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On Prefilters for Digital FIR Filter Design 

P. P. VAIDYANATHAN AND G. BEITh4AN 

Absrruct -A new family of digital prefilter structures is introduced, 
based on the Dolph-Chebyshev function. These prefilters can be combined 
with appropriately designed “equalizer” filters based on equiripple meth- 
ods, leading to efficient FIR digital filter designs. Design examples are 
included, demonstrating the simplicity of the resulting designs, as compared 
to conventional equiripple designs. 

I. INTRODUCTION 

In a recent paper [l], Adams and Willson introduced a novel 
technique for the design of linear phase FIR digital filters with 
very few multipliers. This technique can be briefly outlined as 
follows: Given a set of specifications on the frequency response 
in terms of cutoff frequencies and attenuation tolerances, the 
transfer function H(z) is obtained as a cascade of two transfer 
functions Hi(z) and H2( z). One of these transfer functions 
H2( z), which is called the “prefilter,” is extremely simple to 
implement, requiring very few additions and no multiplications. 
The prefilter Hz(z) provides a reasonable stopband attenuation, 
but has poor passband response. The filter H,(z) which is 
designed by appropriately modifying the Parks-McClellan al- 
gorithm [2] compensates for this, leading to an overall filter H(z) 
that meets all the specifications. The order of HI(z), which is 
called the equalizer, is typically much lower than the order of an 
equiripple filter designed directly with the Parks-McClellan al- 
gorithm. This is partially because H*(z) already contributes to 
some attenuation in the stopband. The overall implementation is, 
therefore, simpler than that of a conventional approach. 

A number of prefilter functions are presented in [l] and [3], 
most of them being based on the “Recursive Running Sum,” 
(RRS) defined to be 

R(z) cl+ z-1 + . . . + z-CL-l) 

=(l-z-L)/(l-z-i). 0) 

The function R(z) is a lowpass function having equispaced zeros 
on the unit circle, and provides a minimum stopband attenuation 
of about 13 dB (with respect to the passband peak at o = 0). The 
implementation requires only two adders and L delays. 

The purpose of this paper is to introduce newer prefilter 
structures, based on the well-known Dolph-Chebyshev functions 
[4], which are low-pass functions based on the Chebyshev poly- 
nomial. Our motivation for this choice is twofold. First, these 
functions are optimal in the sense that the stopband has equirip- 
ple behavior, offering the largest possible attenuation for a given 
order. Second, the implementation of these functions involves 
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Fig. 1. The Dolph-Chebyshev function. 

Fig. 2. Implementation of r,( XK) 

only the coefficients of Chebyshev polynomials, which turn out to 
be extremely ,simple combinations of powers of two, for low 
orders. For example, consider the seventh-order Chebyshev poly- 
nomial: 

T,(X)=64X7-112X5+56X3-7X. (2) 

This can be implemented as 

T7(X)=26X7-(27-24)x5+(26-23)x3-(23-1)x (3) 

requiring no multiplications. 

II. NEW PREFILTERS BASED ON CHEBYSHEW POLYNOMIALS 

The Dolph-Chebyshev function of order M and cutoff 
frequency uc is defined as 

Fig. 1 shows a typical magnitude response plot of this low-pass 
function. The minimum stopband attenuation is 

A,=201og,,,T,,(X,). 

It is clear that, for a given M, the attenuation increases as uf is 
increased, and that for fixed u,, the attenuation increases with 
M. In general, a large M implies a larger complexity of the 
prefilter and hence, a better way of increasing the attenuation is 
to design the prefilters according to 

If&( e@‘) I = IG.,(XK)/%(X:) I 
where K is a positive integer > 1. We, therefore, have a family of 
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Fig. 3. (Continued). Example 3.1. (f) Overall filter response, with RRS pre- 
filter. (g) Passband details for RRS-based design. 

prefilters for lowpass designs, each member in the family being 
indexed by the triple (M, K, 0,). The choice of M, K and w, 
depends upon the given filter specifications. Thus consider a 
typical lowpass specification, with passband edge at wp and 
stopband edge at wS. Clearly wE should be in the range w, Q wc < 
B. Moreover, w, should be as close to o, as possible, so that the 
attenuation due to the prefilter encompasses the entire stopband 
o, < o < rr. However, smaller is o,, lower is the attenuation 
obtainable from the prefilter (Equation (6)). Thus for narrow-band 
filters a large M might be required, which leads to a large 
dynamic range in the coefficients of 7’,‘,(X), and the prefilters 
then tend to get complicated. This difficulty can be avoided by 
designing the prefilter Hz(z) according to 

Consider a low-pass specification with bandedges wp = 0.04211, 
o, = 0.146~, A, = maximum passband attenuation = 0.28dB, A, 
= minimum stopband attenuation = - 36 dB. A direct design 
based on the Parks-McClellan algorithm leads to an equiripple 
filter of order 33, requiring 17 multipliers. 

