M I is the change in ice mass relative to some reference state,
AO is the area of the ocean and the symbol 〈 〉O refers to a spatial
integration limited to the location of ocean. The first term on the
right-hand side of eq. (I2) is the so-called eustatic sea level change.

A primary assumption made in deriving the sea level eq. (I1) is
that the Earth’s ‘response to loads can be accurately represented
by computing the impulsive response of a spherically symmet-
ric model with a linear viscosity and perfect Hookean elasticity’
(Farrell & Clark 1976, p. 666). The sea level equation is clearly an
integral equation because the global sea level change being sought
also appears in two terms on the right-hand side. In practice, the
equation is usually solved iteratively by successively refining a first
guess to the global sea level change (e.g. Farrell & Clark 1976). The
space–time convolution of the Green’s function with global sea level
change is limited to the oceans since it is clear that only ocean height
changes constitute a surface mass loading of the Earth model.

Fig. 1 is a schematic illustration taken from Farrell & Clark (1976)
showing incremental ocean level changes driven by the melting of
a land-based glacier on a viscoelastic planet. The figure involves a
shoreline that migrates landward as local sea level rises and ocean-
ward as it falls. Nevertheless, their subsequent calculations, and
indeed predictions of post-glacial sea level change over the next 15
years (e.g. Peltier & Andrews 1976; Wu & Peltier 1983; Nakada &
Lambeck 1989; Tushingham & Peltier 1991), all assumed that the
shoreline remained fixed as sea level rose and fell through a glacial
cycle. That is, these calculations assumed that the edge of the ocean
basin was characterized by steep cliffs that prevented any onlap or
offlap of water.

The initial numerical procedure developed to solve the Farrell &
Clark (1976) sea level equation was based on a spatial discretization
of the Earth’s surface, including all of the ocean basins and any
regions covered by Late Pleistocene ice, into a set of ‘finite elements’
(e.g. Clark et al. 1978; Peltier et al. 1978; Wu & Peltier 1983). In
this case, the spatial convolution appearing in the sea level equation

could be replaced by a sum over a set of ‘active elements’. A table
providing the response of the Earth as a function of distance from a
set of elements of varying size was pre-computed by assuming that
the element could be replaced by a circular cap of equal area. The
convolution in time was performed analytically by discretizing the
surface mass load into a series of Heaviside step increments.

This early approach to solving the sea level eq. (I1) was cum-
bersome and not widely adopted. As an example, changes in the
spatial resolution of the sea level calculation would require time-
consuming global rediscretizations. Furthermore, the level of error
introduced by using spherical caps as proxies for the actual ele-
ments in computing the response matrices was not established. To
remedy this, Mitrovica & Peltier (1991) derived both fully spectral
and pseudospectral approaches to solving the sea level equation.
The latter scheme has now become the standard tool within the
GIA community. Their approach was formulated for the case of a
fixed ocean–continent geometry and it was based on a slightly al-
tered (but equivalent) form of the Farrell & Clark (1976) sea level
eqs (I1) and (I2):

�S(θ, ψ, t) = C(θ, ψ)�SL(θ, ψ, t), (I3)

where

�SL(θ, ψ, t) = ρI

g
�∗ I + ρW

g
�∗�S + CSL (t), (I4)

and

CSL (t) = − MI(t)

AOρW
− 1

AO

〈
ρI

g
�∗ I + ρW

g
�∗�S

〉
O

. (I5)

In these equations the ocean height change, �S(θ , ψ , t), is com-
puted from the global sea level variation, �SL(θ , ψ , t), by project-
ing the latter on to the so-called ocean function C(θ , ψ) (Munk &
MacDonald 1960); the ocean function has a value of unity over the
ocean and zero elsewhere. By explicitly defining such a projection
in eq. (I3), the spatial convolution need not be a priori ‘limited’ to
the ocean as in eqs (I1) and (I2); rather, the convolution is performed
globally on the field representing ocean height changes.

Using the form (I3)–(I5) of the sea level equation, the pseudospec-
tral algorithm proceeds as follows.
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Figure 2. (a) A schematic illustration of shoreline evolution in the vicinity of a sea level rise or fall (after Milne et al. 1999, Fig. 1). (b) An illustration of the
water load influx into regions vacated by marine-based ice between t = t j−1 and t = t j (Milne et al. 1999, Fig. 2).

(1) Beginning with an initial guess to �S, the global sea level
change �SL is computed from eq. (I4) using a purely spectral for-
mulation in which the ocean and ice height changes are expressed in
terms of spherical harmonic expansions and the spatial convolutions
are performed analytically.

(2) To perform the projection on to the ocean function in eq. (I3),
and for this purpose alone, the global sea level change �SL
computed from step (1) is transformed into the space domain.
The projection is thus reduced to a simple multiplication of grid
elements.

(3) This product is transformed back into the spectral domain to
yield the next estimate of the ocean height change, and the process
is repeated until convergence.

The pseudospectral approach is highly efficient numerically be-
cause it applies fast-transform methods in the move from the spectral
to space domain and back. Furthermore, an increase in spatial res-
olution is achieved trivially by increasing the truncation level (in
powers of two) of the various spherical harmonic expansions. In-
deed, truncation levels of 512 or more are certainly now feasible
using the approach.

Although the sea level eqs (I3)–(I5) solved by Mitrovica & Peltier
(1991) are equivalent to the Farrell & Clark (1976) eqs (I1) and (I2),
the newer treatment involved two somewhat subtle differences be-
yond the obvious change in numerical algorithm. First, Mitrovica &
Peltier (1991) described the global sea level change as a perturba-
tion in the distance between two surfaces, namely the geoid (ocean
surface) and the solid surface, and they provided distinct Green’s

functions for each. More importantly, the connection between ocean
height variations and global sea level changes, at least for the case
of a fixed shoreline, was made explicit in the new treatment (eq. I3),
rather than being implicitly invoked by limiting the bounds of the
spatial convolution.

Over the last decade, numerous efforts to extend previous sea level
predictions based on the Farrell & Clark (1976) theory and/or the
Mitrovica & Peltier (1991) pseudospectral numerical algorithm to
incorporate a time-varying shoreline geometry have appeared (e.g.
Lambeck & Nakada 1990; Johnston 1993; Peltier 1994, 1998a,b;
Milne 1998; Milne et al. 1999; Peltier & Drummond 2002). Fig. 2
illustrates two processes that can lead to a migration of the shoreline.
Fig. 2(a), as in Fig. 1, demonstrates how a local rise or fall in sea level
produces an onlap or offlap, respectively, at the ocean–continent
interface and thus a migration of the shoreline. In Fig. 2(b), the
melting of marine-based ice is followed by an influx of water and a
rather dramatic shift in the edge of the ocean; similarly, the growth
of marine-based ice would lead to a local removal (or replacement)
of water.

The question arises as to whether the Farrell & Clark (1976) the-
ory embodied in eqs (I1) and (I2) remains valid in either of the
situations in Fig. 2? Unfortunately, recent efforts to deal with these
situations have led to significant confusion and ongoing debate.
As an example, Johnston (1993), Peltier (1994) and Milne (1998)
have provided distinct sea level equations for the case of shore-
line migration in the absence of marine-based ice. Peltier (1994),
for example, incorporated shoreline migration by making the ocean
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function time-dependent in eq. (I3); that is by replacing C(θ , ψ)
by C(θ , ψ , t) in the projection between global sea level variations
and ocean height changes. The sea level equations provided by both
Johnston (1993) and Milne (1998) involved a more significant, al-
beit ill-defined, level of revision to the Farrell & Clark (1976) theory.
Most recently, Peltier & Drummond (2002) have introduced a ‘broad
shelf effect’ that improves the theory derived by Peltier (1994). The
connections between all of these various algorithms, and the under-
lying approximations made in each of them, are not clear.

