On presentations of Brauer-type monoids

Ganna Kudryavtseva and Volodymyr Mazorchuk

Abstract

We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.

1 Introduction and preliminaries

The classical Coxeter presentation of the symmetric group S_{n} plays an important role in many branches of modern mathematics and physics. In the semigroup theory there are several "natural" analogues of the symmetric group. For example the symmetric inverse semigroup $\mathcal{I S}_{n}$ or the full transformation semigroup \mathcal{T}_{n}. Perhaps a "less natural" generalization of S_{n} is the so-called Brauer semigroup \mathfrak{B}_{n}, which appeared in the context of centralizer algebras in representation theory in [Br]. The basis of this algebra can be described in a nice combinatorial way using special diagrams (see Section 2). This combinatorial description motivated a generalization of the Brauer algebra, the so-called partition algebra, which has its origins in physics, see [Mar1]. This algebra leads to another finite semigroup, the partition semigroup, usually denoted by \mathfrak{C}_{n}. Many classical semigroups, in particular, S_{n}, $\mathcal{I} \mathcal{S}_{n}, \mathfrak{B}_{n}$ and some others (again see Section 2) are subsemigroups in \mathfrak{C}_{n}.

In the present paper we address the question of finding a presentation for some subsemigroups of \mathfrak{C}_{n}. As we have already mentioned, for S_{n} this is a famous and very important result, where the major role is played by the so-called braid relations. Because of the "geometric" nature of the generators of the semigroups we consider, our initial motivation was that the additional relations for our semigroups would be some kind of "singular deformations" of the braid relations (analogous to the case of the singular braid monoid, see [Ba, Bi]). In particular, we wanted to get a complete list of "deformations" of the braid relations, which can appear in our cases. Surprizingly enough,
in some cases it turned out that the variations of the braid relations are not enough. For example, already for the Brauer semigroup \mathfrak{B}_{n} there appears the "ghost relation" (3.5), which we can not interpret as any kind of deformation of the braid relations. Analogous effect also happens for $\mathcal{P} \mathfrak{B}_{n}$.

As the main results of the paper we obtain a presentation for the semigroup \mathfrak{B}_{n} (see Section 3), its partial analogue $\mathcal{P} \mathfrak{B}_{n}$ (which can be also called the rook Brauer monoid, see Section 5, and is a kind of mixture of \mathfrak{B}_{n} and $\mathcal{I} \mathcal{S}_{n}$), and a special inverse subsemigroup $\mathcal{I} \mathcal{T}_{n}$ of \mathfrak{C}_{n}, which is isomorphic to the greatest factorizable inverse submonoid of the dual symmetric inverse monoid (see Section 4). The technical details in all cases are quite different, however, the general approach is the same. We first "guess" the relations and in the standard way obtain an epimorphism from the semigroup T, given by the corresponding presentation, onto the semigroup we are dealing with. The only problem is to show that this epimorphism is in fact a bijection. For this we have to compare the cardinalities of the semigroups. In all our cases the symmetric group S_{n} is the group of units in T. The product $S_{n} \times S_{n}$ thus acts on T via multiplication from the left and from the right. The idea is to show that each orbit of this action contains a very special element, for which, using the relations, one can estimate the cardinality of the stabilizer. The necessary statement then follows by comparing the cardinalities.

Acknowledgments. The paper was written during the visit of the first author to Uppsala University, which was supported by the Swedish Institute. The financial support of the Swedish Institute and the hospitality of Uppsala University are gratefully acknowledged. For the second author the research was partially supported by the Swedish Research Council.

2 Brauer type semigroups

For $n \in \mathbb{N}$ we denote by S_{n} the symmetric group of all permutations on the set $\{1,2, \ldots, n\}$. We will consider the natural right action of S_{n} on $\{1,2, \ldots, n\}$ and the induced action on the Boolean of $\{1,2, \ldots, n\}$. For a semigroup, S, we denote by $E(S)$ the set of all idempotents of S.

Fix $n \in \mathbb{N}$ and let $M=M_{n}=\{1,2, \ldots, n\}, M^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$. We will consider ${ }^{\prime}: M \rightarrow M$ as a bijection, whose inverse we will also denote by ${ }^{\prime}$.

Consider the set \mathfrak{C}_{n} of all decompositions of $M \cup M^{\prime}$ into disjoint unions of subsets. Given $\alpha, \beta \in \mathfrak{C}_{n}, \alpha=X_{1} \cup \cdots \cup X_{k}$ and $\beta=Y_{1} \cup \cdots \cup Y_{l}$, we define their product $\gamma=\alpha \beta$ as the unique element of \mathfrak{C}_{n} satisfying the following conditions:
(P1) For $i, j \in M$ the elements i and j belong to the same block of the decomposition γ if an only if they belong to the same block of the decomposition α or there exists a sequence, s_{1}, \ldots, s_{m}, where m is even, of elements from M such that i and s_{1}^{\prime} belong to the same block of $\alpha ; s_{1}$ and s_{2} belong to the same block of $\beta ; s_{2}^{\prime}$ and s_{3}^{\prime} belong to the same block of α and so on; s_{m-1} and s_{m} belong to the same block of $\beta ; s_{m}^{\prime}$ and j belong to the same block of α.
(P2) For $i, j \in M$ the elements i^{\prime} and j^{\prime} belong to the same block of the decomposition γ if an only if they belong to the same block of the decomposition β or there exists a sequence, s_{1}, \ldots, s_{m}, where m is even, of elements from M such that i^{\prime} and s_{1} belong to the same block of β; s_{1}^{\prime} and s_{2}^{\prime} belong to the same block of $\alpha ; s_{2}$ and s_{3} belong to the same block of β ans so on; s_{m-1}^{\prime} and s_{m}^{\prime} belong to the same block of $\alpha ; s_{m}$ and j^{\prime} belong to the same block of β.
(P3) For $i, j \in M$ the elements i and j^{\prime} belong to the same block of the decomposition γ if an only if there exists a sequence, s_{1}, \ldots, s_{m}, where m is odd, of elements from M such that i and s_{1}^{\prime} belong to the same block of $\alpha ; s_{1}$ and s_{2} belong to the same block of $\beta ; s_{2}^{\prime}$ and s_{3}^{\prime} belong to the same block of α and so on; s_{m-1}^{\prime} and s_{m}^{\prime} belong to the same block of $\alpha ; s_{m}$ and j^{\prime} belong to the same block of β.

One can think about the elements of \mathfrak{C}_{n} as "microchips" or "generalized microchips" with n pins on the left hand side (corresponding to the elements of M) and n pins on the right hand side (corresponding to the elements of $\left.M^{\prime}\right)$. For $\alpha \in \mathfrak{C}_{n}$ we connect two pins of the corresponding chip if and only if they belong to the same set of the partition α. The operation described above can then be viewed as a "composition" of such chips: having $\alpha, \beta \in \mathfrak{C}_{n}$ we identify (connect) the right pins of α with the corresponding left pins of β, which uniquely defines a connection of the remaining pins (which are the left pins of α and the right pins of β). An example of multiplication of two chips from \mathfrak{C}_{n} is given on Figure 1. Note that, performing the operation we can obtain some "dead circles" formed by some identified pins from α and β. These circles should be disregarded (however they play an important role in representation theory as they allow to deform the multiplication in the semigroup algebra). From this interpretation it is fairly obvious that the composition of elements from \mathfrak{C}_{n} defined above is associative. On the level of associative algebra, the partition algebra was defined in [Mar1] and then studied by several authors especially in recent years, see for example [Bl, Mar2, MarEl, MarWo, Pa, Xi]. Purely as a semigroup it seems that \mathfrak{C}_{n} appeared in [Maz2].

Figure 1: Multiplication of elements of \mathfrak{C}_{n}.

