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On prediction and the power transformation family

BY R. J. CARROLL AND DAVID RUPPERT

Department of Statistics, University of North Carolina, Chapel Hill

SUMMARY

The power transformation family is often used for transforming to a normal linear
model. The variance of the regression parameter estimators can be much larger when the
transformation parameter is unknown and must be estimated, compared to when the
transformation parameter is known. We consider prediction of future untransformed
observations when the data can be transformed to a linear model. When the
transformation must be estimated, the prediction error is not much larger than when the
parameter is known.

Some key words: Asymptotic distribution; Box-Cox family; Maximum likelihood estimation; Monte-Carlo
simulation; Prediction of conditional median; Robustness.

1. INTRODUCTION

The power transformation family studied by Box & Cox (1964) takes the following
form: for some unknown A and i = 1,...,»,

eh Xi = {\,Cl2,...,Cip), j8' = (/30,...,j81,_1). (1-1)

Here a is the standard deviation; the et are independently and identically distributed with
mean zero, variance one and distribution F, and

y \\ogy (A = 0).

Box & Cox propose maximum likelihood estimates for A and j3 when F is the normal
distribution. There are numerous alternative methods as well as proposals for testing
hypotheses of the form Ho: A = Ao (Hinkley, 1975; Andrews, 1971; Atkinson, 1973;
Carroll, 1980). Carroll studied the testing problem via Monte-Carlo; by allowing F to be
nonnormal he approximated a problem with outliers and found that the chance of
mistakenly rejecting the null hypothesis can be very high indeed.

Bickel & Doksum (1981) develop an asymptotic theory for estimation. For technical
reasons they assume that the design vectors xl,x2, ••• are independent and identically
distributed according to G. If the maximum likelihood estimate of the regression
parameter is J3 when A is known, and /?* = J3(A) when A is unknown and estimated by A, they
compute the asymptotic distributions of n*(ji—j3)/a and rc*(j3* — j3)/a as n -> oo and
a -> 0. These distributions, which are given in the Appendix, are different, and as regards
variances

the cost of not knowing A and estimating i t . . . is generally severe. . . . The problem is that p* and A are highly
correlated.
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Their theoretical and Monte Carlo work indicate that A and fi* are highly variable and
highly correlated, and as discussed in §2, the problem is similar in nature to that of
multicollinearity. An example of the variability of/3* is given in the next section.

These results are somewhat controversial. One point of discussion concerns the scale on
which inference is to be made: i.e. should one make unconditional inference about the
regression parameter in the correct but unknown scale, as in Bickel & Doksum's theory, or
a conditional inference for an appropriately defined 'regression parameter' in an
estimated scale?

In order to eliminate such problems, we will study the cost of estimating A when one
wants to make inferences in the original scale of the observations. In the multicollinearity
problem, reasonably good prediction is still possible if new vectors x arrive independently
with the distribution O. Motivated by this fact, we focus our attention specifically on
prediction, but we also discuss the two-sample problem and a somewhat more general
estimation theory. Using Bickel & Doksum's asymptotic theory and Monte Carlo, we find
that for prediction as well as other problems in the original scale there is a cost due to
estimating A, but it is generally not severe.

2. PREDICTING THE CONDITIONAL MEDIAN IN REGRESSION

2-1. The general case
Our model specifically includes an intercept, i.e. x{ = (l,c,); by suitable rescaling we

assume the c, have mean zero and identity covariance. From the sample we calculate A and
j3*, and we are given a new vector x0 = (1, c0), which is independent of the other z's but
still has the same distribution O. This formulation is simple but hardly necessary; the
design vectors xt could satisfy the usual regression assumptions, and x0 can be thought of
as chosen according to the design. Our predicted value in the transformed scale would be
xofi*, so a natural predictor is/(A, xo/3*) where

(A = 0).

Notice that if F has median equal to 0, then /(A, xofi) is the median of the conditional
distribution of y given x0, even though it is not necessarily the conditional expectation.
Calculation of conditional expectations would require the use of numerical integration
and that F be known or an estimator of F be available. See §3 for further discussion.

A Taylor expansion shows that

\) (2-1)
where

g(X, 6) =f(X, B)/(l+\0), h{\,0) = 0/A-{(l +A0)log(l +A0)}/A2.

Estimates 2 and /?* are unstable and highly correlated, and expansion (2-1) shows that
our problem as presently formulated is quite similar to a prediction problem in
regression when there is multicollinearity.