The literature is no less confusing when the process shown in
Fig. 2(b) is considered. Milne (1998) and Milne et al. (1999), who
coined the term ‘water dumping’ to describe the scenario, described
a further revision to their sea level equation to model this process.
Peltier (1998a) independently argued that the process is inherently
‘non-perturbative’ and he performed what appears to be an a pos-
teriori calculation of the amount of ocean water that would have
replaced the ablating ice mass; he then computed the equivalent ice
thickness of this inundation and defined this to be a (dominant) con-
tributor to the ‘implicit’ component of the ice load. Once again, the
connection and differences between the two algorithms is unclear.

To what extent the Farrell & Clark (1976) theory remains valid
in the presence of the processes shown in Fig. 2 is actually a com-
bination of two, somewhat unrelated issues. First, Farrell & Clark
(1976) showed that, in the case of spherically symmetric, linear vis-
coelastic non-rotating Earth models, the GIA-induced perturbation
in global sea level could be written in the form of a convolution of the
potential perturbation Green’s function with the surface mass load
(including both ice and ocean height changes) and conservation of
mass terms (eqs I1 or I4). This is certainly still correct. Indeed, the
only recent extension in this regard is to complement eqs (I3)–(I5)
to include changes in global sea level driven by contemporaneous
GIA-induced variations in the Earth’s rotation vector (e.g. Han &
Wahr 1989; Bills & James 1996; Milne & Mitrovica 1996, 1998a;
Peltier 1998b; Mitrovica et al. 2001). The second issue is whether
the ocean height change can be determined by spatially limiting
the convolution of the global sea level change, as in eqs (I1) and
(I2), when the processes in Fig. 2 are active? Or, in the context of
the Mitrovica & Peltier (1991) formulation of the sea level theory,
whether the ocean height change is always defined as a simple pro-
jection of the global sea level change on to (in the case of Fig. 2) a
time-dependent ocean function, as in eq. (I3)?

This paper deals in detail with the second of these issues by
deriving an exact, generalized relationship between GIA-induced
global sea level variations and ocean height changes across finite
time intervals. We conclude, on this basis, that the traditional the-
ory embodied in eqs (I1) and (I2) cannot accurately treat the case
envisaged by Farrell & Clark (1976) in their Fig. 6 (our Fig. 1), or
the processes illustrated in Fig. 2. We demonstrate the validity of
our generalized sea level theory using a series of schematic illus-
trations. We also provide both analytic expressions and schematic
illustrations of the error in the ocean height change introduced in
previous efforts to incorporate the processes shown in Fig. 2 in the
sea level modelling.

Our theory holds for any type of Earth model because it makes
no assumption as to how the global sea level change is computed.
That is, �SL may be computed from analytic expressions, as in
eq. (I4), for the case of spherically symmetric Earth models, or be
output from a new generation of software being developed to treat
laterally varying Earth models. In a companion paper (henceforth
Paper II) we provide complete analytic expressions that are required
to solve for sea level change on rotating, spherically symmetric
Earth models with realistic shoreline geometries and marine-based

C(t) = 1

G(t)

R(t)

Shoreline

C(t) = 0

Figure 3. Schematic illustration showing ‘sea level’ as the difference be-
tween the geoid and solid surfaces, and ‘ocean height’ (the vertical height
of the shaded region) as the projection of sea level on to the ocean function.
In this and all subsequent figures the dependence of the various fields on the
geographic coordinates θ and ψ is suppressed.

ice. This companion paper will also compare quantitative results
generated from previous forms of the governing sea level theory.

2 T H E O RY

Let us consider the simple geometry shown in Fig. 3. In the figure R
is the position of the solid surface and G denotes the geoid. We define
‘sea level’ as the region bounded by these two surfaces, specifically

SL(θ, ψ, t) ≡ G(θ, ψ, t) − R(θ, ψ, t). (1)

The surfaces G(θ , ψ , t) and R(θ , ψ , t) are absolute heights measured
(for example) relative to the centre of the Earth and they are not to be
confused with perturbations associated with a geophysical process
such as GIA. Our definition (1) follows standard practice in the GIA
literature, where sea level is referenced to the local height of the solid
surface. This practice is motivated by the geological markers of sea
level change, such as uplifted strandlines, that reflect variations in
SL (θ , ψ , t) as opposed to absolute sea level change. A definition of
topography, T , follows trivially from eq. (1) and Fig. 3:

T (θ, ψ, t) ≡ R(θ, ψ, t) − G(θ, ψ, t), (2)

= −SL(θ, ψ, t). (3)

Within oceanic regions the globally defined field, SL (θ , ψ , t),
is equivalent to the ocean height. While this connection might be
deemed trivial, as we illustrate below (and as discussed in the intro-
duction) the relationship between changes in SL and changes in the
ocean height lies at the heart of much of the complexity associated
with recent predictions of GIA-induced sea level change.

To begin, we will derive a sea level theory for the somewhat spe-
cial case where ice complexes include no marine-based components.
That is, we will assume that the ocean geometry evolves due to the
onlap and offlap of water at shorelines (as local sea level rises and
falls) and not due to the growth or ablation of marine-based ice. The
extension required to deal with the latter case is straightforward and
will be described in a subsequent section. There are several reasons
for our approach. First, it will permit us to isolate, for the purposes of
illustration, the rather distinct physical processes occurring at shore-
lines with and without marine-based ice. Secondly, it will permit a
clearer comparison of results from the GIA literature.

2.1 Special case: no marine-based ice

In the absence of marine-based ice, the ‘ocean’ will be defined to
exist at any location where sea level, SL, is positive. In this case, the
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ocean height, S(θ , ψ , t), can easily be derived from eqs (1)–(3) as

S(θ, ψ, t) = SL(θ, ψ, t)C(θ, ψ, t), (4a)

= [G(θ, ψ, t) − R(θ, ψ, t)]C(θ, ψ, t), (4b)

= −T (θ, ψ, t)C(θ, ψ, t), (4c)

where, as described in the introduction, C is the ocean function
(Munk & MacDonald 1960) defined such that

C(θ, ψ, t) = 1 where SL(θ, ψ, t) > 0 (or T (θ, ψ, t) < 0),

= 0 where SL(θ, ψ, t) < 0 (or T (θ, ψ, t) > 0). (5)

Eqs (4) represent a projection of the globally defined sea level, SL,
on to the ocean function. To avoid a common source of confusion,
in what follows we will always refer to SL as sea level and to S as
the ocean height (see Fig. 3 and its caption).

The field of GIA is concerned with the time evolution of sea
level and the ocean height. We assume that the time dependence
embodied in eqs (4) arises from the GIA process. The influence of
GIA enters our theory through its impact on what we might call the
‘primary’ surfaces G(θ , ψ , t) and R(θ , ψ , t), or alternatively their
combination SL(θ , ψ , t) or T (θ , ψ , t). The perturbation to these
primary surfaces leads to variations in the ocean function according
to eq. (5) and the ocean height following any of eqs (4).

Let us denote t = t0 as any time prior to the onset of glaciation,
then the perturbation to the ocean height S from t = t0 to t = t j

represents the change due to GIA during this interval. As in the
introduction, we will denote the change arising from GIA by the
symbol �. We can therefore write

G(θ, ψ, t j ) = G(θ, ψ, t0) + �G(θ, ψ, t j ), (6)

R(θ, ψ, t j ) = R(θ, ψ, t0) + �R(θ, ψ, t j ), (7)

SL(θ, ψ, t j ) = SL(θ, ψ, t0) + �SL(θ, ψ, t j ), (8)

T (θ, ψ, t j ) = T (θ, ψ, t0) + �T (θ, ψ, t j ), (9)

where, following eqs (1) and (2),

�SL(θ, ψ, t j ) = �G(θ, ψ, t j ) − �R(θ, ψ, t j ), (10)

�T (θ, ψ, t j ) = �R(θ, ψ, t j ) − �G(θ, ψ, t j )

= −�SL(θ, ψ, t j ). (11)

Expressions for the perturbations to the geoid and solid surfaces,
�G and �R, respectively, can be derived, for example, from ‘stan-
dard’ theoretical approaches for the case of linear viscoelastic and
spherically symmetric Earth models (see the introduction and Paper
II), or from the output of a new generation of numerical codes being
developed to treat more complex Earth models.