Let $\alpha \in \mathfrak{C}_{n}$ and X be a block of α. The block X will be called

- a line provided that $|X|=2$ and X intersects with both M and M^{\prime};
- a generalized line provided that X intersects with both M and M^{\prime};
- a bracket if $|X|=2$ and either $X \subset M$ or $X \subset M^{\prime}$;
- a generalized bracket if $|X| \geq 2$ and either $X \subset M$ or $X \subset M^{\prime}$;
- a point if $|X|=1$.

By a Brauer-type semigroup we will mean a "natural" subsemigroup of the semigroup \mathfrak{C}_{n}. Here are some examples:
(E1) The subsemigroup, consisting of all elements $\alpha \in \mathfrak{C}_{n}$ such that each block of α is a line. This subsemigroup is canonically identified with S_{n} and is the group of units of \mathfrak{C}_{n}.
(E2) The subsemigroup, consisting of all elements $\alpha \in \mathfrak{C}_{n}$ such that each block of α is a either a line or a point. This subsemigroup is canonically identified with the symmetric inverse semigroup $\mathcal{I S}_{n}$.
(E3) The subsemigroup \mathfrak{B}_{n}, consisting of all elements $\alpha \in \mathfrak{C}_{n}$ such that each block of α is a either a line or a bracket. This is the classical Brauer semigroup, see [Ke, Maz1].

Figure 2: Inclusions for classical Brauer-type semigroups
(E4) The subsemigroup $\mathcal{P} \mathfrak{B}_{n}$, consisting of all elements $\alpha \in \mathfrak{C}_{n}$ such that each block of α is a either a line or a bracket or a point. This is the partial analogue of the Brauer semigroup, see [Maz1].
(E5) The subsemigroup $\mathcal{I} \mathcal{P}_{n}$, consisting of all $\alpha \in \mathfrak{C}_{n}$ such that each block of α is a generalized line. In this form the semigroup $\mathcal{I P}_{n}$ appeared in [Mal2, Mal3]. It is easy to see that the semigroup $\mathcal{I} \mathcal{P}_{n}$ is isomorphic to the dual symmetric inverse monoid \mathcal{I}_{M}^{*} from [FL].
(E6) The subsemigroup $\mathcal{I} \mathcal{T}_{n}$, consisting of all $\alpha \in \mathfrak{C}_{n}$ such that each block X of α is a generalized line and $|X \cap M|=\left|X \cap M^{\prime}\right|$. In this form the semigroup $\mathcal{I} \mathcal{T}_{n}$ appeared in [Mal3]. The semigroup $\mathcal{I} \mathcal{T}_{n}$ is isomorphic to the greatest factorizable inverse submonoid \mathcal{F}_{M}^{*} of \mathcal{I}_{M}^{*} from [FL].

All the semigroups described above are regular. S_{n} is a group. The semigroups $I S_{n}, \mathcal{I} \mathcal{P}_{n}$ and $\mathcal{I} \mathcal{I}_{n}$ are inverse, while $\mathfrak{C}_{n}, \mathfrak{B}_{n}$ and $\mathcal{P} \mathfrak{B}_{n}$ are not. The partially ordered set consisting of these semigroups, with the partial order given by inclusions, is illustrated on Figure 2.

In what follows we will need some easy combinatorial results for Brauertype semigroups. For $\alpha \in \mathfrak{C}_{n}$ we define the rank $\operatorname{rk}(\alpha)$ of α as the number of generalized lines in α, that is the number of blocks in α intersecting with both M and M^{\prime}. Note that for the semigroups $S_{n}, \mathcal{I} \mathcal{S}_{n}, \mathfrak{B}_{n}, \mathcal{P} \mathfrak{B}_{n}$ and \mathfrak{C}_{n} ranks of the elements classify the \mathcal{D}-classes (this is obvious for S_{n}, for $\mathcal{I} \mathcal{S}_{n}$ this is an easy exercise, for \mathfrak{B}_{n} and $\mathcal{P} \mathfrak{B}_{n}$ this can be found in [Maz1], and for \mathfrak{C}_{n} it can be obtained by arguments similar to those from [Maz1] for \mathfrak{B}_{n}).

For the semigroup $\mathcal{I} \mathcal{T}_{n}$ we will need a different notion. Let X be a set and $X=\cup_{i=1}^{k} X_{k}$ be a decomposition of X into a union of pairwise disjoint subsets. For each $i, 1 \leq i \leq n$, let m_{i} denote the number of subsets of
this decomposition, whose cardinality equals i. The tuple $\left(m_{1}, \ldots, m_{|X|}\right)$ will be called the type of the decomposition. Consider an element, $\alpha \in$ $\mathcal{I} \mathcal{T}_{n}$. By definition α is a decomposition of $M \cup M^{\prime}$ into a disjoint union of subsets, whose intersections with M and M^{\prime} have the same cardinality. Let $\left(m_{1}, \ldots, m_{2 n}\right)$ be the type of this decompositions (note that $m_{i} \neq 0$ only if i is even). The element α induces a decomposition of M into disjoint subsets, whose blocks are intersections of the blocks of α with M. By the type of α we will mean the type of this decomposition of M, which is obviously equal to $\left(m_{2}, m_{4}, \ldots, m_{2 n}\right)$. The types of elements from $\mathcal{I} \mathcal{T}_{n}$ correspond bijectively to partitions of n (a partition, $\lambda \vdash n$, of n is a tuple, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, of positive integers such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ and $\left.\lambda_{1}+\cdots+\lambda_{k}=n\right)$. The types of the elements classify the \mathcal{D}-classes in $\mathcal{I} \mathcal{I}_{n}$, see [FL, Section 3].

For the semigroup $\mathcal{P} \mathfrak{B}_{n}$ we will need a more complicated technical tool. Although \mathcal{D}-classes are classified by ranks we will need to distinguish elements of a given rank, so we introduce the notion of a type. For $\alpha \in \mathcal{P} \mathfrak{B}_{n}$ let r denote the number of lines in $\alpha ; b_{1}$ the number of brackets in α, contained in $M ; b_{2}$ the number of brackets in α, contained in $M^{\prime} ; p_{1}$ the number of points in α, contained in $M ; p_{2}$ the number of points in α, contained in M^{\prime}. Obviously $n=r+2 b_{1}+p_{1}=r+2 b_{2}+p_{2}$. Define the type of α as follows:

$$
\operatorname{type}(\alpha)= \begin{cases}\left(b_{2}, b_{1}-b_{2}, 0, p_{1}\right), & b_{1} \geq b_{2} \\ \left(b_{1}, 0, b_{2}-b_{1}, p_{2}\right), & b_{2}>b_{1}\end{cases}
$$

