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Summary. 

Transformations to symmetry, or approximate symmetry, are 

considered. In particular, properties of simple estimates based 

on equitailed order statistics are derived. Examples include 

transformation of exponential and ganuna random variables. Errors 

in previous work are discovered and partially corrected. 

Some key words: 

Symmetry; Transformation; Robustness; Maximum likelihood. 
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1. Introduction. 

Box and Cox (1964) discussed estimation of data transformations 

which would yield variables satisfying a normal-error additive linear 

model. In particular, a family of power transformations was con

sidered, which in its simple form consists of transformations 

A 
- 1 y 

A :J= O , 

= I A 

zx (1.1) 

logy X = O • 

Here y might be an observable quantity or a residual from a fitted 

model. A conventional assumption underlying the use of the transformation 

is that, for some X, ZA has a normal distribution. 

One method of estimating X discussed by Box and Cox is that of 

maximum likelihood. This was further explored by Draper and Cox (1969), 

who derived expressions for the precision of the maximum likelihood 

estimate. Other aspects of normal-theory estimation and inference 

about X in (1.1) have been investigated by Andrews (1971) and 

Atkinson (1973). 

It is frequently assumed in connextion with (1.1) that y is 

positive; if y could be negative many values of X would be clearly 

inadmissible. Note, however, that if 

have a normal distribution only if X 

y is positive then 

is zero or if 
-1 

X 

can 

is an even 

integer. Nevertheless, one can often obtain a transformation for which 

zA, although bounded below, is very nearly normal, or "close enough 

to normal for practical purposes." 
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There are three reservations that one might have about fitting 

(1.1) with a normal distribution assumption by maximum likelihood. 

First, the maximum likelihood method involves a great deal of calculation 

even in the normal case. Secondly, as Andrews (1971) has shown, the 

maximum likelihood method can be very sensitive to outliers; this 

reservation is actually unjustified in the sense that all reasonably 

efficient methods depend critically on the extreme observations. 

Thirdly, if we are aiming to use a linear model for the transformed 

data we may not want to make a normality assumption at any stage for 

fear of non-robustness. We may be planning to use now-popular robust 

methods of analysis (Huber, 1973), and the assumption of normality in 

connexion with (1.1) would seem contradictory. 

In this paper we discuss simple and not-so-simple methods of 

estimating A to give (approximate) symmetry for the distribution of 

zA. The methods are based on synnnetrizing order statistics about the 

median. 

As were Draper and Cox (1969), we are not concerned here with the 

requirement of an additive linear model for transformed data. We do 

assume that the Y's have a common distribution with unknown location 

and scale. 

In Section 2 we discuss a very simple order statistic estimate 

of A and derive its large-sample properties. Corresponding results 

for the normal-theory maximum likelihood estimate are outlined in 

Section 3, which includes corrections to the results of Draper and Cox 

(1969). Section 4 then gives several illustrations of the results, for 

gamma, log normal and other distributions. Generalizations of the 

simple estimate of Section 2 are discussed in Section 5, with an example 

given in Section 6. 
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2. A Quick Estimate. 

2.1. Definition of the Estimate. 

Suppose that Y
1

, ••• ,Yn are continuous non-negative independent 

and identically distributed random variables; the restriction to 

positive variables is necessary if the family (1.1) is to 

be sensible. If there exists a A such that ZA in (1.1) has 

a symmetric distribution, then the p and 1-p quantiles will be 

sytJD11etrically placed about the median. This symmetry of population 

quantiles for ZA suggests a simple method for estimating A, namely 

that of symmetrizing the sample quantiles corresponding to tail 

probabilities p and 1-p for some p. As we suggested in the 

Introduction, ZA cannot have exact symmetry for most A, but we 

assume that a value of A. exists which "nearly" gives symmetry. 

More will be said about this later. 