We next turn our attention to the ocean height, S. Using eqs
(6)–(11), eqs (4) for the total ocean height can be rewritten as (for
time t j):

S(θ, ψ, t j ) = [SL(θ, ψ, t0) + �SL(θ, ψ, t j )]C(θ, ψ, t j ), (12a)

= [G(θ, ψ, t0) − R(θ, ψ, t0) + �G(θ, ψ, t j )

− �R(θ, ψ, t j )]C(θ, ψ, t j ), (12b)

= −[T (θ, ψ, t0) + �T (θ, ψ, t j )]C(θ, ψ, t j ). (12c)

Although GIA forward predictions will provide �G, �R, �SL and
�T , they do not directly provide the total value of these fields
at some reference time t0. However, while we do not know, a
priori, the topography at t = t0, we do know the topography at

the present time, t = tp. This knowledge permits one to itera-
tively refine a first guess to T (θ , ψ , t0) (Peltier 1994). This sug-
gests, for the purposes of computation, a useful hybrid version of
eqs (12):

S(θ, ψ, t j ) = [−T (θ, ψ, t0) + �SL(θ, ψ, t j )]C(θ, ψ, t j ). (13)

Given a time-varying global sea level, SL(θ , ψ , t), an exact ex-
pression for the GIA-induced change in the ocean height since the
onset of loading, �S, can be determined using any one of eqs (12)
or (13). However, we begin with a simpler expression derived from
eq. (4a):

�S(θ, ψ, t j ) = SL(θ, ψ, t j )C(θ, ψ, t j ) − SL(θ, ψ, t0)C(θ, ψ, t0).

(14)

A schematic illustration of this expression is provided in Fig. 4.
Specifically, the original ocean is the region between dashed lines
to the left of the ‘original shoreline’, while the new ocean is the
region between solid lines to the left of the new, migrated, shoreline.
Consequently, the ocean height change is given by the total vertical
thickness of the shaded region on the figure.

For the purposes of computation, a more useful expression for
�S can be generated using our so-called ‘hybrid’ eq. (13):

�S(θ, ψ, t j ) = �SL(θ, ψ, t j )C(θ, ψ, t j )

− T (θ, ψ, t0)[C(θ, ψ, t j ) − C(θ, ψ, t0)], (15)

where we have also used �SL (θ , ψ , t0) ≡ 0.
Eq. (15) demonstrates that the change in ocean height over the

interval from t0 to t j is not simply the change in sea level over this
time period projected on to the ocean function at t j. Instead, it is this
projection minus the value of the original topography (or, plus the
value of the original sea level) in a region bounded by the shoreline
evolution from t0 to t j.

In the introduction we indicated that the sea level perturbation
due to ocean loading effects is determined, in the Farrell & Clark
(1976) sea level eqs (I1) and (I2), by limiting the spatial convolution
between the potential perturbation Green’s function and the global
sea level change to the location of the ocean. This is equivalent
to assuming that the change in ocean height is a simple projection
of the change in global sea level on to the ocean function. In the
case of a fixed shoreline, eq. (15) simplifies to eq. (I3) (see also
Section 2.1.1 below) and thus the assumption holds. In the presence
of a time-varying shoreline, eq. (15) indicates that the assumption
made by Farrell & Clark (1976) breaks down.

We examine the validity of eq. (15) in more detail in Appendix
A1, with reference to the individual regions identified in Fig. 4.
Each of the terms in eq. (15) is associated with the height of a set
of regions in the figure and the net result of applying the equation is
shown in the appendix to be equivalent to the ocean height change
indicated by the shaded region in Fig. 4 (and the simple eq. 14).

GIA predictions of post-glacial sea level change are generally
solved at discrete times that define the ice model input into the
calculation. In this case, the sea level algorithms are often formulated
to solve for the sea level or ocean height change over two successive
times, say t j−1 and t j. Using eqs (4a) and (13) we can write

δS(θ, ψ, t j ) ≡ S(θ, ψ, t j ) − S(θ, ψ, t j−1)

= SL(θ, ψ, t j )C(θ, ψ, t j )

−SL(θ, ψ, t j−1)C(θ, ψ, t j−1) (16)

= [−T (θ, ψ, t0) + �SL(θ, ψ, t j )]C(θ, ψ, t j )

− [−T (θ, ψ, t0) + �SL(θ, ψ, t j−1)]C(θ, ψ, t j−1). (17)
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Figure 4. Schematic showing the change in ocean height over the period from the onset of loading, t = t0, to t = t j, in the case of a time-varying shoreline (the
vertical height of the shaded region). The figure is an illustration of eq. (14) in the text. With reference to the various labelled regions on this figure, Appendix
A1 demonstrates the validity of the sea level eq. (15) governing the change in ocean height over the period from t = t0 to t = t j. Note that labels A–I are not to
be interpreted as areas; rather, they represent heights of the associated region as a function of position.

If we use SL (θ , ψ , t j) = SL (θ , ψ , t j−1) + δSL (θ , ψ , t j) in eq. (16),
we can derive a second useful form of eq. (17):

δS(θ, ψ, t j ) = δSL(θ, ψ, t j )C(θ, ψ, t j )

+ SL(θ, ψ, t j−1)[C(θ, ψ, t j ) − C(θ, ψ, t j−1)].

(17b)

Eq. (16) is analogous to eq. (14), with the exception that the former
represents the exact change in ocean height across a single time
increment (given the global sea level SL at the beginning and end of
this finite time interval). Similarly, eq. (17b) is analogous to eq. (15).
The validity of eq. (17) is demonstrated in the main frame of the
schematic Fig. 5 and Appendix A2.

Eqs (15) and (17) represent the so-called ‘sea level equations’
we sought at the outset of this section. As we discussed above, the
derivation of these equations assumes that ice sheets at any time t j did
not extend into regions defined by a non-zero ocean function. That
is, these equations hold for the case in which the time-dependent
ice sheet perimeters played no role in defining the evolution of the
ocean perimeter.

In general, the solution of these equations at each time step re-
quires two separate iterations. Since the GIA-induced perturbations
�SL or δSL arise from surface mass loading, these perturbations
implicitly involve a dependence on the time-varying ocean height
through the ocean load component of the mass load (see eq. I4 for
the case of spherically symmetric Earth models). The ocean height
variation also appears explicitly on the left-hand side of the sea level
eqs (15) and (17), and thus these expressions are ultimately integral
equations. As discussed in the introduction, the solution of this in-
tegral form has commonly involved an iterative scheme in which an
initial guess to the sea level perturbation is successively refined (e.g.
Peltier et al. 1978; Wu & Peltier 1983; Mitrovica & Peltier 1991).
As also discussed above, a second iteration is required to deal with
the appearance of the reference topography, T (θ , ψ , t0) (or, alter-
natively, the reference sea level, SL(θ , ψ , t0)), which is not known
a priori. To consider this issue further, we can combine eqs (3)

and (9) to yield

T (θ, ψ, tp) = T (θ, ψ, t0) − �SL(θ, ψ, tp). (18)

Eq. (18) provides a method for iteratively refining our knowledge
of T (θ , ψ , t0) (see Peltier 1994). Our initial guess for T (θ , ψ , t0)
would be the known field T (θ , ψ , tp). Adopting this guess within
the sea level equation ultimately yields a prediction of the present-
day change in sea level �SL(θ , ψ , tp). This prediction can then be
used, via eq. (18), to provide a second iterate for T (θ , ψ , t0), and
so on.