We will need the following explicit combinatorial formulae for the number of elements of a given rank or type.
Proposition 1. (a) For $k \in\{0, \ldots, n\}$ the number of elements of rank k in $\mathcal{I} \mathcal{S}_{n}$ equals $\binom{n}{k}^{2} k!$.
(b) For $k \in\{1, \ldots, n\}$ the number of elements of rank k in \mathfrak{B}_{n} equals 0 if $n-k$ is odd and $\frac{(n!)^{2}}{2^{2 l}(!!)^{2} k!}$ if $n-k=2 l$ is even.
(c) The number of elements of $\mathcal{I} \mathcal{T}_{n}$ of type $\left(m_{1}, \ldots, m_{n}\right)$ equals

$$
\frac{(n!)^{2}}{\prod_{i=1}^{n}\left(m_{i}!(i!)^{2 m_{i}}\right)}
$$

(d) For all non-negative integers k, m, t such that $2 k+2 m+t \leq n$ the number of elements of the type $(k, m, 0, t)$ in $\mathcal{P} \mathfrak{B}_{n}$ is equal to the number of elements of the type $(k, 0, m, t)$ in $\mathcal{P} \mathfrak{B}_{n}$ and equals

$$
\frac{(n!)^{2}}{k!2^{k}(t+2 m)!(k+m)!2^{k+m} t!(n-2 k-2 m-t)!} .
$$

Proof. This is a straightforward combinatorial calculation.
Remark 2. The semigroup \mathfrak{C}_{n} can be also connected to some other semigroups of binary relations. As we have already mentioned, the subsemigroup $\mathcal{I} \mathcal{P}_{n}$ of \mathfrak{C}_{n} is isomorphic to the dual symmetric inverse monoid \mathcal{I}_{M}^{*} from [FL], which is the semigroup of all difunctional binary relations under the operation of taking the smallest difunctional binary relations, containig the product of two given relations. The semigroup $\mathcal{I} \mathcal{T}_{n}$ is isomorphic to the greatest factorizable inverse submonoid of \mathcal{I}_{M}^{*}, that is to the semigroup $E\left(\mathcal{I}_{M}^{*}\right) S_{n}$. One can also deform the multiplication in \mathfrak{C}_{n} in the following way: given $\alpha, \beta \in \mathfrak{C}_{n}$ define $\gamma=\alpha \star \beta$ as follows: all blocks of γ are either points or generalized lines, and for $i, j \in M$ the elements i and j^{\prime} belong to the same block of γ if and only if i belongs to some block X of α and j^{\prime} belongs to some block Y of β such that $X \cap M^{\prime}=(Y \cap M)^{\prime}$. It is straightforward that this deformed multiplication is associative and hence we get a new semigroup, $\tilde{\mathfrak{C}}_{n}$. This semigroup is an inflation of Vernitsky's inverse semigroup ($\left.D_{X}, \diamond\right)$, see [Ve], which is a subsemigroup of $\tilde{\mathfrak{C}}_{n}$ in the natural way. An isomorphic object can be obtained if instead of points one requires that γ contains at most one generalized bracket, which is a subset of M, and at most one generalized bracket, which is a subset of M^{\prime}.

3 Presentation for \mathfrak{B}_{n}

For $i=1, \ldots, n-1$ we denote by s_{i} the elementary transposition $(i, i+1) \in$ S_{n}, and by π_{i} the element $\{i, i+1\} \cup\left\{i^{\prime},(i+1)^{\prime}\right\} \cup \bigcup_{j \neq i, i+1}\left\{j, j^{\prime}\right\}$ of \mathfrak{B}_{n} (the elementary atom from [Maz1]). It is easy to see (and can be derived from the results of [Maz1] and [Mal1]) that \mathfrak{B}_{n} is generated by $\left\{s_{i}\right\} \cup\left\{\pi_{i}\right\}$ as a monoid. Moreover, \mathfrak{B}_{n} is even generated by $\left\{s_{i}\right\}$ and, for example, π_{1}. However, we think that the set $\left\{s_{i}\right\} \cup\left\{\pi_{i}\right\}$ is more natural as a system of generators for \mathfrak{B}_{n}, for example because of the connection between Brauer and Temperley-Lieb algebras (and analogy with the singular braid monoid, see $[\mathrm{Ba}, \mathrm{Bi}])$. In this section we obtain a presentation for \mathfrak{B}_{n} with respect to this system of generators.

Let T denote the monoid with the identity element e, generated by the elements $\sigma_{i}, \theta_{i}, i=1, \ldots, n-1$, subject to the following relations (where

$$
\begin{align*}
& i, j \in\{1,2, \ldots, n-1\}): \\
& \qquad \begin{array}{l}
\sigma_{i}^{2}=e ; \quad \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j|>1 ; \quad \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j},|i-j|=1 ; \\
\theta_{i}^{2}=\theta_{i} ; \quad \theta_{i} \theta_{j}=\theta_{j} \theta_{i},|i-j|>1 ; \quad \theta_{i} \theta_{j} \theta_{i}=\theta_{i},|i-j|=1 ; \\
\theta_{i} \sigma_{i}=\sigma_{i} \theta_{i}=\theta_{i}, \quad \theta_{i} \sigma_{j}=\sigma_{j} \theta_{i},|i-j|>1 ; \\
\sigma_{i} \theta_{j} \sigma_{i}=\sigma_{j} \theta_{i} \sigma_{j}, \quad \theta_{i} \sigma_{j} \theta_{i}=\theta_{i},|i-j|=1 ; \\
\text { and } \sigma_{i} \sigma_{i+1} \theta_{i} \theta_{i+2}=\sigma_{i+2} \sigma_{i+1} \theta_{i} \theta_{i+2} .
\end{array} \tag{3.1}
\end{align*}
$$

Theorem 3. The map $\sigma_{i} \mapsto s_{i}$ and $\theta_{i} \rightarrow \pi_{i}, i=1, \ldots, n-1$, extends to an isomorphism, $\varphi: T \rightarrow \mathfrak{B}_{n}$.

The rest of the section will be devoted to the proof of Theorem 3 .
It is a direct calculation to verify that the generators s_{i} and π_{i} of \mathfrak{B}_{n} satisfy the relations, corresponding to (3.1)-(3.5). Thus the map $\sigma_{i} \mapsto s_{i}$ and $\theta_{i} \mapsto \pi_{i}, i=1, \ldots, n-1$, extends to an epimorphism, $\varphi: T \rightarrow \mathfrak{B}_{n}$. Hence, to prove Theorem 3 we have only to show that $|T|=\left|\mathfrak{B}_{n}\right|$. To do this we will have to study the structure of the semigroup T in details.

Let W denote the free monoid, generated by $\sigma_{i}, \theta_{i}, i=1, \ldots, n-1$, and $\psi: W \rightarrow T$ denote the canonical projection. Let \sim be the corresponding congruence on W, that is $v \sim w$ provided that $\psi(v)=\psi(w)$. We start with the following description of units in T :

Lemma 4. The elements $\sigma_{i}, i=1, \ldots, n-1$, generate the group G of units in T, which is isomorphic to the symmetric group S_{n}.

Proof. Let $v, w \in W$ be such that $v \sim w$. Assume further that v contains some θ_{i}. Since θ 's allways occur on both sides in the relations (3.2)-(3.5) and do not occur in the relations (3.1), it follows that w must contain some θ_{j}. In particular, the submonoid, generated in W by $\sigma_{i}, i=1, \ldots, n-1$, is a union of equivalence classes with respect to \sim. Using the well-known Coxeter presentation of the symmetric group we obtain that $\sigma_{i}, i=1, \ldots, n-1$, generate in T a copy of the symmetric group. All elements of this group are obviously units in T. On the other hand, if $v, w \in W$ and v contains some θ_{i}, then $v w$ contains θ_{i} as well. By the above arguments, $v w$ can not be equivalent to the empty word. Hence v is not invertable in T. The claim of the lemma follows.

In what follows we will identify the group G of units in T with S_{n} via the isomorphism, which sends $\sigma_{i} \in G$ to s_{i}. There is a natural action of S_{n} on T by inner automorphisms of T via conjugation: $x^{g}=g^{-1} x g$ for each $x \in T$, $g \in S_{n}$.

Lemma 5. The S_{n}-stabilizer of θ_{1} is the subgroup H of S_{n}, consisting of all permutations, which preserve the set $\{1,2\}$. This subgroup is isomorphic to $S_{2} \times S_{n-2}$.

Proof. We have $\sigma_{j} \theta_{1} \sigma_{j}=\theta_{j}, j \neq 2$, by (3.3). Since $\sigma_{j}, j \neq 2$, generate H, we obtain that all elements of H stabilize θ_{1}. In particular, the S_{n}-orbit of θ_{1} consists of at most $\left|S_{n}\right| /|H|=\binom{n}{2}$ elements. At the same time, it is easy to see that the S_{n}-orbit of $\varphi\left(\theta_{1}\right)$ consists of exactly $\binom{n}{2}$ different elements and hence H must coincide with the S_{n}-stabilizer of θ_{1}.

