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We present practical conditions under which the existence and uniqueness of a finite solution 
to a given equality quadratic program may be examined. Different sets of conditions allow this 
examination to take place when null-space, range-space or Lagrangian methods are used to find 
stationary points for the quadratic program. 
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1. Introduction 

M a n y  me thods  for  the  so lu t ion  o f  the  non l inea r  p r o g r a m m i n g  p r o b l e m  

NLP:  min imize  F(x ) ,  

X X  C [~n, 

subject to c(x)>l 0 

proceed by finding the solution p and associated vector of Lagrange multipliers A 
of  a sequence  o f  equa l i ty  quadra t i c  p r o g r a m m i n g  p rob lems  o f  the  form 

EQP:  min imize  ~pTHp + gTp, 

p c IR ~, 

subjec t  to Ap = - d  

for  a p p r o p r i a t e  matr ices  H (n x n symmetr ic )  and  A (t  x n, t ~< n). (See, for  example ,  

Gil l ,  M u r r a y  and  Wright ,  1981, Sect ion 6.7). In  this p a p e r  we examine  condi t ions  

unde r  which  EQP can be  shown to have a finite solut ion.  A l though  it is poss ib le  to 

der ive ana logous  cond i t ions  when A is r ank  deficient ,  this cons ide rab ly  compl ica tes  

any  c o m p u t a t i o n a l  i m p l e m e n t a t i o n  of  the  results  and  adds  litt le to the theory.  

Consequen t ly ,  t h roughou t  this paper ,  we shall  assume that  A is o f  full row rank.  
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Most methods for solving EQP fall into one of three classes; null-space, 
Lagrangian or range-space methods. Null-space methods have the desirable property 
that is possible to deduce that EQP has a unique solution while attempting to find 
it. To date, practical range-space and Lagrangian methods have not been attributed 
with this property. 

It is the purpose of this paper to show that it is also possible to demonstrate that 
EQP has a unique solution in an efficient manner when either Lagrangian or 
range-space methods are used. The characterization is easy to obtain from the matrix 
operators required by such methods. 

We briefly describe the three direct methods for EQP mentioned above: 
(i) Null-space methods: these methods obtain p and h by constructing a matrix 

Z such that A Z  = 0 and rank(A T i Z) =- n and solving the unconstrained problem 

minimize ~ x T a- T ~ p z Z  HZpz  + p z Z  (g+ HAXpa), (1.1) 

pz  ~ ~ n-t 

where AATpa = - d .  Then 

p = Z p z + a T p a  and A = ( A A T ) - I A ( H p + g ) .  

The calculation ofp  and A may theefore be achieved by solving the linear equations 

Aa~p,, = -d ,  (1.2a) 

ZT HZpz  = - z ' r ( g  + H a  Tpa), (1.2b) 

and 

AATA = A ( H p  + g). (1.2c) 

(ii) Lagrangian methods: these methods find p and A directly from the Kuhn- 
Tucker equations (Kuhn and Tucker, 1951) for the problem, viz: 

( H  AO) ( p A )  = (_-g) .  (1.3) 

(iii) Range-space methods: if H is nonsingular, range-space methods find p and 
A by a natural decomposition of the Kuhn-Tucker equations given by 

A H - I  A T A = A H - 1 g  - d (1.4a) 

and 

Hp = ATA - g. (1.4b) 

If H is singular, alternative partitions of the Kuhn-Tucker equations may be used 
to find p and A (see Dembo, 1982; Gould, 1983). However these techniques are 
relatively cumbersome and in these circumstances Lagrangian methods may some- 
times be preferred. 
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The relative virtues of these different techniques are expounded by various authors 
(see, e.g., Djang, 1979; Fletcher, 1981; Gill et al., 1982). Briefly, null-space methods 
are most useful when t is large relative to n and the other methods are more suitable 
when t is small relative to n. Range-space methods may be preferred to Lagrangian 
methods when H is so structured that (1.4b) is trivial to solve. Lagrangian methods 
are sometimes preferred to either of the other techniques as they are simpler to use 
and may have advantages when H and A are large and sparse. Null-space methods 
have a significant advantage in that formulation (1.1) may also be used to say when 
p is a second order point for EQP. For completeness, we quote 

Theorem 1.1. Suppose EQP is as given with A of full:row rank t and Z is constructed 
so that A Z  = 0 and rank(A T i Z )  = n. Then 

(i) EQP has a strong minimizer if and only if  Z T H Z  is positive definite. 
(ii) EQP has weak minimizers if ZT H Z  is positive semi-definite with ZT H Z  singular 

and (1.2b) compatible. 