In the following we first treat the special case of a time-
independent ocean shoreline. We then turn to a discussion of recent
efforts to incorporate time-dependent shorelines in GIA sea level
theory.

2.1.1 A time-independent shoreline

Prior to the 1990s all numerical predictions of post-glacial sea level
change assumed that the location of shorelines remained fixed in
time. Physically, these calculations assumed that the entire ocean–
continent interface was characterized by steep cliffs, which would
preclude onlap and offlap of water as sea level varied in the vicinity
of the shoreline. In this case C(θ , ψ , t j−1) = C(θ , ψ , t j) = C(θ , ψ),
and thus eqs (15) and (17) become

�S(θ, ψ, t j ) = �SL(θ, ψ, t j )C(θ, ψ), (19)

δS(θ, ψ, t j ) = [�SL(θ, ψ, t j ) − �SL(θ, ψ, t j−1)]C(θ, ψ). (20)

In this special case, topography obviously does not enter into the
predictions. The ocean height change is computed from perturba-
tions in sea level derived, following eq. (10), from perturbations to
the geoid and solid surface, and knowledge of the present-day ocean
function. Eqs (19) and (20) represent the sea level equation that has
been adopted, in one form or the other, by the vast majority of GIA
analyses (with expressions for �SL derived under the assumption
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Figure 5. Schematic showing the change in ocean height over the period from t = t j−1 to t = t j in the case of a time-varying shoreline (the vertical height of
the shaded region). The figure, combined with the results in Appendix A2, illustrates the validity of eq. (17) in the text. Inset—a blow-up of the region close to
the evolving shoreline. In this case, C(θ , ψ , t∗j ) represents the ocean function at some time between t j−1 and t j; the regions 2, 3 and 8 on the main figure are
split into areas oceanward of this shoreline (2a, 3a and 8a) and landward of this shoreline (2b, 3b and 8b) within the inset. The inset is described below eq. (23)
of the text and in Appendix A3. Note that labels 1–9 (and subregions) are not to be interpreted as areas; rather, they represent heights of the associated region
as a function of position.

of a spherically symmetric linear viscoelastic Earth model; as in
eqs I3–I5).

2.1.2 Johnston (1993)

Researchers at the Australian National University were the first to
implement a time-varying coastline geometry into predictions of
post-glacial sea level change (Lambeck & Nakada 1990; Johnston
1993). Johnston (1993) provided a detailed description of the algo-
rithm developed for this purpose, and his eq. (10) provides a useful
starting point for comparison. Using symbols introduced above, his
equation reads

SJ(θ, ψ, t j ) =
j∑

i=1

[�SL(θ, ψ, ti ) − �SL(θ, ψ, ti−1)]C(θ, ψ, t∗
i ),

(21)

where the time t∗
i is chosen to be ‘representative of the time interval

t i−1 < t < t i’ (Johnston 1993, p. 618), and the subscript J denotes the

Johnston (1993) approximation. The jth increment in ocean height
is, from eq. (21)

δSJ(θ, ψ, t j ) = [�SL(θ, ψ, t j ) − �SL(θ, ψ, t j−1)]C(θ, ψ, t∗
j ),

(22)

which we can rewrite as

δSJ(θ, ψ, t j ) = [−T (θ, ψ, t0) + �SL(θ, ψ, t j )

− (−T (θ, ψ, t0) + �SL(θ, ψ, t j−1))]C(θ, ψ, t∗
j ).

(23)

Eq. (23) can be compared with our correct expression for the
ocean height change between successive time increments, eq. (17).
Instead of taking the difference between total sea level change pro-
jected on to the associated ocean function, Johnston (1993) approx-
imates this difference by adopting a ‘representative’ ocean function
projection for the total sea level change at both t j−1 and t j.

It is difficult to quantify the error introduced by this approximation
given that the choice of t∗

j was not defined. However, in the inset of
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Fig. 5 and Appendix A3 we explore the error in the ocean height
change introduced, for the simple case illustrated in the main frame
of the figure, when t∗

j is chosen such that the shoreline at t∗
j is half

way between the shorelines at t j−1 and t j. According to eq. (A.8),
the correct expression for the change in ocean height is the addition
of the heights of regions 2–4 (see the shaded region in Fig. 5). The
approximation (23) correctly captures region 4: however, a section
of region 2 (2b in Fig. 5, inset) is omitted; region 3 is replaced by a
double count of subregion 3a; and a portion of region 8 (8a in Fig. 5,
inset) is included in the approximation.

The error in the ocean height change introduced by the Johnston
(1993) approximation is a function of the choice of t∗

j , the size of
the time step and the geometry of the shoreline in the vicinity of the
ocean migration. It is clear from Fig. 5 and Appendix A3 that the
error in the ocean load within each time increment is confined to a
relatively small region close to the location of the shoreline.

2.1.3 Peltier (1994)

Peltier (1994) was next to describe a method for incorporating a
time-dependent shoreline in predictions of post-glacial sea level
change. His governing equation (2) was derived through an exten-
sion of the equation for the time-independent shoreline case (our
eq. 19) to include a time-varying ocean function:

�SP(θ, ψ, t j ) = �SL(θ, ψ, t j )C(θ, ψ, t j ), (24)

where the subscript P denotes the Peltier (1994) approximation. A
comparison of this equation with the correct expression, eq. (15), for
the total ocean height change due to GIA since the onset of loading
indicates that the former omits the second term on the right-hand
side of the latter. Thus, the amplitude of the error in the ocean height
change introduced by eq. (24) is equal to the initial topography
within the region of shoreline migration from t = t0 to t = t j.

Consider again the illustration in Fig. 4. The analysis in Ap-
pendix A1 (see eq. A4) indicates that the error incurred in eq. (24)
is equivalent to the total height of regions C + H + E. This region
is highlighted in Fig. 6. In comparison with the Johnston (1993)

G(t )j

New Shoreline

C(t ) = 10 C(t ) = 00

C(t ) = 1j C(t ) = 0j

Original Shoreline

G(t )0

R(t )0

R(t )j

C

E

H

Figure 6. Re-illustration of Fig. 4 showing the accumulated error in the ocean height change (given by the vertical height of the shaded region) incurred by
adopting the sea level theory outlined in Peltier (1994) from t = t0 to time t = t j (see Section 2.1.3). Note that the labels C, E and H are not to be interpreted
as areas; rather, they represent heights of the associated shaded region as a function of position.

approximation, the error introduced by eq. (24) is relatively large
and it accumulates rapidly as time progresses from t = t0. Over a
single deglaciation (or glaciation) phase, the global shift in ocean
height is ∼120 m, and this value serves as a bound on the amplitude
of the error in �SP. The horizontal scale of the error, defined by the
shoreline migration from t = t0 to t = t j, depends on the geometry
of the local shoreline.

2.1.4 Milne (1998) and Milne et al. (1999)

Milne and colleagues also extended the traditional sea level equation
to consider the case of a time-dependent shoreline migration (e.g.
Milne & Mitrovica 1998b; Milne 1998; Milne et al. 1999). Their
algorithm was first described in Milne (1998) and it was applied to
compute successive increments of ocean height change. Specifically,
they used the equation

δSM(θ, ψ, t j ) = [�SL(θ, ψ, t j ) − �SL(θ, ψ, t j−1)]C(θ, ψ, t j ).

(25)

This equation is similar to the approximation adopted by Johnston
(1993), with the exception that the projection on to the ocean func-
tion at t = t∗

j is replaced by a projection on to the ocean function as
it existed at the end of the time increment (i.e. at t = t j).