Since S_{n} acts on T via automorphisms and θ_{1} is an idempotent, all elements in the S_{n}-orbit of θ_{1} are idempotents. From Lemma 5 it follows that the elements of the S_{n}-orbit of θ_{1} are in the natural bijection with the cosets $H \backslash S_{n}$. By the definition of H, two elements, $x, y \in S_{n}$, are contained in the same coset if and only if $x(\{1,2\})=y(\{1,2\})$.

Lemma 6. The S_{n}-orbit of θ_{1} contains all $\theta_{i}, i=1, \ldots, n-1$. Moreover, for $w \in S_{n}$ we have $w^{-1} \theta_{1} w=\theta_{i}$ if and only if $w(\{1,2\})=\{i, i+1\}$.

Proof. We use induction on i with the case $i=1$ being trivial. Let $i>1$ and assume that θ_{i-1} is contained in our orbit. Then $\theta_{i}=\sigma_{i-1} \sigma_{i} \theta_{i-1} \sigma_{i} \sigma_{i-1}$ and hence θ_{i} is contained in our orbit as well. Hence all θ_{i} indeed belong to the S_{n}-orbit of θ_{1}. The second claim follows from

$$
\begin{equation*}
\sigma_{i-1} \sigma_{i} \sigma_{i-2} \sigma_{i-1} \cdots \sigma_{1} \sigma_{2}(\{1,2\})=\{i, i+1\} \tag{3.6}
\end{equation*}
$$

which is obtained by a direct calculation. This completes the proof.
For $w \in S_{n}$ such that $w(\{1,2\})=\{i, j\}$, where $i<j$, we set $\epsilon_{i, j}=$ $w^{-1} \theta_{1} w$, which is well defined by Lemma 5 .

Lemma 7. Suppose $\{i, j\} \cap\{p, q\}=\varnothing$. Then $\epsilon_{i, j} \epsilon_{p, q}=\epsilon_{p, q} \epsilon_{i, j}$.
Proof. Since all elements $\epsilon_{i, j}$ are obtained from θ_{1} via automorphisms, it is enough to show that θ_{1} commutes with all elements $\epsilon_{i, j}$ such that $\{i, j\} \cap$ $\{1,2\}=\varnothing$. Take any $v \in S_{n}$ such that $v(\{1,2\})=\{1,2\}$ and $v(\{i, j\})=$ $\{3,4\}$. Such v obviously exists. Then θ_{1} commutes with $\epsilon_{i, j}$ if and only if $v^{-1} \theta_{1} v=\theta_{1}$ commutes with $v^{-1} \epsilon_{i, j} v=\theta_{3}$. The statement now follows from (3.2).

Lemma 8. Suppose $\{i, j\} \cap\{p, q\} \neq \varnothing$. Then $\epsilon_{i, j} \epsilon_{p, q}=u \theta_{1} v$ for certain $u, v \in S_{n}$.

Proof. If $\{i, j\}=\{p, q\}$ the statement is obvious as $\epsilon_{i, j}$ is an idempotent. Assume $|\{i, j\} \cap\{p, q\}|=1$. Since all elements $\epsilon_{i, j}$ are obtained from θ_{1} via automorphisms, it is enough to consider the case when $\{i, j\}=\{1,2\}, p=2$ and $q>2$. Consider $v \in S_{n}$ such that $v(1)=1, v(2)=2$ and $v(q)=3$. Then, using (3.3) and (3.4) we have

$$
v^{-1} \theta_{1} \epsilon_{p, q} v=\theta_{1} \theta_{2}=\theta_{1} \sigma_{1} \sigma_{2} \theta_{1} \sigma_{2} \sigma_{1}=\theta_{1} \sigma_{2} \theta_{1} \sigma_{2} \sigma_{1}=\theta_{1} \sigma_{2} \sigma_{1} .
$$

The statement follows.
For each $k, 1 \leq k \leq\left[\frac{n}{2}\right]$, set $\delta_{k}=\theta_{1} \theta_{3} \ldots \theta_{2 k-1}$. Set also $\delta_{0}=e$. The elements $\delta_{i}, 0 \leq i \leq\left[\frac{n}{2}\right]$, will be called canonical. The group $S_{n} \times S_{n}$ acts naturally on T via $(g, h)(x)=g^{-1} x h$ for $x \in T$ and $(g, h) \in S_{n} \times S_{n}$.
Lemma 9. Every $S_{n} \times S_{n}$-orbit contains a canonical element.
Proof. Let $x \in T$. If $x \in S_{n}$ the statement is obvious. Assume that $x \notin$ S_{n}. By Lemma 6 we can write $x=w \theta_{1} g_{1} \theta_{1} g_{2} \ldots \theta_{1} g_{k}$ for some $k \geq 1$ and $w, g_{1}, \ldots, g_{k} \in S_{n}$. Moreover, we may assume that x can not be written as a product of θ_{1} 's and elements of S_{n}, which contains less than k occurrences of θ_{1}. We have

$$
\begin{align*}
& x=w\left(g_{1} \ldots g_{k}\right)\left(g_{1} \ldots g_{k}\right)^{-1} \theta_{1}\left(g_{1} \ldots g_{k}\right) \\
& \cdot\left(g_{2} \ldots g_{k}\right)^{-1} \theta_{1}\left(g_{2} \ldots g_{k}\right) \ldots\left(g_{k-1} g_{k}\right)^{-1} \theta_{1}\left(g_{k-1} g_{k}\right) g_{k}^{-1} \theta_{1} g_{k}, \tag{3.7}
\end{align*}
$$

and hence we can write

$$
\begin{equation*}
x=u \epsilon_{i_{1}, j_{1}} \ldots \epsilon_{i_{k}, j_{k}} \tag{3.8}
\end{equation*}
$$

where $u=w g_{1} \ldots g_{k}$ and $\left\{i_{t}, j_{t}\right\}=\left\{\left(g_{t} \ldots g_{k}\right)(1),\left(g_{t} \ldots g_{k}\right)(2)\right\}, 1 \leq t \leq k$. Since x is chosen such that it can not be reduced to an element of T which contains less that k entries of θ_{1}, from Lemma 7 and Lemma 8 it follows that $\left\{i_{t}, j_{t}\right\} \cap\left\{i_{s}, j_{s}\right\}=\varnothing$ for any two factors $\epsilon_{i_{t}, j_{t}}, \epsilon_{i_{s}, j_{s}}$ in (3.8). This implies that the $S_{n} \times S_{n}$-orbit of x contains $\epsilon_{i_{1}, j_{1}} \ldots \epsilon_{i_{k}, j_{k}}$ with $\left\{i_{t}, j_{t}\right\} \cap\left\{i_{s}, j_{s}\right\}=\varnothing$ for all $s \neq t$.

Now consider some $v \in S_{n}$ such that $v\left(i_{1}\right)=1, v\left(j_{1}\right)=2, v\left(i_{2}\right)=3$ and so on, $v\left(j_{k}\right)=2 k$. Then the element $v^{-1} \epsilon_{i_{1}, j_{1}} \cdots \epsilon_{i_{k}, j_{k}} v$ is canonical by definition. This completes the proof.
Remark 10. From the proof of Lemma 9 it follows that each $x \in T$ can be written in the form $x=w \theta_{1} g_{1} \theta_{1} g_{2} \ldots \theta_{1} g_{k}$, where $k \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Lemma 11. The $S_{n} \times S_{n}$-orbit of the canonical element $\delta_{k}, 0 \leq k \leq\left[\frac{n}{2}\right]$, contains at most

$$
\frac{(n!)^{2}}{2^{2 k}(k!)^{2}(n-2 k)!}
$$

elements.