(iii) EQP has no finite solution in other cases (i.e. when (1.2b) is incompatible or 
ZT H Z  is indefinite). 

Proof. The proof follows directly by applying analogous results for the uncon- 
strained case (for example, Gill, Murray and Wright, 1981, pp. 65-66) to (1.1). (See 
also Orden, 1964). [] 

The projected Hessian matrix, ZTHZ, is thus seen to play a double rgle in 
null-space methods. As EQP has a strong minimizer when Z T H Z  is positive definite, 
it is common that (1.2b) is solved by forming a Cholesky factorization of the 
projected Hessian. Provided that Z T H Z  is 'sufficiently' positive definite (see Gill 
and Murray, 1978) the factorization exists and possesses excellent numerical proper- 
ties. A failure of the factorization process indicates only that Z T H Z  is not sufficiently 
positive definite (i.e. ; numerically indefinite). When z T H z  is 'sufficiently' indefinite, 
a failure of the factorization process indicates that EQP has no finite minimizer. 

Now consider Lagrangian methods. We would ideally like to classify any stationary 
point found by solving (1.3) in the process of finding such a point. As the Kuhn-  
Tucker matrix 

is symmetric, we should like to solve (1.3) using one of the symmetric (indefinite) 
matrix factorizations (see, for example, Bunch and Parlett (1971), Fletcher (1976), 
Bunch and Kaufman (1977), Dax (1982)) which maintain symmetry at all stages 
and require roughly half the storage and effort needed by good methods for 
non-symmetric systems. 

There have been, however, a number of previous classifications of the type of 
stationary point encountered when solving (1.3) (Mann 1943), Afriat ( 1951), Debrau 
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(1952), V~iliaho (1982) - all of these characterisations have been in terms of the 
signs of the principal minors of K. All practical methods for solving (1.3) which 
obtain the required principal minors (for instance, triangulation by elementary 
stabilized matrices and by plane rotations--see Wilkinson, 1965, pp. 236-240) ignore 
the symmetry of K. In Section 2, we give a characterisation of the stationary points 
of (1.3) in terms of the inertia (the number of positive negative and zero eigenvalues) 
of the coeffÉcient matrix K (Theorem 2.1). This information is readily available 
when any of the previously mentioned symmetric factorizations are used to solve 
(1.3). The importance of this characterisation is that, whenever EQP has no finite 
solution, it may be used constructively to find feasible directions along which the 
objective function may be decreased without bound--an  importance ingredient in 
many nonlinear programming algorithms (see Section 4). 

Finally, consider range-space methods. When H is nonsingular, we should again 
like to classify any stationary point found when solving (1.4) as we find such a 
point. Both of the coefficient matrices H and A H - ~ A  v are symmetric; we should 
therefore like to solve (1.4) by forming symmetric factorizations of both matrices. 
A characterization of the nature of the solution to (1.4) is possible knowing just the 
inertia of H and A H - ' A  x (Corollary 2.3) and these inertia are obtained trivially 
during the factorization. When H is singular, it is also possible to construct range- 
space methods to find stationary points for EQP (see Gould, 1983). The matrices 
defining the process are once again symmetric and a characterization of the stationary 
points obtained is again possible knowing the inertia of these matrices (Theorem 2.2). 

In Section 2, we state our crucial results. The proofs follow in Section 3 and a 
discussion is given in Section 4. 

2. The crucial theorems 

Theorem 2.1. Let  K be the K u h n - T u c k e r  matrix 

suppose A is o f  full  row rank and let k_ and ko be the number o f  negative and zero 
eigenvalues o f  K. Then 

(i) EQP has a strong minimizer i f  and only i f  k_ = t, ko=0; 
(ii) EQP has weak minimizers i f  and only i f  k_ = t, k0> 0 and (1.3) is consistent; 

(iii) EQP has no finite minimizers in other cases (i.e., when k _ >  t or (1.3) is 
inconsistent). 

Theorem 2.2. Let  H be o f  rank r <~ n and A be o f  ful l  row rank. Suppose the rows and 

columns o f  H have been ordered so that the principal r × r submatrix H1 o f  H is 
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nonsingular. Suppose furthermore that this induces partitions 

H =  ~ A = ( A I  A2) and g= , 
\H2 ! n 3 / '  

where A] is t × r and  gl is t × 1. Define matrices C, E and  G and the vector c by 

={-H-3-I-A~:~\A2', 0 ] '  ( d  2) 
( H 2 ~  ~ i T 

C = \ A ~ ]  E G = C H ~ C T - E  and c= . 