2-2. Case 1
We now assume that F is a normal distribution, A = 0, a = 1, and the model is simple

linear regression with slope /3t and intercept j30.
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For this special case, likelihood calculations (Hinkley, 1975) can be made. Here the
correct scale is the log scale and E(c{) — 0, E(cf) = 1, E(cf) = p3 and E(cf) = pA. Lengthy
likelihood analysis shows

where
1 -c

—c i r + c 2 —cPoP*

and where

Note that if A were not estimated we would have had So as the identity matrix, and in the
next section we give an example which demonstrates the multicollinearity.

THEOREM 1. Let MSE(A, x0) be the mean squared error for estimating the conditional
median of Y given x0 and A known, while MSE (A, x0) is the same quantity but with A unknown.
Then

where

Note that ^i4 — 1 — n\ — E{(c\ —/i3 cx — 1 )2} ̂ 0 . The quantity (2*2) is a modified form of
the average cost for prediction when A is estimated. If one prefers to assume the design
vectors are constants, then one might think of (2-2) as an average over the design. In either
case the results are encouraging:

(i) there is a cost due to estimating A, but it cannot exceed 50%;
(ii) for the balanced two-sample problem, c( = +1 with probability \, the cost is at most

8% and decreases to zero as pv -*• oo.

2-3. Case 2: Symmetric errors

We now allow A and the number of regression parameters, p, to be arbitrary, but we
assume that F is symmetric about zero.

Here we use the asymptotic theory of Bickel & Doksum, in which n -* oo and a -* 0
simultaneously; see the Appendix for details. We report results only for the simplest case
of an orthogonal design in which

( = 1

It then follows that (A, j3*) is asymptotically normally distributed with mean (A, B) and
covariance a"L1/n, where

S l " e " 1 ' - Z > ' el + D'D\'
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and

D = E{H(xp,\)x}, e = E[{H(xp,X)}2]- ^ [E{xjH(xf!,\)}]2.

It is interesting that in the case of simple linear regression A = 0, Xt is different from but
of the same form as So. More precisely, c is replaced by c+ = c + \ and ^y by

THEOREM 2. As N -*• oo and a ->• 0 /or any A,

||2MSE(A,x0)
011 MSE(A,a;0)

where p is the dimension of the vector j3.

1/p.

The small a asymptotics of Bickel & Doksum tell us that there is a positive but bounded
cost due to estimating A, with the cost decreasing asp increases. Note that Theorem 2 and
Theorem 1 agree for simple linear regression, A = 0, ^ 4 — 1 — y.\ > 0 and j3t -> oo.

Bickel & Doksum and Carroll also simultaneously introduced robust estimates of (A, /3)
based on the ideas of Huber (1977). One can use Bickel & Doksum's small a asymptotics to
show that (i) the cost in robust estimation for estimating A is still 1/p and (ii) Bickel &
Doksum's and Carroll's methods have better robustness properties than does maximum
likelihood.

We conducted a small Monte Carlo study to check small sample performance and to
investigate the results of Theorems 1 and 2. The observations were generated according to
(1+00+0! c, + ei)1M for A = - 1 , and exp(/30 + j3i c( + e,) for A = 0. Here n = 20, the e, are
standard normal, /30 = 5, j3j = 1 and the c( centred at zero, equally spaced, satisfy 2 c2 = n
and range from — 1 -65 to 165. Then y.A = 1-79 and //(/S^ = 106, so that Theorems 1 and 2
lead us to expect very little cost due to estimating A. There were 600 repetitions of the
experiment. Likelihood calculations show that

with correlation matrix

0-27
•
•

1 0-99
1

3-65
50-28

•

0-93
0-92

1

1
18
7

•35

•25
•76

which illustrates the multicollinearity quite well, for if A were known then ?i*(j30 — j30) and
n*(/3! — j30) would be uncorrelated with common variance 1.

In rows 1 to 4 of Table 1, we provide an analysis of the estimates /3J and £f in the case
that A is estimated. The estimates are biased and have much larger mean squared errors
than the estimates /?0 and ^ obtained for the case that A is known.

The remaining rows of Table 1 give the results for the prediction problem. The last row
corresponds to Theorems 1 and 2, although the actual mean squared errors are computed.
It appears that, on the average, our asymptotic calculations are reasonable, and there is
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Table 1. Monte-Carlo results for the model J/j =/So+^iCj + acj,
j30 = 5, and fix = 1; EK and Eu denote expectation when A is known

and unknown, respectively

0o -1-65 | , ) - /(A, ft, -1-660, )}2]
-1-650,) - /(A, 00-1-650,)}2]

, 0o + 0i c0) - /(A, 0Q+0, c0)}
2]

A= -1-0
0-44

0-20

12-9

4-0

—

—

A = O0

0-60

0-26

9-6

4-0

1-35
1-27*
2-27f

1-08
1-01*
2-OOt

, 0o+0i c0)-/(A, 00+0, c0)}
2]