Proof. It is enough to show that the stabilizer of δ_{k} under the $S_{n} \times S_{n}$-action contains at least $(k!)^{2} 2^{2 k}(n-2 k)$! elements. Set

$$
\begin{gathered}
\Sigma_{i}^{0}=\sigma_{2 i} \sigma_{2 i-1} \sigma_{2 i+1} \sigma_{2 i}, 1 \leq i \leq k-1 \\
\Sigma_{i}^{1}=\sigma_{2 i} \sigma_{2 i-1} \sigma_{2 i+1} \sigma_{2 i} \sigma_{2 i-1}, \quad 1 \leq i \leq k-1
\end{gathered}
$$

Then both Σ_{i}^{0} and Σ_{i}^{1} swap the sets $\{2 i-1,2 i\}$ and $\{2 i+1,2 i+2\}$. It follows that the group H, generated by all Σ_{i}^{0}, consists of all permutations of the set $\{1,2\},\{3,4\}, \ldots,\{2 k-1,2 k\}$ and is therefore isomorphic to the group S_{k}. It is further easy to see that the group \tilde{H}, generated by all Σ_{i}^{0} and Σ_{i}^{1}, is isomorphic to the wreath product $H 2 S_{2}$. From (3.5) and (3.3) it follows that the left multiplication with both Σ_{i}^{0} and Σ_{i}^{1} stabilizes δ_{k}. Therefore for each element of \tilde{H} the left multiplication with this element stabilizes δ_{k} as well. Similarly one proves that the right multiplication with each element from \tilde{H} stabilizes δ_{k}. Apart from this, from (3.3) we have that the conjugation by any element from the group $H^{\prime}=\left\langle\sigma_{2 k+1}, \ldots, \sigma_{n-1}\right\rangle \simeq S_{n-2 k}$ stabilizes δ_{k}.

Observe that the group, generated by the left copy of \tilde{H}, the right copy of \tilde{H}, and the H^{\prime} is a direct product of these three componets. Using the product rule we derive that the cardinality of the stabilizer of δ_{k} is at least

$$
\left(\left|H \backslash S_{2}\right|\right)^{2}\left|S_{n-2 k}\right|=(k!)^{2} 2^{2 k}(n-2 k)!,
$$

and the proof is complete.

Corollary 12.

$$
|T| \leq \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{(n!)^{2}}{2^{2 k}(k!)^{2}(n-2 k)!}
$$

Proof. The proof follows from Lemma 11 and Remark 10 by a direct calculation.

Proof of Theorem 3. Comparing Corollary 12 and Proposition 1(b) we have $|T| \leq\left|\mathfrak{B}_{n}\right|$. Since $\varphi: T \rightarrow \mathfrak{B}_{n}$ is surjective we have $|T| \geq\left|\mathfrak{B}_{n}\right|$. Hence $|T|=\left|\mathfrak{B}_{n}\right|$ and φ is an isomorphism.

4 Presentation for $\mathcal{I} \mathcal{T}_{n}$

For $i \in\{1,2, \ldots, n-1\}$ let ϱ_{i} denote the element $\left\{i, i+1, i^{\prime},(i+1)^{\prime}\right\} \cup$ $\bigcup_{j \neq i, i+1}\left\{j, j^{\prime}\right\} \in \mathcal{I} \mathcal{T}_{n}$. By [Mal3, Proposition 9], the elements $\left\{\sigma_{i}\right\}$ and $\left\{\varrho_{i}\right\}$ generate $\mathcal{I} \mathcal{T}_{n}$ (and even $\left\{\sigma_{i}\right\}$ and, say ϱ_{1}, do).

Let T denote the monoid with the identity element e, generated by the elements $\sigma_{i}, \tau_{i}, i=1, \ldots, n-1$, subject to the following relations (where $i, j \in\{1,2, \ldots, n-1\})$:

$$
\begin{align*}
\sigma_{i}^{2}=e ; \quad \sigma_{i} \sigma_{j}= & \sigma_{j} \sigma_{i},|i-j|>1 ; \quad \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j},|i-j|=1 ; \tag{4.1}\\
& \tau_{i}^{2}=\tau_{i} ; \quad \tau_{i} \tau_{j}=\tau_{j} \tau_{i}, i \neq j ; \tag{4.2}\\
\tau_{i} \sigma_{i}= & \sigma_{i} \tau_{i}=\tau_{i} ; \quad \tau_{i} \sigma_{j}=\sigma_{j} \tau_{i},|i-j|>1 ; \tag{4.3}\\
\sigma_{i} \tau_{j} \sigma_{i}= & \sigma_{j} \tau_{i} \sigma_{j} \quad \text { and } \tau_{i} \sigma_{j} \tau_{i}=\tau_{i} \tau_{j},|i-j|=1 . \tag{4.4}
\end{align*}
$$

Theorem 13. The map $\sigma_{i} \mapsto s_{i}$ and $\tau_{i} \rightarrow \varrho_{i}, i=1, \ldots, n-1$, extends to an isomorphism, $\varphi: T \rightarrow \mathcal{I} \mathcal{T}_{n}$.

The rest of the section will be devoted to the proof of Theorem 13.
It is a direct calculation to verify that the generators s_{i} and ϱ_{i} of $\mathcal{I} \mathcal{T}_{n}$ satisfy the relations, corresponding to (4.1)-(4.4). Thus the map $\sigma_{i} \mapsto s_{i}$ and $\tau_{i} \mapsto \varrho_{i}, i=1, \ldots, n-1$, extends to an epimorphism, $\varphi: T \rightarrow \mathcal{I} \mathcal{T}_{n}$. Hence, to prove Theorem 13 we have only to show that $|T|=\left|\mathcal{I} \mathcal{I}_{n}\right|$. As in the previous section, to do this we will study the structure of T in details. Let W denote the free monoid, generated by $\sigma_{i}, \tau_{i}, i=1, \ldots, n-1, \psi: W \rightarrow T$ denote the canonical projection, and \sim be the corresponding congruence on W. The first part of our arguments is very similar to that from the previous Section.

Lemma 14. The elements $\sigma_{i}, i=1, \ldots, n-1$, generate the group G of units in T, which is isomorphic to the symmetric group S_{n} (and will be identified with S_{n} in the sequel).

Proof. Analogous to that of Lemma 4.
There are two natural actions on T :
(I) The group S_{n} acts on T by inner automorphisms via conjugation.
(II) The group $S_{n} \times S_{n}$ acts on T via $(g, h)(x)=g^{-1} x h$ for $x \in T$ and $(g, h) \in S_{n} \times S_{n}$.

Lemma 15. The S_{n}-stabilizer of τ_{1} is the subgroup H of S_{n}, consisting of all permutations, which preserve the set $\{1,2\}$. This subgroup is isomorphic to $S_{2} \times S_{n-2}$.

Proof. Analogous to that of Lemma 5.

Since S_{n} acts on T via automorphisms and τ_{1} is an idempotent, all elements in the S_{n}-orbit of τ_{1} are idempotents. From Lemma 15 it follows that the elements of the S_{n}-orbit of τ_{1} are in the natural bijection with the cosets $H \backslash S_{n}$. By the definition of H, two elements, $x, y \in S_{n}$, are contained in the same coset if and only if $x(\{1,2\})=y(\{1,2\})$.

Lemma 16. The S_{n}-orbit of τ_{1} contains all $\tau_{i}, i=1, \ldots, n-1$. Moreover, for $w \in S_{n}$ we have $w^{-1} \tau_{1} w=\tau_{i}$ if and only if $w(\{1,2\})=\{i, i+1\}$.