Let Y
1

, ••• ,Yn have the common distribution function F(y), with 

quantiles r: defined by 
'=>s 

F(I; ) = s 
s 

O<s<l. 

Then we week that transformation in the family (1.1) for which 

(2.1) 

If we denote the ordered values of Y
1

, ... ,Yn by x1 ~ x
2 
~ •.. ~ Xn, 

N 
and define the median X in the usual way, then the sample analog of 

(2.1) is 

O!A - XA -- XA - X~ [ ] x r n-r+l r = np' (2.2) 

which is an estimating equation for A·. There are only two solutions 

to (2.2), one of them being A= 0. However, by comparison with (1.1) 
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.. we exclude A= 0 unless 

N 

X 
= 

xr 

X 
n-r+l 
N 

X 
(2.3) 

which is the condition for sample quantiles of log Y to be synnnetric 

about the median. 

For computation purposes it is easier to rewrite (2.2) in the form 

(2.4) 

The existence of one non-zero solution to (2.4) is easily proved 

directly, or as a special case of the lemma in Section 5. The non-zero 

solution T of (2.4) is positive if and only if 

X -X >'x'2 
r --n-r+l 

and is otherwise negative if (2.3) is not satisfied; this is obviously sensible 

on physical grounds. Moreover it is easy to verify that 

fTf > llog iog{X 1/'x.) - log log(X/X )lfllog{X /x 
1

) 
n-r+ r r n-r+ 

which may be useful in solving (2.4). 

The estimator defined by (2.3) and (2.4) is somewhat naive. One 

would expect that in order to obtain a reasonably efficient estimator one 

would have to combine the equations (2.2) corresponding to several p 

values in some sensible way. This we do in Section 5. However the simplicity 

of (2.2) is appealing, and there is some flexibility in our ability to choose 

p. Also the reasonableness of the basic idea and some generally useful 

properties of the estimator are most easily discussed in the simple case. 

- 4 -
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2 ;2. Properties of the Quick Estimate • 

We have already seen that T, the non-zero estimator satisfying (2.4), 

is unique. We now show that as n ~ 00 the estimator T defined by (2.4) 

has a limiting normal distribution. To do this we use the joint asymptotic 

normality of the order statistics Xr , ••• ,X 
1 rm 

for 

0 <pl< ••• < pm< 1. Specifically, if the original distribution function 

F(y) has density f(y) and quantiles then the vector 

{x , ••• ,X ) has a limiting multivariate normal distribution with mean 
rl rm 

(Sp
1

, ••• ,~m), and covariance matrix determined by 

n cov(Xr ,X ) 
. r. 
1 J 

= pi(l-pj) 

f(I; )f(I; ) 
pi pj 

i ~ j • (2.5) 

The first property of the estimator T that we need is consistency, 

which strictly means that 

T = X + o (1) 
p 

where X is the solution of (2.1); if there is a transformation in the 

class (1.1) giving exact symmetry, then the solution to (2.1) gives it, 

whatever p. Actually consistency is easy to verify from continuity of 

the left-hand side of (2.4) and consistency of X, 
r 

N 

X 
1 

and X for 
n-r+ 

the respective quantiles. 
N 

Note that X is asymptotically equivalent to 

which fact we shall use. 

- 5 -
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Now let us suppose A+ 0, and write 

1 1 

X = I; ( 1 + n -2 W ) X 
1 

= 1;
1 

( 1 + n -2 W ) J r = [ np] , p+q = 1 , 
r p p , n-r+ -p q 

and 

Then the es time.ting equation (2.4) can be written 

where as= 1;s/so.5 and the a's satisfy 

J-+a
1

=2 
p q 

(2.6) 

(2.8) 

by definition. Since T is consistent, expansion of (2.7) about T = A 

gives, using (2.8), 

A 1 1 1 1 
(T-l)(a log a +a-log a)+ ln-2 {a (w -w

0 5
) + a (w -w )l + o (T-1) 