To investigate the error in the ocean height change introduced by
eq. (25), we can rewrite it as

δSM(θ, ψ, t j ) = [−T (θ, ψ, t0) + SL(θ, ψ, t j )

− (−T (θ, ψ, t0) + SL(θ, ψ, t j−1))]C(θ, ψ, t j ),

(26)

which can be compared with our correct expression for the ocean
height change between successive time increments (17). Appendix
A4 demonstrates that the error incurred by eq. (26) is equal to the
height of regions 3 + 5 + 8 in Fig. 5. This region is the topography
at time t = t j−1 within the region of shoreline migration from t =
t j−1 to t = t j(see Fig. 5).

Milne (1998) recognized that the error in the ocean height change
incurred by applying the approximation (24) would be large (see
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G(t )0
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Figure 7. The accumulated error in the ocean height (given by the vertical height of the small shaded triangular regions) incurred by adopting the sea level
theory outlined in Milne (1998) from the onset of deglaciation (at t = t0) to some time t = t j in eight discrete steps (see Section 2.1.4).

eq. 22 of Milne et al. 1999, and related discussion) and the algo-
rithm defined by his eq. (25) was intended to improve the accuracy
of predictions in the vicinity of a time-varying shoreline. To under-
stand the nature of this improvement, consider the schematic Fig. 7,
which shows a sequence of geoid and solid surfaces extending from
t = t0 to t = t j in a series of (in this example) eight discrete
time steps. At each time step, the error in the ocean height incre-
ment incurred by eq. (25) is the topography at the last time value
within the region defined by shoreline migration over the time step.
The shaded triangular regions in the figure illustrate the total er-
ror after the eight steps. This total error in the ocean height (or
ocean load) change can be compared with the error introduced by
eq. (24), given by the shaded region in Fig. 6. The error in approxi-
mating δS(θ , ψ , t j) by δSM (θ , ψ , t j) will diminish as the time incre-
ments become smaller, and will be a function of the geometry of the
shoreline.

There is an intriguing special case in which the error introduced
by eq. (25) vanishes. To derive this case we need to re-arrange
eq. (17) into a form that involves the approximation (25) plus an
‘error’ term. We begin by rewriting eq. (17) as

δS(θ, ψ, t j ) = −T (θ, ψ, t0)[C(θ, ψ, t j ) − C(θ, ψ, t j−1)]

+ �SL(θ, ψ, t j )C(θ, ψ, t j )

− �SL(θ, ψ, t j−1)C(θ, ψ, t j−1). (27)

Following eqs (9) and (11), we can replace the original topography
T (θ , ψ , t0) in eq. (27) by T (θ , ψ , t j−1) + �SL(θ , ψ , t j−1). Applying
this substitution, and re-arranging terms gives

δS(θ, ψ, t j ) = C(θ, ψ, t j )[�SL(θ, ψ, t j ) − �SL(θ, ψ, t j−1)]

− T (θ, ψ, t j−1)[C(θ, ψ, t j ) − C(θ, ψ, t j−1)]

= δSM(θ, ψ, t j ) − T (θ, ψ, t j−1)[C(θ, ψ, t j )

− C(θ, ψ, t j−1)]. (28)

This equation verifies our earlier conclusion based on the schematic
Fig. 5 (and Appendix A4); namely, that the error introduced by the
Milne (1998) approximation across the time step t = t j−1 to t =
t j is equal to the topography at t = t j−1 in the region of shoreline
migration across the time step.

When does the error in the Milne (1998) approximation vanish?
Clearly, it does so at any location in which there is no shoreline
migration (i.e. when C(θ , ψ , t j−1) = C(θ , ψ , t j)). However, it also

vanishes wherever the topography T (θ , ψ , t j−1) is zero within the
region of shoreline migration between t = t j−1 and t = t j. This latter
case is illustrated in the schematic Fig. 8. To require that T (θ , ψ ,
t j−1) = 0 in the region of shoreline migration between t = t j−1 and
t = t j is equivalent to requiring that the geoid and solid surface at t =
t j−1 coincide within the zone of migration. As illustrated in Fig. 8,
this requirement is physically satisfied when the shoreline is defined
by a series of small cliffs and plateaux, and where the ocean height
change between time steps is such that the geoid (ocean surface)
moves from the level of one plateau to the next in successive time
increments.

This special case is notable because it is precisely the situation
described by Farrell & Clark (1976) in the figure reproduced as our
Fig. 1 in their classic discussion of post-glacial sea level change.

2.1.5 Peltier (1998b)

Peltier (1998b) was aware that the sea level equation adopted by
Peltier (1994) (eq. 24) neglected a term involving shoreline migra-
tion. In generalizing the theory he described in Peltier (1994), Peltier
(1998b) took a perturbation through the mapping between ocean
height and sea level (eq. 4b), and obtained (Peltier 1998b, eq. 2):

∂S = C[∂G − ∂ R] + ∂C[G − R]. (29)

The second term in this expression for the ocean height change,
which involves the shoreline migration ∂C, was subsequently
dropped because it ‘is always very much smaller than the first term’
(Peltier 1998b, p. 624). Furthermore, in implementing eq. (29), the
perturbation ∂ was interpreted as a change since the onset of load-
ing. Thus, using our symbolism, the final equation governing ocean
height changes became (Peltier 1998b, eq. 3):

�SP(θ, ψ, t) = C(θ, ψ, t)[{G(θ, ψ, t) − G(θ, ψ, t0)}
− {R(θ, ψ, t) − R(θ, ψ, t0)}]

= C(θ, ψ, t)[�G(θ, ψ, t) − �R(θ, ψ, t)]

= C(θ, ψ, t)�SL(θ, ψ, t), (30)

which is identical to eq. (24) in Section 2.1.3.
Peltier’s (1998b) expression (29) provides insight into the problem

of shoreline evolution because it makes clear that the change in the
ocean load will, in general, involve terms in both the evolution of
the shoreline location and the perturbation in global sea level.
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Figure 8. Change in ocean height from t = t j−1 to t = t j on a shoreline defined by a set of discrete cliffs. The change in ocean height (which arises from a
combination of changes in the geoid height and solid surface position) is such that at each time increment the ocean surface reaches the foot of the next cliff
on the shoreline. A detailed discussion of this special case can be found in Section 2.1.4 of the text.

This physics is also evident in our expressions (15) and (17b) for
the ocean height change across a finite time interval. However, these
exact expressions are generated by taking the difference in the ocean
load across the time intervals (see eqs 14 and 16) and thus they can-
not be derived from the perturbation eq. (29) (which is appropriate
for infinitesimal time intervals). As an example, consider the second
term on the right-hand side of eq. (29). Following eq. (30), this term
would be interpreted as the change in the ocean function since the
onset of loading multiplied by the sea level at time t: i.e. �C(θ , ψ ,
t) SL(θ , ψ , t), or [C(θ , ψ , t) − C(θ , ψ , t0)] SL(θ , ψ , t). However,
in the expression (15) for the ocean height change since the onset
of loading, the shoreline migration is multiplied by the original sea
level at the time of load onset, SL(θ , ψ , t0) (or −T (θ , ψ , t0), as in
eq. 15), not the final sea level SL(θ , ψ , t).