Proof. Analogous to that of Lemma 6.
Lemma 17. All elements in the S_{n}-orbit of τ_{1} commute.
Proof. Since all elements in the S_{n}-orbit of τ_{1} are obtained from τ_{1} via automorphisms, it is enough to show that τ_{1} commutes with all elements in this orbit. Let $w \in S_{n}$ be such that $w(\{1,2\})=\{i, j\}$. If $\{i, j\}=\{1,2\}$ then $w^{-1} \tau_{1} w=\tau_{1}$ by Lemma 16 and hence we may assume $\{i, j\} \neq\{1,2\}$.

Take any $v \in S_{n}$ such that

- $v(\{1,2\})=\{1,2\}$ and $v(\{i, j\})=\{3,4\}$ if $\{i, j\} \cap\{1,2\}=\varnothing$;
- $v(\{1,2\})=\{1,2\}$ and $v(\{i, j\})=\{2,3\}$ if $\{i, j\} \cap\{1,2\} \neq \varnothing$.

Such v obviously exists. Then τ_{1} commutes with $w^{-1} \tau_{1} w$ if and only if $v^{-1} \tau_{1} v$ commutes with $v^{-1} w^{-1} \tau_{1} w v$. Using our choice of v and Lemma 16 we have $v^{-1} \tau_{1} v=\tau_{1}$ and $v^{-1} w^{-1} \tau_{1} w v=\tau_{j}$, where $j=3$ if $\{i, j\} \cap\{1,2\}=\varnothing$, and $j=2$ otherwise. The statement now follows from (4.2).

For $w \in S_{n}$ such that $w(\{1,2\})=\{i, j\}$, where $i<j$, we set $\varepsilon_{i, j}=$ $w^{-1} \tau_{1} w$, which is well defined by Lemma 15.

Lemma 18. Let $\{i, j, k\} \subset\{1,2, \ldots, n\}$ and $i<j<k$. Then

$$
\varepsilon_{i, j} \varepsilon_{j, k}=\varepsilon_{i, k} \varepsilon_{j, k}=\varepsilon_{i, j} \varepsilon_{i, k} .
$$

Proof. We prove that $\varepsilon_{i, j} \varepsilon_{j, k}=\varepsilon_{i, k} \varepsilon_{j, k}$ and the second equality is proved by analogous arguments. Let $w \in S_{n}$ be such that $w(i)=1, w(j)=2, w(k)=3$. Conjugating by w we reduce our equality to the equality $\tau_{1} \tau_{2}=\sigma_{2} \tau_{1} \sigma_{2} \tau_{2}$ Using (4.3) and (4.4) we have

$$
\sigma_{2} \tau_{1} \sigma_{2} \tau_{2}=\sigma_{1} \tau_{2} \sigma_{1} \tau_{2}=\sigma_{1} \tau_{1} \tau_{2}=\tau_{1} \tau_{2} .
$$

The claim follows.

For $i, j \in M$ set $\varepsilon_{i, i}=e$ and $\varepsilon_{i, j}=\varepsilon_{j, i}$ if $j<i$. For a non-empty binary relation, ρ, on M set

$$
\varepsilon_{\rho}=\prod_{i \rho j} \varepsilon_{i, j} .
$$

Corollary 19. Let ρ be non-empty binary relation on M and ρ^{*} be the reflexive-symmetric-transitive closure of ρ. Then $\varepsilon_{\rho}=\varepsilon_{\rho^{*}}$

Proof. Follows easily from Lemma 17, Lemma 18 and the fact that all $\varepsilon_{i, j}$'s are idempotents.

Let $\lambda:\{1, \ldots, n\}=X_{1} \cup \cdots \cup X_{k}$ be a decomposition of M into an unordered union of pairwise disjoint sets. With this decomposition we associate the equivalence relation ρ_{λ} on M, whose equivalence classes coincide with X_{i} 's.

Corollary 20. Let λ and μ be two decompositions of M as above. Assume that the types of λ and μ coincide. Then $\varepsilon_{\rho_{\lambda}}$ and $\varepsilon_{\rho_{\mu}}$ are conjugate in T.

Proof. Let $v \in S_{n}$ be an element, which maps λ to μ (such element exists since the types of λ and μ are the same). One easily sees that $v^{-1} \varepsilon_{\rho_{\lambda}} v=\varepsilon_{\rho_{\mu}}$. The statement follows.

A decomposition, $\lambda:\{1, \ldots, n\}=X_{1} \cup \cdots \cup X_{k}$, is called canonical provided that (up to a permutation of the blocks) we have $\left|X_{1}\right| \geq\left|X_{2}\right| \geq$ $\cdots \geq\left|X_{k}\right|, X_{1}=\left\{1,2, \ldots, l_{1}\right\}, X_{2}=\left\{l_{1}+1, l_{1}+2, \ldots, l_{1}+l_{2}\right\}$ and so on. Note that in this case λ can also be viewed as a partition of n. The element $\varepsilon_{\rho_{\lambda}}$ will be called canonical provided that λ is canonical.

Lemma 21. Every $S_{n} \times S_{n}$-orbit contains a canonical element.
Proof. Because of Corollary 20 it is enough to show that every $S_{n} \times S_{n}$-orbit contains $\varepsilon_{\rho_{\lambda}}$ for some decomposition λ. Let $x \in T$. If $x \in S_{n}$, then the statement is obvious. Let $x \in T \backslash S_{n}$. From Lemma 16 we have that the semigroup T is generated by S_{n} and τ_{1}. Hence we have $x=w \tau_{1} g_{1} \tau_{1} g_{2} \cdots \tau_{1} g_{k}$ for some $w, g_{1}, \ldots, g_{k} \in S_{n}$. Therefore

$$
\begin{aligned}
x=w\left(g_{1} \ldots g_{k}\right) & \left(g_{1} \ldots g_{k}\right)^{-1} \tau_{1}\left(g_{1} \ldots g_{k}\right) \\
& \cdot\left(g_{2} \ldots g_{k}\right)^{-1} \tau_{1}\left(g_{2} \ldots g_{k}\right) \ldots\left(g_{k-1} g_{k}\right)^{-1} \tau_{1}\left(g_{k-1} g_{k}\right) g_{k}^{-1} \tau_{1} g_{k},
\end{aligned}
$$

and hence we can write $x=u \varepsilon_{i_{1}, j_{1}} \ldots \varepsilon_{i_{k}, j_{k}}$, where $u=w g_{1} \ldots g_{k}$ and

$$
\left\{i_{t}, j_{t}\right\}=\left\{\left(g_{t} \ldots g_{k}\right)(1),\left(g_{t} \ldots g_{k}\right)(2)\right\}, 1 \leq t \leq k .
$$

Define the equivalence relation ρ as the reflexive-symmetric-transitive closure of the relation $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}$ and λ be the corresponding decomposition of $\{1,2, \ldots, n\}$. From Corollary 19 we get that the $S_{n} \times S_{n}$-orbit of x contains $\varepsilon_{\rho}=\varepsilon_{\rho_{\lambda}}$. This completes the proof.

Lemma 22. Let λ be a canonical decomposition of $\{1,2, \ldots, n\}$. For $i=$ $1, \ldots, n$ set $\lambda^{(i)}=\left|\left\{j:\left|X_{j}\right|=i\right\}\right|$. Then the $S_{n} \times S_{n}$-stabilizer of ε_{λ} contains at least

$$
\prod_{i=1}^{n}\left(\lambda^{(i)}!(i!)^{2 \lambda^{(i)}}\right)
$$

elements.
Proof. Fix $i \in\{1,2, \ldots, n\}$. Let $X_{a}, X_{a+1} \ldots, X_{b}$ be all blocks of λ of cardinality i. Then for any non-maximal element j of any of $X_{a}, X_{a+1} \ldots, X_{b}$, using Lemma 17, the definition of ε_{λ}, and (4.3) we have $\sigma_{j} \varepsilon_{\lambda}=\varepsilon_{\lambda} \sigma_{j}=\varepsilon_{\lambda}$. Moreover, for any $w \in S_{n}$, which stabilizes all elements outside $X_{a} \cup X_{a+1} \cup$ $\cdots \cup X_{b}$ and maps each X_{s} to some X_{t}, we have $w(\lambda)=\lambda$ and hence $w^{-1} \varepsilon_{\lambda} w=\varepsilon_{\lambda}$. This gives us exactly $\lambda^{(i)!}(i!)^{2 \lambda^{(i)}}$ elements of the $S_{n} \times S_{n^{-}}$ stabilizer. The statement of the lemma now follows by applying the product rule since for different i the elements above act on pairwise disjoint subsets of $\{1, \ldots, n\}$.