P P q q P P • q q 0.5 P 

That is, to first order, 

2W -J-w -ciw 
,/n(T-1)/1 = 

1
o.5 P P

1 
9 9 

a_ log a + a log a 
p p q q 

1 

+ o (n-2 ) = 0. 
p 

(2.9) 

We then use the limiting joint normality of the W's, whose covariance 

matrix is determined by (2.5) and the transformation (2.6), to obtain the 

limiting normal distribution of T. If we define h-l = I; f(I; ), the 
s s s 

variance of the limiting normal distribution of Jn.(T-A) is found to be 

- 6 -
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An alternative expression, in terms of the p.d.f. g(z) for the transformed 

variable ¾_, is 

4 -2 ( -2 -2) ( -1 -1 -1 -1) 2 -1 -1 A {g1 + pq g + g - 2p g g1 + g g1 + 2p g g ) 
VT(A,p) = 2 P q P 2 q 2 p q 

{(l+AK )log(l+AK) + (l+AK )log(l+AK) - 2(1+AK1)1og(l+AK1)} 2 
P P q q 2 2 

where K is the quantile defined by G(K) = s and g = g(K ). 
s s s s 

Notice that the properties of T are invariant under s~ale change of 

Y, as is immediately obvious from the estimating equation (2.4). 

The above results hold also for A= O, when Z = log Y. Slightly 

more generally, (2.11) for small A may be written as 

-2 < -2 -2> -1c -1 -1) 2 -1 -1 g1 + pq g + g - 2pg1 g + g + ~ g g 
2 P q 2 P 9 P 9 

{~(K
2 

+ K
2 

- 2K
2

) - l A(K3 + K3 - 2K3)}
2 

2 p q ½ b p q ½ 

This contradicts the type of result·obtained by Draper and Cox, but their 

results are wrong as we show in the next section. 

several examples illustrating the results of this section are given in 

Section 4. 

- 7 -
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3, Normal-theory Maximum Likelihood. 

As we pointed out in the introduction, previous work on power 

trangformations has assumed the transformed variable ¾_ to be normally 

distributed; in the simplest case the variables are taken to be homogeneous 

N(µ,,v). Draper and Cox derived large-sample properties of the estimator 

"' 
AN obtained by maximizing the N(µ,,v) likelihood. These properties 

would provide useful standards by which to judge the simple estimate T 

described in Section 2; however some of the Draper and Cox results are 

incorrect and others are incomplete. We therefore briefly outline the basic 

"' 
properties of the normal-theory maximum likelihood estimate AN here. 

The N(µ,, v) likelihood 
L 

e for 

the efficient sccre vector U. given by 

U = ~L = v-l 6 (z .-µ,) 
µ,. oµ, J 

leads directly to 

An obvious feature of the component likelihood equation uA. = 0 is its 

invariance under scale transformation of the original variable Y. 

Provided that the density f(y) of Y is regular and a unique solution 

of E(U.) = O exists, as is the case for standard continuous distributions 

on (0, oo), the normal-theory maximum likelihood estimate converges 

stochastically to the solution of E(U,) = 0 and has a limiting normal 

distribution. 
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Let 8 = {A,µ,,") and denote the norma~-theory m.l.e. by 
,. 
9N with 

limit ~· A standard expansion of the likelihood equation gives 

= { - .! o2r, I ) -1 1 U. ( 9N) + op ( 1) ; 
n o92 9=~ -;n. 

(3.2) 

see, for example, Cox and Hinkley (1974, Chapter 9). Then Jn(8N - 9N) 

has a limiting normal distribution with covariance matrix 

(3.3) 

where 

o~ I nJ = E (- - ) 
N f 082 9=8N 

and 

(3.4) 

here Ef denotes expectation with respect to the density f{y) of Y. 

Note that LJ = I-
1 

only if f is the normal density because I = J 
N N --

only if L is the log likelihood according to the density f. The 

general form (3.3) is required when examining properties of 

non-normal distributions, as we do in Section 4. 