2.1.6 Peltier & Drummond (2002)

In two recent articles, Peltier and colleagues have described an im-
provement to the algorithm of Peltier (1994) for computing ocean

load and sea level changes in the vicinity of evolving shorelines
(Peltier & Drummond 2002). Specifically, they introduced a ‘broad
shelf effect’, which ensures that ‘the magnitude of the water load
that can be added to the shelf from the time of last glacial maximum
must be constrained so as to conform to the volume bounded by
the local paleotopography as defined in Peltier (1994) and the local
geoid (mean sea level)’ (Peltier & Drummond 2002, pp. 10–12).
While a detailed mathematical description of the broad shelf effect
is not provided by the authors the correction appears to remedy the
error in the ocean height change since the onset of loading intro-
duced by eq. (24) (see Peltier & Drummond 2002, Fig. 2). (Note
that this error, shown by the shaded region in Fig. 6, violates the
physical constraint on ocean load redistribution described in the
above quote.) Peltier & Drummond (2002) described the impact of
the improvement on predictions of post-glacial sea level change for
a set of sites on the east coast of South America and in northwest-
ern Europe. They found that the error (relative to predictions based
on eq. 24) is largest in regions with extensive and shallow conti-
nental shelves, as one would also expect from our discussion of
Fig. 6.
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2.1.7 Ocean loads versus sea level change

In Sections 2.1.2–2.1.4 we discussed, in detail, errors in ocean height
changes introduced by previous algorithms for computing post-
glacial sea level change in the presence of a time-varying shoreline
geometry. Multiplying these errors by the density of water gives the
associated error in the ocean load variation. Predictions of sea level
change due to GIA are computed by considering the response of
a given Earth model (spherically symmetric, or otherwise) to the
total surface mass (ice plus ocean) load. Thus, errors in the ocean
height change will ultimately map into errors in δSL or �SL. These
errors will directly impact the prediction of relative sea level curves,
which, for a given geographic site, is defined as �SL(t) − �SL(tp).
The errors introduced by the algorithms also map into errors in the
prediction of the time-varying topography (via eq. 11) and therefore
the time-varying shoreline geometry (via eq. 5). As we noted above,
Paper II quantifies each of these issues in detail.

2.2 Including marine-based ice

In this section we extend the sea level equations derived above to
include changes in ocean geometry arising from the growth or ab-
lation of marine-based ice complexes. Consider Fig. 2(b), which is
taken from Fig. 2 of Milne et al. (1999). From some time t j−1 to
t j in Fig. 2(b) a marine-based ice sheet retreats and water floods
into the region vacated by the ice complex. Over this time pe-
riod, the development of the new water load within the ablation
zone is clearly governed by the total sea level in this region as it
becomes ice-free, rather than by any incremental changes in sea
level.

Milne (1998) (see also Milne et al. 1999) coined the term ‘wa-
ter dumping’ to describe the influx of water illustrated in Fig. 2(b)
and extended the sea level algorithm described in Section 2.1.4
to incorporate such effects. The same inundation process was also
considered by Peltier (1998a), who adopted the term ‘implicit ice’
to describe his treatment of the problem. Their two independent
approaches to the problem are distinct. Specifically, Milne (1998)
revised his sea level equation to model the effect of ‘water dump-
ing’ (see Section 2.2.1 below) and his approach incorporated, for
example, local loading and gravitational effects associated with the
water influx as well as the contribution of the effect to ocean mass
conservation terms. In contrast, Peltier (1998a) did not revise his
basic sea level eq. (see Section 2.1.3 and eq. 1 of Peltier 1998a)
to treat the influx process: his predictions of sea level change were
generated using eq. (24) together with an ice load (termed ‘explicit
ice’) prescribed by a global ice model. Peltier (1998a) computed, a
posteriori, the ice-equivalent thickness required to fill the depres-
sions vacated by the ablation of marine-based ice. This thickness
formed the ‘dominant’ contributor to the implicit ice field added to
both paleotopography (Peltier 1998a, eq. 10) and to estimates of eu-
static sea level rise associated with each ice complex (Peltier 1998a,
Fig. 1).

The influx of water into regions vacated by ice leads to a global
drop in the sea surface, which is computed in the Milne (1998)
approach by invoking conservation of mass in their generalized sea
level theory (see Milne et al. 2001, for details). This effect provides
a natural physical link between the ideas of water dumping and
implicit ice. Namely, estimates of ice volumes based on efforts to
fit far-field sea level records (e.g. from Barbados) using post-glacial
sea level theories that do not include the water dumping mechanism
will underestimate ice volumes by an amount roughly equivalent to
Peltier’s (1998a) estimate of the volumes of implicit ice.

Despite this connection, there appear to be fundamental differ-
ences in the two approaches for treating the process in Fig. 2(b).
Milne (1998) and Milne et al. (1999) argued that the water influx
influences predictions of site-specific post-glacial sea level curves
through the loading and gravitational effects described above, and
they quantified this impact. Peltier’s (1998a) site-specific sea level
predictions appear to be unaltered by the process, since the ice load
incorporated into his governing sea level theory (i.e. eq. 24) only
includes the explicit ice component, and since the ‘implicit’ ice does
‘not impact in any way’ (Peltier 1998a, p. 3958) viscosity inferences
based upon these predictions. We have been unable to reconcile these
differences, although we caution that our understanding of the im-
plicit ice algorithm is incomplete.

Peltier (1998a) did not incorporate the water influx process of
Fig. 2 into the sea level eq. (24) because that equation ‘is a con-
struct of first-order perturbation theory and the redefinition of land
to sea is a non-perturbative effect’ (Peltier 1998a, p. 3957). The
generalized sea level equations we have derived (see eqs 15 and
17) include both perturbative and non-perturbative terms. We begin
below by demonstrating that these generalized equations can be ex-
tended to incorporate the water influx process and we then compare
these extended forms with the sea level algorithm derived by Milne
(1998).

Eq. (4a) at the beginning of Section 2.1 holds for the case where
marine-based ice is present as long as our definition of the ocean
function is slightly revised. Specifically, we can write

S(θ, ψ, t) = SL(θ, ψ, t)C∗(θ, ψ, t), (31)

where C∗ is an ocean function defined such that

C∗(θ, ψ, t) = 1 where SL(θ, ψ, t) > 0 (or T (θ, ψ, t) < 0)

and grounded ice is not present,

= 0 where SL (θ, ψ, t) < 0 (or T (θ, ψ, t) > 0)

or grounded ice is present. (32)

That is, we have extended the definition (5) so that the ocean function
is zero in the location of marine-based ice. It would also be possible
to begin our derivation by extending our definition of topography in
eq. (3) to include the height of the ice column and then to assign a
value to the ocean function on the basis of the height of this new
topography field; however, we prefer to proceed with eq. (31) and
to associate changes in topography with perturbations in the geoid
and solid surface alone (i.e. as in eq. 11). We can rewrite eq. (31) to
explicitly include the field C(θ , ψ , t), rather than C∗(θ , ψ , t), as

S(θ, ψ, t) = SL(θ, ψ, t)C(θ, ψ, t)β(θ, ψ, t), (33)

where C is defined as in eq. (5) and

β(θ, ψ, t) = 1 where there is no grounded ice,

= 0 where there is grounded ice. (34)

In this case, the change in ocean height between two successive time
steps becomes (extending eqs 16 and 17):

δS(θ, ψ, t j ) ≡ S(θ, ψ, t j ) − S(θ, ψ, t j−1)

= SL(θ, ψ, t j )C(θ, ψ, t j )β(θ, ψ, t j )

− SL(θ, ψ, t j−1)C(θ, ψ, t j−1)β(θ, ψ, t j−1) (35)

= [−T (θ, ψ, t0) + �SL(θ, ψ, t j )]C(θ, ψ, t j )β(θ, ψ, t j )

− [−T (θ, ψ, t0) + �SL(θ, ψ, t j−1)]C(θ, ψ, t j−1)β(θ, ψ, t j−1).

(36)
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Figure 9. Schematic illustration of a continent margin subject to melting of marine- (and continent-) based ice from t = t j−1 to t = t j. The example is used
within the text to test the validity of the sea level eq. (35).