Corollary 23.

$$
|T| \leq \sum_{\lambda \vdash n} \frac{(n!)^{2}}{\prod_{i=1}^{n}\left(\lambda^{(i)}!(i!)^{2 \lambda^{(i)}}\right)} .
$$

Proof. Canonical elements of T are in bijection with partitions $\lambda \vdash n$ by construction. By Lemma 21, every $S_{n} \times S_{n}$-orbit contains a canonical element. We have $\left|S_{n} \times S_{n}\right|=(n!)^{2}$. By Lemma 22, the stabilizer of a canonical element, corresponding to λ, contains at least $\prod_{i=1}^{n}\left(\lambda^{(i)}!(i!)^{2 \lambda^{(i)}}\right)$ elements. The statement now follows by applying the sum rule.

Proof of Theorem 13. Comparing Corollary 23 and Proposition 1(c) we have $|T| \leq\left|\mathcal{I} \mathcal{T}_{n}\right|$. Since $\varphi: T \rightarrow \mathcal{I} \mathcal{I}_{n}$ is surjective we have $|T| \geq\left|\mathcal{I} \mathcal{I}_{n}\right|$. Hence $|T|=\left|\mathcal{I} \mathcal{T}_{n}\right|$ and φ is an isomorphism.

Remark 24. From the above arguments it follows that the inequality obtained in Lemma 22 is in fact an equality. From the proof of Lemma 22 one easily derives that the $S_{n} \times S_{n}$-stabilizer of ε_{λ} is isomorphic to the direct product of wreath products $S_{\lambda^{(i)}}$ 乙 $\left(S_{i} \times S_{i}\right)$.

Remark 25. Following the arguments of the proof of Theorem 13 one easily proves the following presentation for the symmetric inverse semigroup $\mathcal{I} \mathcal{S}_{n}$: $\mathcal{I} \mathcal{S}_{n}$ is generated, as a monoid, by $\sigma_{1}, \ldots, \sigma_{n-1}, \vartheta_{1}, \ldots, \vartheta_{n}$ subject to the following relations:

$$
\begin{gather*}
\sigma_{i}^{2}=e ; \quad \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j|>1 ; \quad \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j},|i-j|=1 ; \tag{4.5}\\
\vartheta_{i}^{2}=\vartheta_{i} ; \quad \vartheta_{i} \vartheta_{j}=\vartheta_{j} \vartheta_{i} i \neq j ; \tag{4.6}\\
\sigma_{i} \vartheta_{i}=\vartheta_{i+1} \sigma_{i} ; \quad \sigma_{i} \vartheta_{j}=\vartheta_{j} \sigma_{i}, j \neq i, i+1 ; \quad \vartheta_{i} \sigma_{i} \vartheta_{i}=\vartheta_{i} \vartheta_{i+1} . \tag{4.7}
\end{gather*}
$$

The classical presentation for $\mathcal{I} \mathcal{S}_{n}$ usually involves only one additional generator (namely ϑ_{1}) and can be found for example in [Li, Chapter 9].

5 Presentation for $\mathcal{P} \mathfrak{B}_{n}$

For $i \in\{1, \ldots, n\}$ let ς_{i} denote the element $\{i\} \cup\left\{i^{\prime}\right\} \cup \bigcup_{j \neq i}\left\{j, j^{\prime}\right\}$. Using [Maz1], it is easy to see that $\mathcal{P} \mathfrak{B}_{n}$ is generated by $\left\{\sigma_{i}\right\} \cup\left\{\pi_{i}\right\} \cup\left\{s_{i}\right\}$ (and even by $\left\{\sigma_{i}\right\}, \pi_{1}$ and $\left.\varsigma_{1}\right)$.

Let T denote the monoid with the identity element e, generated by the elements $\sigma_{i}, \theta_{i}, i=1, \ldots, n-1$, and $\vartheta_{i}, i=1, \ldots, n$, subject to the relations (3.1)-(3.5), the relations from Remark 25, and the following relations (for all appropriate i and j):

$$
\begin{gather*}
\theta_{i} \vartheta_{j}=\theta_{i} \vartheta_{j}, \quad j \neq i, i+1 ; \tag{5.1}\\
\theta_{i} \vartheta_{i}=\theta_{i} \vartheta_{i+1}=\theta_{i} \vartheta_{i} \vartheta_{i+1}, \quad \vartheta_{i} \theta_{i}=\vartheta_{i+1} \theta_{i}=\vartheta_{i} \vartheta_{i+1} \theta_{i} ; \tag{5.2}\\
\theta_{i} \vartheta_{i} \theta_{i}=\theta_{i}, \quad \vartheta_{i} \theta_{i} \vartheta_{i}=\vartheta_{i} \vartheta_{i+1} ; \tag{5.3}\\
\sigma_{i+2} \sigma_{i+1} \theta_{i} \vartheta_{i+2} \vartheta_{i+3}=\sigma_{i} \sigma_{i+1} \vartheta_{i} \theta_{i} \theta_{i+2} \vartheta_{i+2} \tag{5.4}
\end{gather*}
$$

Theorem 26. The map $\sigma_{i} \mapsto s_{i}, \theta_{i} \rightarrow \pi_{i}, i=1, \ldots, n-1$, and $\vartheta_{i} \mapsto \varsigma_{i}$, $i=1, \ldots, n$, extends to an isomorphism, $\varphi: T \rightarrow \mathcal{P} \mathfrak{B}_{n}$.

As in the previous section, one easily checks that this map extends to an epimorphism and hence to complete the proof one has to compare the cardinalities of T and $\mathcal{P} \mathfrak{B}_{n}$.

Similarly to what was done in Section 4, using the presentation of $\mathcal{I} \mathcal{S}_{n}$ given in Remark 25, one proves that elements $\sigma_{i}, i=1, \ldots, n-1$, generate the symmetric group S_{n}, and that the elements $\sigma_{i}, i=1, \ldots, n-1 ; \vartheta_{i}$, $i=1, \ldots, n$, generate the semigroup, which is isomorphic to $\mathcal{I} \mathcal{S}_{n}$ (and which will be identified with it). As in Section 4 we consider the natural action of S_{n} on T by inner automorphisms of T via conjugation: $x^{g}=g^{-1} x g$ for each $x \in T, g \in S_{n}$. Set $\xi_{i}=\theta_{i} \vartheta_{i}, \eta_{i}=\vartheta_{i} \theta_{i}, 1 \leq i \leq n-1$.

Lemma 27. The S_{n}-stabilizer of each of $\theta_{1}, \xi_{1}, \eta_{1}$ is the subgroup H of S_{n}, consisting of all permutations, which preserve the set $\{1,2\}$. This subgroup is isomorphic to $S_{2} \times S_{n-2}$.