Then 
(i) EQP has a strong minimizer if  and only if the sum of the number of positive 

eigenvalues of H1 and the number of netative eigenvalues of G is n; 
(ii) EQP has weak minimizers if  and only if G is singular, the sum of the number 

of positive eigenvalues of H~ and the number of nonpositive eigenvalues of G is n and 

Gz = C H l l  g] - c (2.1) 

is consistent; 
(iii) EQP has no finite minimizers in other cases (i.e., when (2.1) is inconsistent or 

when the sum of the number of positive eigenvalues of H~ and the number of nonpositive 
eigenvalues of G is less than n ). 

When H is nonsingular, C = A, E = O, G = A H  ] A T, C = d and n = r. Furthermore, 
in this case, the sum of the number of negative eigenvalues of H and the number 
of positive eigenvalues of H is n, and we obtain the immediate 

Corollary 2.3. Let H be nonsingular and A of full row rank. Then 
(i) EQP has a strong minimizer if and only if  the number of negative eigenvalues 

of H is equal to the number of negative eigenvalues of A H  -1 AT; 
(ii) EQP has weak minimizers if and only if AH-1A  x is singular, the number of 

negative eigenvalues of H is equal to the number of nonpositive eigenvalues of AH-1A  x 

and (1.4a) is consistent; 
(iii) EQP has no finite minimizers in other cases (i.e., when A H - t A  T is singular 

and (1.4a) is not consistent or when the number of nonpositive eigenvalues of AH-I  A x 
is less than the number of negative eigenvalues of H). 

3. Proofs of Theorems 2.1 and 2.2 

Definition. The inertia of the symmetric n × n matrix N is the triple 

In (N)  = (n+, n_, no) 

where n+, n_ and no are respectively the number of positive, negative and zero 
eigenvalues of N. 
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We shall use the fact that n++ n_+ no = n and that, for any nonsingular matrix 
R, the inertia of  R N R  T and N are identical (Sulvesters law of inertia). We establish 
theorems 2.1 and 2.2 from the following lemmas. 

Lemma 3.1. Let It be the t × t identity matrix and let the matrix B have the form 

(°0°i) B =  S 

I, 0 

for any p x p matrix S. Then B has t eigenvalues -1 ,  t eigenvalues 1 and its remaining 

eigenvalues the same as those orS. 

Proof. Straightforward. 

Lemma 3.2. Let Z be any matrix which satisfies the conditions of  Theorem 1.1 and 

K be the Kuhn-Tucker matrix from (1.3). Then there is a nonsingular matrix R such 
that 

R K R  T = 0 z T H z  . 

\ I ,  0 

Proof. As A is of full rank t, there exist a nonsingular lower triangular matrix L 
and a (partitioned) orthogonal matrix ( I  7 i Z )  such that A(17" Z)  = (L" 0) and 17 
is n x t  (see, e.g. Golub and Van Loan, 1983, p. 146). The matrix Z= ,Z ,  so 
constructed, satisfies the conditions of theorem 1.1 and any other suitable Z is 
related by the equation Z = Z U  for some nonsingular (n - t) x (n  - t) matrix U. 

Let V be the nonsingular matrix 

Then 

V=  ti ° U T 

0 

V K V  T = Z LH17 Z T H 

Now, letting W be the nonsingular matrix, 

I! 0 - I  yT  H Y L - I ~  

W =  In_ t - z T H ~ r L - '  I ,  

0 L -I / 
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It is straightforward to show that 

W 
(00 0 !) 

ZT H Z  Z L H Y  ZT HZ 
0 I, 0 

and hence on setting R = WV the lemma is established. 

Lemma 3.3. Let the matrices H~, C and G be as defined in the statement of  Theorem 
2.2. Then 

In (K)  = In(H~) + I n ( - G ) .  

Proof (Haynsworth, 1968). Follows directly from the decomposition 

L_r_r__,,_ 
g:~kCgll I In+t_r]\ 0 ] - a ] (  Ir-' 

and Sylvesters law ofqnertia. 

Definition. Define the inertia of K, H1, G and Z T H Z  as (k+, k_, ko), (h+, h_, ho), 
(g+, g-,  go) and (3+, 3_, 30) respectively. 