,. 
~ under 

,. -1 
Draper and Cox incorrectly obtain the variance of ~ from I • 

Their method of expanding U. as a power series in A does lead to 

approximations for ,t and ,J up to any order in A, but the results for 

are very complicated {involving the first six moments of ZA) and of 
N 

limited usefulness. In particular cases one can evaluate 

results for the case A= 0 are given in Section 4. 

- 9 -
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4. EXAMPLES 

4.1. Exponential and gamma cases. 

To illustrate the discussion up to this point we first examine in 

some detail the example chosen by Draper and Cox, where the original 

variables Y1, ••• ,Yn are exponentially distributed with density 

f { y) = p exp { -p y) • 

In this particular case (2.2) becomes 

( -log p )1'- + ( - log q / = 2 ( log 2) A , p + q = 1. (4.1) 

The quantiles of yA are 

(4.2) 

and the quantiles Ks(p,p) of ¾_ are given by K = (~-1)/l. A crude 

outlier-free measure of asymmetry for ZA is the "tilt factor" 

~1-s(p,p) - ~0.5(p,p) 'r{s ,p) = _____ .......,...,___ __ 

~o.5(p,p) - ~s(p,p) 
O<s<½ (4.3) 

Note that the non-zero solution A of (4.1) and 'r(s,p) are both independent 
p 

of the scale parameter. 

Table 1 gives some values of 1 and 'r{s,p) for p, s ~ 0.01. 
p 

The entries show that A is very nearly constant for p > 0.10; and, 
p 

related to this stability, there is a high degree of symmetry as far as the 

upper and lower 5% points of the transformed distributions. Much the 

same conclusions were reached by Draper and Cox, who noted that small 

changes in A have little visible effect on the symmetry. The Weibull 

distribution of z
1 

is quite close to normal except in the extreme tails. 

- 10 -
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Table 1. Transformations and tilt factors in the 

exponential case • 

Quantile p 

Transformation 

power A 
p 

Tilt factor 

'T"{s ,P) 

s=0.2 

s=0.1 

• 005 0.01 0.05 0.10 0.20 0.30 o.4o 

.272 0.28 0.291 0.297 0.303 0.305 0.307 

0. 970 O. 978 O. 989 • 995 1. 000 1. 002 1 • 004 

0.963 0.975 0.991 1.000 1.009 1.018 1.015 

s=0.05 0.964 0.979 1.000 1.011 1.023 1.027 1.031 

s=0.02 0.973 0.992 1.019 1.034 1.047 1.054 1.059 

S=0.01 0.985 1.007 1.038 1.055 1.072 1.078 1.084 

The limiting normal distribution of T is s:ale invariant, as we 

noted in Section 2, and hence independent of p. The variance VT is 

given in Table 2 for the same transformations described in Table 1; rows 

below that for the exponential case are defined later. 

Table 2. Large-sample variance VT of the quantile transformation 

estimate for exponential and ganuna distributions. 

p .005 0.01 0.05 0.10 0.20 

r 

1, exponential 0.589 0.582 1.012 1.894 6.271 

2 1.704 1.670 2.968 6.148 19.916 

3 2.841 2. 718 4.507 8.982 36.069 

4 3.977 3.748 5.936 11.442 43.420 

- 11 -
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It is interesting to see that rather extreme order statistics 

give the best precision, p = .01 being close to optimal. This is 

a pity, in a sense, because rather large samples would be required for 

anyone to have faith in the results! Also the method is consequently 

sensitive to outliers. 