A prefilter of the form: Hz(z) = ~2(z2)Z?2(z) where 
]fi2(eiw)] = ]Ts(X2)/Ts(X2)] with w, = 0.295167211 is ideally 
suited to obtain an efficient design. Fig. 3(a) shows the prefilter 
response. The above value of w, corresponds to the value of 
MC =1.25 = (l.Ol), which is a “2-bit” multiplier. With this choice 
of H,(z), the equalizer H,(z) requires an order of only 13, which 
corresponds to 7 multipliers. 

H2(z)=Ijz(z2)Ij2(z) (7) 

where &(z) is of the form of (6) with o, being nearly equal to 
2~0, rather than wS. The prefilter of (7) is not equiripple in its 
stopband anymore but provides excellent attenuation. 

The choice of M should be made carefully. If M is large, then 
H, (z) nrovides a good attenuation in the stonband. but at the 

Fig. 3 also shows the frequency-response plots of the equalizer 
Hl( z) and the overall filter H,(z) H*(z), and also of the conven- 
tional equiripple designs. Note that the equalizer contributes very 
little to the stopband attenuation. The impulse response coeffi- 
cients h,(n) of HI(z), shown in Table I, are reasonably small 
numbers and do not lead to any sensitivity problems. 

The specifications of this example can also be satisfied by 
using a recursive running sum as a prefilter. Thus following the 
design rules in [l], the number of taps for the RRS would be 

- .  I  * .  ,  
L = 2?r/w, =13.7, and the choice L =13 is proper. With the 

TABLE I 
IMPULSE RESPONSECOEFFICIENTS~,(~)FORTHEEQUALIZEROF 

EXAMPLE 3.1 

Filter Lsrqlh * 14 

impulse rarponra 

h( I 1 ’ -0.5745 = htl41 

h(Z)= 0.2029 = h(l31 

h(3)= 0.1847 =h(l2) 

h(4)= 0.1758 =h(l II 

h(51 = O.l734=h(lO) 

h(61 = O.l716=h(9) 

h(7)= 0.1731 =h(B) 

same time, spans a large dynamic range in its passband. This 
means that an equalizer HI(z) is required, with a large dynamic 
range of passband response. As a result, the coefficients h,(n) of 
the impulse response have large magnitudes, even though they 
add up approximately to unity near w = 0. In essence, this means 
the sensitivity of the overall passband response with respect to 
the coefficients h,(n) is large, and, therefore, large M should be 
avoided. 

There is another important factor that governs the choice of 
w,, as can be seen from Fig. 2, which shows an implementation of 
TM( XK). The quantity MC = X,“, which is a multiplier coefficient, 
appears M times. In order to keep the prefilter as simple as 
possible, o, should be chosen so that MC is a power of 2, or a 
sum of two or three such powers. 

Unlike in designs based on the RRS [l], [3], we now have a 
wide choice of prefilter parameters. Even though this is an 
advantage, it is not clear at this point in time as to how to 
uniquely choose the triple (M, K, 0,) in order to minimize the 
overall complexity. However, we believe that the above discus- 
sions do give an approximate guideline for this choice. 

III. DESIGN EXAMPLES 

Example 3.1 
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A,, = max passband attenuation < 0.36 dB, 

PRSSBRNLI DEIRILS A, = min stopband attenuation > 32 dB. 

1.000 A direct equiripple design requires an order of 29. A 
prefilter-based design, with the following prefilter: 
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with w. = g/4 was found most appropriate for this design, and 
ki required an equalizer of order 16. Fig. 5(a) shows the prefilter 
i? 0.940 response, and Fig. 5(b) shows the overall frequency response of 
5 HI(z) H, (z). The figure also shows the response of the conven- 
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Fig. 4. Example 3.2. (a) Equalizer H,(r). (b) Overall filter H1(r)Hz(r). 
[3] indicate that a wide family of prefilter structures can be 

(c) Passband details. constructed. The choice of a most appropriate prefilter for a 
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Fig. 5. Example 3.3. (a) Prefilter H,(r). (b) Overall filter HI(r)&(r) 
(c) Conventional equiripple design. (d) Passband details. 