* The value predicted by a likelihood analysis using So.
•(• The value predicted by the small a analysis using £,.
For the last entry, c0 is randomly chosen from the design.

only a small cost involved in estimating A for prediction. To read rows 5 and 6, we note that
to this point we have defined the cost of estimating A as an average over the distribution of
the new value x0. It is also of interest to study the costs conditional on a given value of x0.
For Case 1 when xQ = (1, c0) and A = 0 we find that

MSE (A = 0, x0)

while for Case 2 this limit is T^Cg./S), where

T (̂c0, /3) = a!.jaT (j = 1,2), a = [ —i

Rows 5 and 6 of Table 1 give the ratios of the mean squared errors at two points, the centre
and an extreme of the design. As expected from Theorems 1 and 2, there is only a slight
cost due to estimating A, and the small a asymptotics of Bickel & Doksum are somewhat
conservative.

3. PREDICTION OF THE CONDITIONAL MEAN

The estimator in § 2 is the median of the conditional distribution oft/ given xQ. Our focus
in this section is on estimating the conditional mean of y given x0.

We sketch a general result which indicates that the cost of extra nuisance parameters,
such as A, is not large. We assume a regression model with (Y,, X{) having a joint density
g(y, x\ 0O). As in normal theory regression we assume

9(V>x\eo) = 9i(y\x>eo)92(x)-

Letting LH(6) denote the log likelihood, we make the usual assumptions:

E{L'm(60)} = 0,

E{L'n(0o)L'n(do)
T} = -E{L:(60)} = H0o), (3-1)
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where 6n is the maximum likelihood estimate, q is the dimension of the parameter dQ and
the prime denotes differentiation with respect to 6 at 6 = d0. We are given a new value x0

and wish to predict ^(y|x0); the natural estimate, which usually is only computable
numerically, is

MY\zo)=
Taylor expansion shows that

An(60, x0) = n*{(£(Y \xo)-E(Y\ x0)}

^\{y-E(y\x0)}l^\oggl(y\x0,eQ)ln*(en-e0)gl(y\x0,e0)dy

= \{y-E(y\xo)}\^logg(y,xo\eQ)\nHdl,-6o)gl(y\xo,0o)dy. (3-2)

An overall measure of the accuracy of the prediction is E{A1(6Q, x0)}; (31) and (3-2) and
Schwarz'8 inequality show that for a sample ¥

E{A2(0o,xo)\<f} <var{,/-J0(t,|zo)}n*(0,1-0o)T7(0o)n*(0n-0o).

Since n*(0B — 60)
T I(60)ri*(6H — 6Q) converges in distribution to a chi-squared variable with

q degrees of freedom, this suggests that

E{A2
n(60,x0)} ^qv&r{y-E(y\x0)}. (3-3)

Equation (3-3) shows that in prediction with q parameters the average squared prediction
error is bounded, and this bound increases in relative magnitude by r/q when r additional
nuisance parameters are added. A similar result holds for the two-sample problem.

Example. Consider the transformation model (1-1) but take A = 1; this means one uses
the Box-Cox model when transformation is unnecessary. If there are p regression
parameters, then q = p +1 when A = 1 is known and

E{A2(d0,x0)} = v&i{y-E(y\xo)}p.

When one estimates A, (3-3) shows that

E{Al(6Q,x0)} ^ v*T{y-E(y\xo)}(p + 2).

Thus, the relative cost of estimating A is at most 2/p, which agrees qualitatively with
Theorem 2.

We thank Professors Bickel and Doksum for providing a copy of their paper and the
referee for his helpful comments.

APPENDIX

Some asymptotics
Suppose that the distribution function F is symmetric. In the theory of Bickel &

Doksum (1981), it is assumed that a = nj where r = r(n) is a known sequence tending to
zero and rj is unknown and fixed. Define

A = (xlt...,xa)
T, P = A(ATA)-1Ar, Q = (ATA)-lATdT, d = (du ...,dn).

, e = ddr-dPdr.
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Assuming^that e converges to a positive limit, they prove after very detailed calculations
that 7i*{(A — A)/a, (/3*—/3)/<r, (rj — r))/v} *B asymptotically normally distributed with mean
zero and covariance

lim e l

-» oo

1

0

-Q
i-lATA)~1

0
e + QQT

0
0

h
Hence when A is estimated one adds to the covariance of 0* the term lim (QQ7 e *), which
is positive-semidefinite and, as the example shows, can often be much larger than the
covariance of 0 when A is known. It is this extra term which causes the instability of the
regression estimate £* when A is estimated.
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