A 

The corresponding results for the normal-theory m.l.e. \J are 

easily derived using the efficient score formulae in (3.1) together 

with the identity 

~ dr 
J (log y)r y

8 
e-y dy = - r(l+s) 

0 dsr 
s ~ o, 

which is related to the polyganuna functions. The maximum likelihood 
A 

estimate ~ converges to 0.265 (cf. Draper and Cox's approximation 

0.268), and 

A 

The variance VN of the limiting normal distribution of ./ti(~ - XN) 

is 0.314. Note from Table 1 that A= 0.265 gives a relatively poor 

degree of synunetry. 

The above calculations for the exponential case are easily extended 

to the general gamma density 

f{y) = yr-l e-y; r{r) , 

and we have added such calculations in Tables 2 and 3 for r = 2,3 and 

4. The correct transformation power X 
p 

for T is quite stable at about 

0.32 for these cases, i.e., close to the conventional cube root transformation. 

- 12 -
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As r increases, the transformed variable ZA is closer to symmetry 

(and normality}. 

Table 3. Large-sample limit AN and variance VN of the normal-theory 

MLE of A for exponential and gamma distributions. 

r 1, exponential 

0.2654 

0.314 

2 

0.301 

0.914 

- 13 -
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4.2. Examples with A= O. 

For the special case· A= 0 equation (2.12) gives a simple expression 

the large-sample variance of Jn(T-A ). A corresponding result for 
p 

the normal-theory maximum likelihood estimate is quite easily derived from 

(3.3). Lengthy algebra gives 

where µ,(r) is the 
th 

r central moment of z
0 

= log Y. We now look at 

two specific examples. 

When log Y .has the N(µ,v) · density, {2.12) and (4.4) simplify to 

_ -4 -l(r/J-2 r/J-2 d-1 -1) 
VT - xp v 0.5 + 2p p - 4p"'p r/J0.5 , 

where l{x) = s and r/J = r/J(x) , and 
s s s 

2 -1 
VN = 3 " . 

Some numerical values of VT are given in Table 4. The smallest value 

(4.5) 

of VT occurs at p = 0.01, at which point VN/VT ~ 2/n, rather interestingly. 

Table 4. Large-sample Variances VT for quantile transformation estimate 

in log normal and log double exponential cases. 

p 0.005 0.01 

Normal: "VT 1.15 1.04 

Double 
exponential: 0.881 0.837 

p-2vT 

Note: The variances of 

Normal-theory 

0.02 0.05 0.10 maximum 
likelihood 

1.08 1.48 2.62 0.667 

o.894 1.28 2.39 1.491 

-2 
Y are respectively v and 2P • 

- 14 -
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The effect of unknown A on estimation of ~ and v is seen 

from the complete covariance matrix 

~ = n var(~) 
2 -1 

2 4 
= -\) ~ 

~ 3 3V 

{ v+µ,2)2 2 
• \) + 2~{v+~) 

6v 

2 8 2 
• • 2V + ~ V 

The potentially heavy increase in var{~) due to not knowing A is clearly 

worth investigating in more generality. 

If log Y has a distribution close to the normal, so that the standard-

ized moments y
1 

etc. are of successively 

lower order in some notional parameter, we can approximate VN from (4.4) 

by 

2 -1 16 11 2 
VN = 3" (l - 9 y2 + b yl) • 

In a sense this corresponds to (9) of Draper and Cox, their factor e2 

being incorrect • 

A corresponding approximation for VT is easily constructed from 

(2.12) using a Fisher-Cornish expansion for Ks and an Edgeworth expansion 

for g(z). The result is somewhat complicated and will not be given here. 

A distribution characterising much longer tails than the normal is 

the double exponential, with density 

g(z) = ½ p exp(-plzl) -oo<z<oo. 

If log Y has this distribution, it is. easy to show that (2.12) becomes 

- 15 -



2( )-4( -1 ) VT = P log 2p 2p - 4 

with values as in Table 4. The corresponding value of VN calculated 

from (4.4) is 1.491p2 
so that T 

A 

is superior to ~ in large samples 

for p ~ .06. In terms of the variance v of Z, the smallest value 

6 4 
-1 -1 

of VT here is 1. 7 v , compared to 1.044v in the log-normal case. 