TABLE II 
COMPLEXITY COMPARISON FOR THE EXAMPLES 

Prafiltsr Equolizcr 
Total for Direct Equiripph 

H,(r) H,(z) Design 

38 odder, 13 oddaIl 
7 mult*lierr 

51 adders 
7 multipliers 

33 adders 
17 multipliers 

EJ a 2 adders 
(RRS-bored) (RRS) 

27 adders 29 adders 33 adders 
I4 multipliers I4 multipliers I7 multiplicrr 

&Z 
(new approach 
with IFIR) 

QX 
(new approach. 
bandpass 1 

39 adders 9 adders 
5 multipliers 

33 odderr 
I7 multipliers 

I4 adder, 16 odder, 30 adders 29 adders 
9 multipliers 9 multipliers I5 mulfipliarr 



given application does not seem to be unique, but based on 
intuitive guidelines one can generally obtain a very efficient 
overall design, as demonstrated by examples in Section III, and 
in [l], [3]. Moreover, in conjunction with the novel IFIR concept 
[5], the efficiency of the overall implementation improves 
dramatically for narrow-band filters, as shown by Table II. 
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A Non-Exact-Multiplication Scheme for Digital Filter 
Implementation Using Bit-Slice Components 

Y.C.LIM 

Ah.rrracr --In the implementation of digital filters using bit-slice compo- 
nents, a significant amount of hardware can be saved with insignificant loss 
of performance if the multiplications involving the least significant bits of 
the signal and coefficient values are ignored. The effect is the introduction 
of an error noise source in the multiplier. Optimum hardware count for a 
given total output noise power is achieved when the noise power arises 
from ignoring the product of the least significant bits equals the noise 
power due to arithmetic rounding. 

I. INTRODUCTION 

Recent research trends in digital filter design, synthesis, and 
implementation techniques focus on the issue of reducing hard- 
ware complexity for a given performance figure. Among these 
techniques are the multiplierless designs [l]-[5], coefficient 
wordlength optimizations [2]-[lo], low sensitivity structures 
[ll]-[15], and efficient implementation methods [16]-[18]. In this 
letter, we show that hardware complexity can be reduced with 

Manuscript received October 30, 1984. 
The author is with the Electrical Engineering Department, National Univer- 

sity of Singapore, Kent Ridge, Singapore 0511. 

Fig. 1. Roundoff noise model for product wordlength truncation. 
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insignificant loss of performance by using non-exact-multiplica- 
tion method. 

When a signal data is multiplied by a coefficient data, the 
product is a double wordlength data. The wordlength of the 
product is then truncated to minimize hardware complexity. The 
effect of this truncation process is well known [19] and can be 
modeled by introducing a roundoff noise e(n), as shown in Fig. 
1. The roundoff noise power E( e(n)*} is Q*/12 where Q is the 
quantization step size [19]. Since the least significant bits of the 
product is to be truncated, they need not be computed exactly. 
Non-exact computation of the least significant bits produces 
significant saving in hardware with insignificant loss of perfor- 
mance. 

II. NON-EXACT-MULTIPLICATION SCHEME 

Consider multiplying an unsigned signal data X(n) by an 
unsigned coefficient data IV. Without loss of generality let the 
magnitudes of X(n) and W be each less than unity. If their word 
lengths are (B + 1) R bits and (A + 1) R bits, respectively, they 
can be represented as 

X(i) = f x(b,n)2FR 
b=O 

w= t w(a)2-“R. 
a=0 

(14 

(lb) 

The wordlength of w(a) and x(b, n) are each R bits. Also the 
magnitudes of w(a) and x(b, n) are each less than unity. The 
product WX( n) (assuming B < A) is given by 

WX(n)= 5 2 w(a)X(m--a,n)2-mR 
m=Oo=O 

+ iY 2 w(u)X(m-u,n)2-mR 
m=B+l a=m-B 

A+B 

+ c t w(u)x(m-u,n)2-“R. (2) 
m-A+1 a=m-B 

Each of the w(u) x( M - a, n) product term in (2) can be imple- 
mented using an R by R bit-slice multiplier. If all product terms 
with weighting factor less than or equal to 2-“R are ignored, 
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