We can verify the validity of eq. (35) by considering the simple
scenario illustrated in Fig. 9. At t = t j−1 an ice sheet covering the
region has a marine-based component. By t = t j this region has
become ice-free and the ocean height in this region and to the left
has increased. The various values of the fields C and β within the
region, at the two times, are indicated on the figure. Within the
continental region, C(θ , ψ , t j−1) = C(θ , ψ , t j) = 0 and thus, from
eq. (35), the change in ocean height is δS(θ , ψ , t j) = 0, as required.
In the oceanic region to the left of the location of the marine-based
ice sheet at t = t j−1, both β and C are unity at both time values,
and thus the change in ocean height is δS(θ , ψ , t j) = SL(θ , ψ , t j) −
SL(θ , ψ , t j−1), also as required. Finally, within the oceanic region
vacated by the ice sheet, β(θ , ψ , t j−1) = 0 while β(θ , ψ , t j) =
C(θ , ψ , t j) = 1, and therefore, from eq. (35), δS(θ , ψ , t j) = SL(θ ,
ψ , t j). Thus, our sea level equation correctly captures the inundation
of this region as it becomes ice-free.

Eq. (36) represents a generalized sea level equation. The solution
of the equation, as in the case of eq. (17), will require two iterations.
One iteration is related to the successive refinement of the unknown
topography T (θ , ψ , t0) via eq. (18). A second iteration is required to
deal with the integral nature of the equation; namely, that the ocean
load change appearing on the left-hand side is also required for the
computation of the perturbation �SL. The evolution of the ocean
function C can be determined, using eq. (5), from the time-varying
topography.

The field β is prescribed a priori from the adopted global ice
model. In practical applications this prescription sometimes requires
a simple check. Specifically, as the sea level equation is solved
through time, any prescribed column of marine-based ice must be
more massive than the column of ocean that would exist according
to the local sea level. If this is not the case, the ice in this location
would be removed from the prescribed ice model (since, in reality,
it would simply become buoyant). In general (see Paper II) this
requirement yields very minor, if any, modifications to the ice and
Earth models we have considered.

It will be instructive, for the analysis of the next section, to write
our generalized sea level eq. (36) in a slightly modified form. Using
eqs (9) and (11) we have the following identity:

T (θ, ψ, t j ) = T (θ, ψ, t j−1) + �SL(θ, ψ, t j−1) − �SL(θ, ψ, t j ).

(37)

Substituting this relation into eq. (35), and using the relationship
between topography and sea level in eq. (3), yields

δS(θ, ψ, t j ) = −[T (θ, ψ, t j−1) + �SL(θ, ψ, t j−1)

− �SL(θ, ψ, t j )]C(θ, ψ, t j )β(θ, ψ, t j )

+ T (θ, ψ, t j−1)C(θ, ψ, t j−1)β(θ, ψ, t j−1). (38)
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Re-arranging this expression we obtain

δS(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[�SL(θ, ψ, t j )

− �SL(θ, ψ, t j−1)]

+ T (θ, ψ, t j−1)[C(θ, ψ, t j−1)β(θ, ψ, t j−1)

− C(θ, ψ, t j )β(θ, ψ, t j )]. (39)

In practice, the form of eq. (39), which is analogous to eq. (17b),
provides an efficient algorithm for solving our generalized sea level
eq. (36).

2.2.1 Milne (1998) and Milne et al. (1999)

Milne (1998) and Milne et al. (1999) incorporated water influx asso-
ciated with deglaciation of marine-based ice (Fig. 2b) into their sea
level theory. Of course, during the glaciation phase, the development
of marine-based ice would lead to the evacuation of water (rather
than an influx); however, the Milne (1998) algorithm was intended
to model the deglaciation phase alone. Using our symbolism, this
algorithm can be written as (see Milne et al. 1999, eq. 24)

δSM(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[ε(θ, ψ, t j )(�SL(θ, ψ, t j )

−�SL(θ, ψ, t j−1)) + (ε(θ, ψ, t j ) − 1)T (θ, ψ, t j )],

(40)

where we note that the product Cβ appears in eq. (40) because
Milne (1998) and Milne et al. (1999) adopted C∗ (eq. 32) in their
formulation, rather than C (eq. 5). The field ε was defined by Milne
(1998) such that

ε(θ, ψ, t j ) = 0 where ice has retreated from t = t j−1 to t j

= 1 elsewhere. (41)

Our goal in this section is to assess the error in the ocean load
height introduced by eq. (40). To begin, we need to rewrite this
equation into a form amenable to comparison with our generalized
sea level eqs (38) or (39). In Appendix B (eq. B5) we show that the
following is an equivalent form for eq. (40):

δSM(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[�SL(θ, ψ, t j )

− �SL(θ, ψ, t j−1)] − C(θ, ψ, t j )[β(θ, ψ, t j )

− β(θ, ψ, t j−1)]T (θ, ψ, t j−1). (42)

The first terms on the right-hand sides of eqs (42) and (39) are
identical. Our comparison between these equations proceeds by both
subtracting and adding the second term on the right-hand side of
eq. (42) from eq. (39) to generate

δS(θ, ψ, t j ) = δSM(θ, ψ, t j ) + C(θ, ψ, t j )[β(θ, ψ, t j )

− β(θ, ψ, t j−1)]T (θ, ψ, t j−1)

+ T (θ, ψ, t j−1)[C(θ, ψ, t j−1)β(θ, ψ, t j−1)

− C(θ, ψ, t j )β(θ, ψ, t j )]. (43)

Finally, cancellation in the last two terms on the right-hand side of
eq. (43) yields

δS(θ, ψ, t j ) = δSM(θ, ψ, t j ) − T (θ, ψ, t j−1)β(θ, ψ, t j−1)

× [C(θ, ψ, t j ) − C(θ, ψ, t j−1)]. (44)

The second term on the right-hand side of eq. (44) represents the
error in the ocean height change introduced in the sea level equation
derived by Milne (1998) and Milne et al. (1999) for the case of a
time-varying shoreline in the presence of ablating marine-based ice

sheets. This equation is an extension of eq. (28), which provided
an analogous expression for the error in the Milne (1998) sea level
equation in the absence of such ice. In locations where ice existed at
the last time value (i.e. β(θ , ψ , t j−1) = 0) the error term in eq. (44)
would be zero. However, in locations where there was no such ice,
the error in eq. (44) would be the same as the error term in eq. (28);
namely, it would be equal to the topography at t = t j−1 within the
region of shoreline migration across the time step t = t j−1 to t =
t j. Across a single time step this error was illustrated in Fig. 5, with
reference to Appendix A4; the error incurred across multiple time
steps is shown in Fig. 7. As we described in the context of these
figures, the error is zero when: (1) there is no shoreline migration;
(2) the time steps are made vanishingly small; or (3) the shoreline is
characterized by a series of cliffs, the height of which coincides with
ocean height changes across successive time steps (see Fig. 8).

3 F I N A L R E M A R K S

We have presented a generalized sea level equation that governs post-
glacial ocean height changes in the case of a time-varying shoreline
geometry. The validity of the equation has been demonstrated using
a series of schematic illustrations that treat shoreline migration due
to either water onlap or offlap associated with local sea level changes
or the growth and ablation of marine-based ice sheets.

The basic argument underlying our extension is straightforward.
The ocean height (or, if one prefers, depth) can always be computed
by projecting global sea level on to the contemporaneous ocean
function, as in eq. (4a). However, ocean height changes cannot,
in general, be defined by a simple projection of global sea level
changes. In this case, account must also be taken of changes in the
ocean function across the time interval of interest. Exact expres-
sions for changes in ocean height over a finite time interval may be
derived by considering the difference between the ocean height at
the start and end of the time interval. We have provided the required
expressions for changes over either the entire post-glacial time win-
dow or over two successive time increments in the solution of the
sea level equation.