-

- 16 -
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5. GENERALIZATION OF THE QUICK ESTIMATE. 

5.1. The generalization. 

There are several ways in which one could generalize the estimator 

T defined by (2.2). First, we could solve (2.2) for several values of p 

and average the resulting estimates of 0. Secondly, we could, as it were, 

average the equation (2.2) for several p values and then solve for the 

estimator. Other possible methods exist, but this latter method is the 

one we examine here. 

We propose, then, to use theequation (2.2) for several values of p, 

say p
1 

< ••• <pm< 1/2, and in fact to form the combined equation 

m 

2 ~c.x'f 
. 1 J 
J= 

(5.1) 

where r. = [np.]; the solution T = 0 is chosen only if 
J J 

~ c. log{X X 
1

) = 2 ~ c. log(X) , 
J r. n-r.+ J 

J J 

(5.2) 

corresponding to (2.3). The coefficients c
1

, ••• ,cm in (5.1-2) are 

arbitrary weights to be chosen. A more convenient form of (5.1) is 

X X 
r n-r.+1 T 

~ C • { ( "'j ) T + ( N J ) ) = 2 ~ C • • 

J X X J 
(5.3) 

In practice it would be sensible to choose all C 
I

S 
j 

positive, particularly 

if a monotone transformation of Y is symmetrically distributed, since 

otherwise asynmetry of quantile pairs tends to cancel out in the sununation. 

- 17 -



la The existence of a unique non-zero solution to (5.3) for positive 

cj is easily proved by the following lemma. 

Lemma. For arbitrary positive constants 

~c.(a: + b~) = 2 L) c. 
J J J J 

(5.4) 

has a single non-zero real solution unless 

L)c. log(a.b.) = 0 
J J J 

in which case t = 0 is the only solution. 

Proof is obvious by defining a random variable U with values log a. 
J 

and log b. (j = l, ••• ,m), and probabilities 
J 

c./(2~c.) 
J 1 

at U = log a. 
J 

and log b .• Then (5.4) is the equation 
J 

(5.5) 

which has a unique non-zero solution unl~ss E(U) = O. (It is interesting 

to note that the strong ordering a
1 

< ••• <am< 1 < bm < ••• < h
1 

is not 

used here, suggesting that a stronger result holds for T.) 

A useful and obvious corollary of the representation (5.5) is that 

T is negative (positive) if the left side of (5.2) is greater than 

(less than) the right side. 

Although the general equation (5.2) is interesting theoretically for 

any value of m, in practice one might well restrict attention to m = 2 

or 3 and use equal weights C • • 
J 

Potentially the use of m > 1 could 

accomplish two things: (i) increased precision of the transformation estimate, 

(ii) an averaging out of the asynunetry·in Zr when no ¾_ has a 

synunetric distribution. 

- 18 -
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5.2. Large-sample properties. 

The groundwork for establishing large-sample properties of T as 

been laid in Section 2.2. Here we outline the main steps and results. 

By continuity of (5.2) and consistency of the order statistics, T 

is consistent for that value A of A satisfying 
p 

E (;A r;A A 
c j P j + ':>q j ) = 2 E c j ;o. 5 , 

which would be common to all p if ZA is symmetrically distributed. 

By the same expansion route used in Section 2.2 we find that for all A 

Jn(T-A) 
2W

0 5 
- ~ c(rl w + a.A w ) 

• A= • P P q 9 + o (1) . 