Lemma 3.4. 

(k+, k_, ko) = (3+, 3_, 3o)+(t, t, 0) 

= (h+, h , 0 ) + ( g  ,g+, go). 

(3.1) 

(3.2) 

Proof. Equation (3.1) follows by applying Lemma 3.1 to the particular form of 
B, B = R K R  r, formulated in Lemma 3.2. Equation (3.2) follows directly from Lemma 
3.3, recalling that ho = 0 by assumption. 

Proof of Theorem 2.1. From (3.1), 

k + = t + 3 + ,  k _ = t + 3 _  and ko=3o . 

From Theorem 1.1, EQP has a strong minimizer if and only if 30 = 3 = 0, i.e., 
k = t, ko = 0. This proves (i). The matrix z T H z  is positive semidefinite and singular 
if and only if 3_ = 0, 3o > 0 which is true if and only if/Co > 0 and k_ = 0. Equation 
(1.3) is consistent if and only if EQP has at least one stationary point which is if 
and only if (1.3) is consistent. This proves (ii). If (1.3) is inconsistent, EQP has no 
stationary points and hence no minimizers. Finally I~QP has no stationary points 
when 3_ > 0, i.e., when k > t. Thus the theorem is established. [] 

Proof of Theorem 2.2. Combining (3.1) and (3.2) and equating coefficients 

3 + = h + + g _ - t ,  3 = h _ + g + - t  and 3o=go. 
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Furthermore, the dimensionality of Z x H Z ,  H~ and G give 

3 + + 3 _ + 3 o = n - t ,  h + + h _ = r  and g++g  + g o = n + t - r .  

Thus 3 + 3o = n - g -  h+. Hence, from Theorem 1.1, EQP has a strong minimizer if 
and only if 3o = 3_ =0,  i.e., if and only if g _ + h +  = n. This proves (i). The matrix 
Z X H Z  is positive semi-definite and singular if and only if 3 = 0 and 3o > 0 which 
occurs if and only if go > 0 and 3_ = n - ( g - + g o ) -  h+ =0.  Equation (1.2b) is con- 
sistent if and only if EQP has a stationary point. (That is, if there is a vector ( P )  
such that ( 1.3) is satisfied). Using the nonsingularity of H1, ( 1.3) may be decomposed 
to give 

G z  = C H  lgl - c (3.3a) 

and 

H1Pl = - g l  -- c T  z (3.3b) 

- -  P l  g l  where p - (p2), g = (g2), z = (P\) and the remaining quantities are as defined in the 

theorem. Thus as H1 is nonsingular, (1.3) is consistent if and only if (3.3a) is 
consistent. This establishes (ii). Finally, if (3.3a) is inconsistent, EQP has no finite 
minimizers. Furthermore if 3_> 0 then g o + g - +  h+ < n. Thus the theorem is 
proved. [] 

4. Remarks 

There are other proofs of Theorems 2.1 and 2.2 (see Gould, 1983) which depend 
upon properties of the Schur complement of a partitioned matrix (see Cottle, 1974). 

As we have remarked, our classification of the nature of stationary points of EQP 
using properties of the inertia of the relevant coefficient matrices is imporant because 
this inertia is available from symmetric factorizations of these matrices. Whenever 
simple changes (such as might result from active set methods for quadratic program- 
ming) are made to the coefficient matrices, it is often possible to update the existing 
factorizations rather than compute them afresh (see, e.q. Sorensen, 1977). Further- 
more, if the coefficient matrices are significantly large and sparse, frontal elimination 
methods may be used to find sparse indefinite factorizations (Duff et al., 1979; Duff 
and Reid, 1982). 

If EQP has no finite solution, it is often desirable to find a vector p along which 
the objective function may be decreased as much as desired while satisfying the 
constraints (for example, in many nonlinear programming algorithms). The use of 
indefinite symmetric factorizations to calculate such directions have been considered 
by (e.g.) Fletcher and Freeman (1977), Sorensen (1977), More ans Sorensen (1979) 
and Goldfarb (1980) in the unconstrained (i.e., t = 0) case. The null-space method 
of Bunch and Kaufman (1980) also uses such factorizations to calculate a suitable 
p. The results presented here form the basis for the null-space, Lagrangian and 
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range-space procedures  for calculat ing such search directions presented in C o n n  

and  Gou ld  (1983). 
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