In the last decade, a large number of independent studies have
attempted to apply or modify the traditional Farrell & Clark (1976)
sea level equation to treat the case of a time-varying shoreline. We
have compared these various efforts by deriving, when possible, an-
alytic expressions for the error in the ocean height change incurred
relative to our generalized theory, and by considering an additional
set of schematic illustrations. We conclude that both the Johnston
(1993) and Milne (1998) algorithms for treating sea level change
in the vicinity of a migrating shoreline (in the absence of evolving
marine-based ice) introduce less error into the prediction than the
approach proposed by Peltier (1994). Recent improvements to the
latter (Peltier & Drummond 2002) appear to have led to a level of
accuracy in modelling ocean load changes in these vicinities that is
consistent with the other sea level groups (see also Mitrovica 2002).
Our generalized analysis also shows that it is possible to incorporate
the influx of water into regions vacated by ablating marine-based ice
directly into a sea level equation. Indeed, Milne’s (1998) expression
for the change in the ocean load in this case collapses to our gener-
alized expression when the time increments defining the ice model
are made vanishingly small, in the region vacated by the marine-
based ice sheet at the time of ice retreat, or when the shoreline
is characterized by a set of small cliffs for which the height coin-
cides with local, incremental geoid heights. The latter example has
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particular significance in GIA studies, since it was the case discussed
qualitatively by Farrell & Clark (1976).

Throughout this paper we have assumed that a method is avail-
able for computing global sea level changes, �SL, given an input
surface mass load. In this case, the equations derived herein provide
a practical algorithm for iteratively refining an initial guess to the
ocean load component of the surface mass load until it is consistent
with the computed global sea level variation and the present-day
shoreline geometry. In the case of a spherically symmetric, linear
viscoelastic and rotating Earth model, the sea level response due to
an arbitrary surface mass load is provided by a version of the classic
Farrell & Clark (1976) theory (i.e. eqs I4 and I5) that has been aug-
mented to include rotational effects. In Paper II we provide the full
set of analytic results required to combine this augmented theory
with the generalized sea level equation described herein. These re-
sults will also be applied to quantify the level of error introduced in
previous predictions of post-glacial sea level change in the presence
of a time-varying shoreline.
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A P P E N D I X A

A1 Validation of eq. 15 via Fig. 4

We seek to verify the validity of eq. (15) using the schematic il-
lustration shown in Fig. 4. Using the labels given in that figure we
have

�G(θ, ψ, t j ) = B + C + H + I

�R(θ, ψ, t j ) = −D − C − E − F, (A1)

The first term on the right-hand side of eq. (15) is then

[�G(θ, ψ, t j ) − �R(θ, ψ, t j )]C(θ, ψ, t j )

= B + C + H + D + C + E . (A2)

Next, the original topography is given by

T (θ, ψ, t0) = −A + C + H + E + F + G + I, (A3)

and the second term on the right-hand side of eq. (15) is thus

T (θ, ψ, t0)[C(θ, ψ, t j ) − C(θ, ψ, t0)] = C + H + E . (A4)

Thus, the difference between eqs (A2) and (A4) gives, following
eq. (15),

�S(θ, ψ, t j ) = B + C + D. (A5)

Inspection of Fig. 4 verifies that eq. (A5) is correct.

A2 Validation of eq. (17) via Fig. 5

From Fig. 5 (main frame) we have

− T (θ, ψ, t0) +�SL(θ, ψ, t j ) = SL(θ, ψ, t j ) = 1 + 2 + 3 + 4 − 7

[−T (θ, ψ, t0) + �SL(θ, ψ, t j )]C(θ, ψ, t j ) = 1 + 2 + 3 + 4.

(A6)
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Similarly, for t = t j−1, we have

− T (θ, ψ, t0) + �SL(θ, ψ, t j−1) = SL(θ, ψ, t j−1)

= 1 − 3 − 5 − 6 − 7 − 8 − 9

[−T (θ, ψ, t0) + �SL(θ, ψ, t j−1)]C(θ, ψ, t j−1) = 1. (A7)

Accordingly, following eq. (17), we obtain

δS(θ, ψ, t j ) = 2 + 3 + 4. (A8)

Inspection of Fig. 5 verifies that eq. (A8) is correct. Establishing the
validity of eq. (17b) is straightforward, and would follow the logic
given in Appendix A1 for the regions in Fig. 5 (rather than Fig. 4).

A3 The Johnston (1993) approximation

Eq. (23) in the text provides the approximation adopted by Johnston
(1993) for the change in the ocean height between time increments
t = t j−1 and t = t j. This expression can be explored using the
regions defined within the inset of Fig. 5. Specifically, the term
within square brackets on the right-hand side of eq. (23) is, using
results from Appendix A2,

− T (θ, ψ, t0)+�SL(θ, ψ, t j ) − [−T (θ, ψ, t0) + �SL(θ, ψ, t j−1)]

= 2 + 3 + 4 + 3 + 5 + 6 + 8 + 9. (A9)

The projection required in eq. (23) yields, following the regions
defined in Fig. 5 (inset):

δSJ(θ, ψ, t j ) = 2a + 3a + 3a + 4 + 8a. (A10)

In the text we compare this approximation with the correct expres-
sion given by eq. (A8).

A4 The Milne (1998) approximation

Eq. (25) in the text is the approximation adopted by Milne (1998)
for the change in the ocean height between time increments t = t j−1

and t = t j. We can again explore this expression using the regions
defined in Fig. 5. The term within square brackets on the right-hand
side of eq. (26) is given by eq. (A9). The projection of this quantity
on to the ocean function at time t = t j, as required in eq. (26), yields:

δSM(θ, ψ, t j ) = 2 + 3 + 4 + 3 + 5 + 8. (A11)

A comparison of this result with the correct expression (eq. A8)
indicates that the error in the ocean height change incurred by the

Milne (1998) approximation is equivalent to the total height of the
regions 3 + 5 + 8 in Fig. 5.

A P P E N D I X B

We seek to re-arrange eq. (40) into a form that facilitates comparison
with our generalized sea level theory. The following relationship
holds between the function ε defined by Milne (1998) (eq. 41) and
β (eq. 34):

ε(θ, ψ, t j ) = 1 − [β(θ, ψ, t j ) − β(θ, ψ, t j−1)], (B1)

where, in deriving eq. (B1), we have assumed that if β (θ , ψ , t j−1) =
1, then β (θ , ψ , t j) = 1, as is the case for the monotonic deglaciation
phase treated by Milne (1998). Using this relation in eq. (40) yields

δSM(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[{1 − (β(θ, ψ, t j )

− β(θ, ψ, t j−1))}(�SL(θ, ψ, t j )

− �SL(θ, ψ, t j−1)) − (β(θ, ψ, t j )

− β(θ, ψ, t j−1))T (θ, ψ, t j )]. (B2)

Substituting the identity (37) into eq. (B2) gives

δSM(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[(�SL(θ, ψ, t j )

− �SL(θ, ψ, t j−1)) − (β(θ, ψ, t j )

− β(θ, ψ, t j−1))T (θ, ψ, t j−1)]. (B3)

To continue, we split the two main terms on the right-hand side of
equation (B3) to obtain

δSM(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[�SL(θ, ψ, t j )

− �SL(θ, ψ, t j−1)] − C(θ, ψ, t j )

× [β(θ, ψ, t j )β(θ, ψ, t j ) − β(θ, ψ, t j )

× β(θ, ψ, t j−1)]T (θ, ψ, t j−1). (B4)

Now, β(θ , ψ , t)β(θ , ψ , t) = β(θ , ψ , t). Also, as we discussed
below eq. (B1), if β(θ , ψ , t j−1) = 1 then it must also be true that
β(θ , ψ , t j) = 1 for a monotonic deglaciation phase: hence, the
product β(θ , ψ , t j−1)β(θ , ψ , t j) is simply given by β(θ , ψ , t j−1).
Using these relations in eq. (B4) yields

δSM(θ, ψ, t j ) = C(θ, ψ, t j )β(θ, ψ, t j )[�SL(θ, ψ, t j )

− �SL(θ, ψ, t j−1)] − C(θ, ψ, t j )[β(θ, ψ, t j )

− β(θ, ψ, t j−1)]T (θ, ψ, t j−1). (B5)

Eq. (B5) is the form we sought at the outset (see eq. 42).
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