:E c(a.A log a + a.A log a ) P 

(5.6) 

p p q q 

(Here and below the suffix j on c., p. 
J J 

and q. 
J 

has been dropped for 

typographical convenience.) The resulting limiting normal distribution 

for T is again obtained from the limiting joint normal distribution of 

order statistics, and using (2.5) the variance VT(A,p) is found to be 

equal to 

VT(A,p) = A
4

[h
2
0 

5 
- 2ho 

5 
LI cp(J h + a.A h ) + LI c

2
{pq(cx2A h

2 
+ r}A h

2
) 

• • pp q q pp q q 

+ 2p 2 a.A a.A h h ) + 2 6 cc ' { pq' ( a.A a\ h h , + J a.A, h h , ) 
p q p q p<p' p p p p q q q q 

+ pp'(aA a.A, h h, + cf._, a.Ah, hq))] 
p q p q p q p 

.:. { :E c(cl- log a + a.A log a )]2 
• 

• p p q q 
(5.7) 

The notation throughout is that of Section 2.2. 

A corresponding expression for ~T in terms of the p.d.f. g(z) 

can be obtained from (5.7) in the 
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same way that (2.11) was derived from (2.10). This siuq,ly amounts to sub

stituting g-l for aA h in the numerator and {l+AK.)log(l+XK) 
S S 8 S S 

- (l+XK0•
5

)1og(l+AK
0

•
5

) for a;- log a
8 

in the denominator of (5.7), 

where we recall that G{K
8

) = s and gs= g(K
8
). 

The result (5.7) as we have given it is for finite m, and would 

apply when m is small relative to n. If all the order statistics X. 
J 

are used, so that m = [~] in (5.1), a corresponding asymptotic result 

can be obtained for a smooth weight function c{x) defined by 

cj = c(n!l) • 

In terms of the p.d.f. g(z) the result is 

_4 {t(½)J2 
- 2t(½)A1(c) + A2(c) + A

3
(c) 

A VT(A,c) = 
2 

{B( c)) 

where w(x) = 1/g{G-
1

(x)) and 

and 

I 
A

1 
(c) =J

O 
c(x)x{w{x) + *Cl-x))dx, 

A
2

(c) = J1 
x{l-x)c

2
(x){w

2
{x) + i,2(1-x))dx, 

0 

A
3

{c) = j j c(x)c(x')[x(l-x'){t(x)v(x') + v(l-x)$(1-x')) 
x<x' 

+ xx'{w(x)v(l-x') + v(1-x)t(x')}]dxdx' 

Jl -1 ) -1( ) -1( ) B(c) = c(x)[{l+AG (x )log{l+AG x }+{l+AG 1-x) 
0 

-1 -1 1) -1(1) log{l+AG (1-x))]dx-2{l+AG (2 )log{l+AG 2 ) . 

A discussion of conditions required for this result will not be given here; 

a recent reference is the paper by Stigler (1974). 
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6. AN EXAMPLE. 

After introducing the generalization of T in Section 5, we need 

to assess what is gained in precision at the expense of complication. 

From calculations we have done it would seem that little is to be 

gained using the generalization. Here we give only one example, the case 

where log Y is normally distributed. 

When 1 = 0 and Z = log Y is N(µ,v), we saw in Section 4.2 

that T has minimum large-sample variance at p = 0.01, where 

o4 -1 
VT = 1. v • Using a simplified form of (5.7) corresponding to {2.12), 

we obtain the results given in Table 4. The right hand column of the 

table gives values of vVT' and the other entries indicate 

the c 's sum to one in each case. 
j 

TABLE 4. 

values of c.; 
J 

Large-sample variance VT of the generalized version of T 

when log Y is N(µ,v). 

p 0.01 0.02 0.05 0.10 "VT 

1 ·O 0 0 1.04 

l. l. 0 0 0.92 2 2 

0 1 0 0 1.08 

½ 0 ½ 0 0.91 

0 0 1 0 1.48 

C 0 ½ 1 0 1.04 2 

0 0 2/3 1/3 1.54 

0 0 ½ ½ 1.64 

0 0 0 1 2.62 

1/3 1/3 1/3 0 o.88 

0 1/3 1/3 1/3 1.12 
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Some general features are apparent from this small set of results. 

Most striking is the fact that if all values of p exceed .05, then m = 1 

(one pair of order statistics) cannot be markedly improved on by m = 2. Use 

of m = 3 with one value of p equal to .01 can give up to 15% 

improvement in precision, which is a little better than using m = 2. 

With p = .05, .10, .15, and .20 and each c. 
J 

equal to 1/4, " VT = 2.23. 

We conclude that it is not possible to escape the extreme tails (p ~ .02) 

and keep precision, unless perhaps m is considerably larger than 3. 

- 22 -



"-' . .• 

7. FURTHER DISCUSSION. 

Use of power transformations such as (1.1) occurs most frequently 

with more complicated linear models than the single mean case discussed 

in this paper. The ability to generalize the estimator T defined by 

(5.1) depends to some extent on whether or not the linear model design includes 

replication. 

Suppose that Yij' j = l, ••• ,ri, are replicates of the i
th 

cell 

of a linear model, meaning that for some A 

e. . • 
l.J (7.1) 

We can generalize (2.2) and (2.3), or (5.1) and (5.2), as follows. 

Let Yi be the median of variables in the i
th 

cell, and define 

Ai. = Y • • fl. , 
J l.J ]. 

j = 1, ... ,ri, i = l, ... ,I. (7.2) 

Then the ordered values of Aij replace the ratios Xi/X in (5.1) and 

(5.2). The estimating equation so defined is not a trivial generalization, 

although the consistency of T for fixed I and large n = LJ is still r. 
]. 

assured. The problem is that the standardization in (7.2) is non-homogeneous, 

the more so if the variability of µi is large relative to that of the 

eij in (7.1). Assuming that the eij are homogeneous errors, it is clear 

that if 

b 
var{Y .. ) a: {E{Y

1
.)) 

l.J J 

then cells with larger 

and hence T, if b > 2 • 

means will dominate the estimating equation, 

For example, if A= 1 in (7.1) then 

b = O and cells with small means dominate T; if A= 0 then b = 2 

and no cell dominates T. 

While we have not examined this problem in any detail, this does seem to be a 

- 23 -



suitable situation for use of the generalization (5.1) with m = [ifi] 

and c. = constant. This has the disadvantage of requiring a large amount 
J 

of computation. 

An example that fits into this discussion is the first numerical example 

in Box and Cox (1964), which is a fourfold replicate of a 3 x 4 design. 

The normal-theory likelihood suggests that 'k = - 1, although one would 

not discount values -1< 'k < 0. The three outmost pairs of ordered Aij's 

each yield the estimate T = 0 by the method of Section 2. Fitting the 

additive two-way linear model by least squares with 'k = -1 and 1 = O 

gives negligible interactions. Normal plots of residuals reveal that 

1 = -1 gives a better fit to normality, although the closeness to symmetry 

is about the same for both 'k = -1 and X = O; in each case there are 

two or three moderately large outliers (not the same data points). There 

is some evidence that extreme A .. 's are associated with large cell means, 
1J 

which suggests that 1 is somewhat negative. Strangely, use of less 

extreme A .. 's indicates 'k to be around 0.5 although there is no consistent 
1J 

value for any particular pair. 

This discussion is intended to suggest that there are difficulties 

with the order-statistic method, particularly in connexion with complex 

models. When one is able to use the simple estimating equation (2.2), 

either in the original form or with the A .. defined in (7.2), the 
1.J 

estimate T should be reasonably constant over the outermost pairs of 

order statistics in order to be convincing. It would be helpful to under

stand more clearly the problem of heterogeneity in the A
1
j's, particularly 

through experience with applications. 

One must conclude, however, that the need to use fairly extreme order 
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statistics in order to achieve precise estimates of X makes the quick 

method of Section 2 unappealing with moderate amounts of data containing 

genuine outliers. It would seem that data transformation in the presence 

of outliers is a risky business. 
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