Proof. For θ_{1} this follows from Lemma 5. For each $j \geq 2$ we have that σ_{j} commutes with both ξ_{1} and η_{1} by (3.3) and (4.7) respectively, and hence $\sigma_{j} \xi_{1} \sigma_{j}=\xi_{1}$ and $\sigma_{j} \eta_{1} \sigma_{j}=\eta_{1}$. Let $j=1$. Then

$$
\begin{gathered}
\sigma_{1} \xi_{1} \sigma_{1}=\sigma_{1} \theta_{1} \vartheta_{1} \sigma_{1}=\sigma_{1} \theta_{1} \sigma_{1} \vartheta_{2}=\theta_{1} \vartheta_{2}=\theta_{1} \vartheta_{1}=\xi_{1} ; \\
\sigma_{1} \eta_{1} \sigma_{1}=\sigma_{1} \vartheta_{1} \theta_{1} \sigma_{1}=\vartheta_{2} \sigma_{1} \theta_{1} \sigma_{1}=\vartheta_{2} \theta_{1}=\vartheta_{1} \theta_{1}=\eta_{1}
\end{gathered}
$$

by (4.7) and (3.3). Hence σ_{1} also stabilizes ξ_{1} and η_{1}. Since $\sigma_{j}, j \neq 2$, generate H, we obtain that all elements of H stabilize ξ_{1} and η_{1}. In particular, the S_{n}-orbits of ξ_{1} and of η_{1} consist of at most $\left|S_{n}\right| /|H|=\binom{n}{2}$ elements each. At the same time, the S_{n}-orbits of $\varphi\left(\xi_{1}\right)$ and $\varphi\left(\eta_{1}\right)$ consist of exactly $\binom{n}{2}$ different elements and hence H must coincide with the S_{n}-stabilizer of both ξ_{1} and η_{1}.

Since S_{n} acts on T via automorphisms and $\theta_{1}, \xi_{1}, \eta_{1}$ are idempotents, all elements in the S_{n}-orbits of $\theta_{1}, \xi_{1}, \eta_{1}$ are idempotents as well. From Lemma 27 it follows that the elements of the S_{n}-orbits of $\theta_{1}, \xi_{1}, \eta_{1}$ are in the natural bijections with the cosets $H \backslash S_{n}$. By the definition of H, two elements, $x, y \in S_{n}$, are contained in the same coset if and only if $x(\{1,2\})=$ $y(\{1,2\})$.

Lemma 28. The S_{n}-orbits of $\theta_{1}, \xi_{1}, \eta_{1}$ contain all elements θ_{i}, ξ_{i} and η_{i}, $i=1, \ldots, n-1$, respectively. Moreover, for $w \in S_{n}$ we have $w^{-1} \theta_{1} w=\theta_{i}$ if and only if $w(\{1,2\})=\{i, i+1\}$ and analogously for ξ_{1} and η_{1}.

Proof. The proof for the S_{n}-orbit of θ_{1} is analogous to that of Lemma 6. We prove the statement for the S_{n}-orbit of ξ_{1}. For the S_{n}-orbit of η_{1} the arguments are analogous. We use induction on i with the case $i=1$ being trivial. Let $i>1$ and assume that ξ_{i-1} is contained in our orbit. Then, using (4.7), we compute

$$
\begin{aligned}
\xi_{i}=\theta_{i} \vartheta_{i}=\sigma_{i-1} \sigma_{i} \theta_{i-1} \sigma_{i} \sigma_{i-1} \vartheta_{i}= & \sigma_{i-1} \sigma_{i} \theta_{i-1} \sigma_{i} \vartheta_{i-1} \sigma_{i-1}= \\
& \sigma_{i-1} \sigma_{i} \theta_{i-1} \vartheta_{i-1} \sigma_{i} \sigma_{i-1}=\sigma_{i-1} \sigma_{i} \xi_{i-1} \sigma_{i} \sigma_{i-1},
\end{aligned}
$$

and hence ξ_{i} is contained in our orbit as well. The second claim follows from (3.6). This completes the proof.

For $w \in S_{n}$ such that $w(\{1,2\})=\{i, j\}$, where $i<j$, we set $\epsilon_{i, j}=$ $w^{-1} \theta_{1} w, \mu_{i, j}=w^{-1} \xi_{1} w, \nu_{i, j}=w^{-1} \eta_{1} w$. All these elements are well defined by Lemma 27 .

Lemma 29. (a) $\vartheta_{i} \epsilon_{i, j}=\vartheta_{j} \epsilon_{i, j}=\vartheta_{i} \vartheta_{j} \epsilon_{i, j}=\nu_{i, j} ; \vartheta_{k} \epsilon_{i, j}=\epsilon_{i, j} \vartheta_{k}, k \notin\{i, j\}$.
(b) $\vartheta_{i} \mu_{i, j}=\vartheta_{j} \mu_{i, j}=\vartheta_{i} \vartheta_{j} \mu_{i, j}=\vartheta_{i} \vartheta_{j} ; \vartheta_{k} \mu_{i, j}=\mu_{i, j} \vartheta_{k}, k \notin\{i, j\}$.

Proof. First we prove (a). Because of Lemma 28 it is enough to check that $\vartheta_{1} \epsilon_{1,2}=\vartheta_{2} \epsilon_{1,2}=\vartheta_{1} \vartheta_{2} \epsilon_{1,2}=\nu_{1,2}$ and that $\vartheta_{3} \epsilon_{1,2}=\epsilon_{1,2} \vartheta_{3}$. The latter equalities follow from (5.2) and (5.1).

Now we prove (b). Again, because of Lemma 28 it is enough to check that $\vartheta_{1} \mu_{1,2}=\vartheta_{2} \mu_{1,2}=\vartheta_{1} \vartheta_{2} \mu_{1,2}=\vartheta_{1} \vartheta_{2}$ and that $\vartheta_{3} \mu_{1,2}=\mu_{1,2} \vartheta_{3}$. Using (5.3), (5.2) and (5.1) we have

$$
\vartheta_{1} \mu_{1,2}=\vartheta_{1} \theta_{1} \vartheta_{1}=\vartheta_{1} \vartheta_{2} ; \quad \vartheta_{1} \mu_{2,3}=\vartheta_{1} \theta_{2} \vartheta_{2}=\theta_{2} \vartheta_{1} \vartheta_{2}=\theta_{2} \vartheta_{2} \vartheta_{1}=\mu_{2,3} \vartheta_{1},
$$

as required.
Lemma 30. Suppose $\{i, j\} \cap\{p, q\}=\varnothing$. Then $\epsilon_{i, j} \epsilon_{p, q}=\epsilon_{p, q} \epsilon_{i, j}, \mu_{i, j} \mu_{p, q}=$ $\mu_{p, q} \mu_{i, j}$ and $\epsilon_{i, j} \mu_{p, q}=\mu_{p, q} \epsilon_{i, j}$.
Proof. Following the arguments from the proof of Lemma 7 it is enough to show that $\mu_{1,2} \mu_{3,4}=\mu_{3,4} \mu_{1,2}$ and $\mu_{1,2} \epsilon_{3,4}=\epsilon_{3,4} \mu_{1,2}$, that is that $\xi_{1} \xi_{3}=\xi_{3} \xi_{1}$ and $\xi_{1} \theta_{3}=\theta_{3} \xi_{1}$. Using (5.1), (4.6) and (3.2) we have

$$
\xi_{1} \xi_{3}=\theta_{1} \vartheta_{1} \theta_{3} \vartheta_{3}=\theta_{1} \theta_{3} \vartheta_{1} \vartheta_{3}=\theta_{3} \theta_{1} \vartheta_{3} \vartheta_{1}=\theta_{3} \vartheta_{3} \theta_{1} \vartheta_{1}=\xi_{3} \xi_{1},
$$

and using (5.1) and (3.2) we also obtain $\xi_{1} \theta_{3}=\theta_{1} \vartheta_{1} \theta_{3}=\theta_{1} \theta_{3} \vartheta_{1}=\theta_{3} \xi_{1}$, as required.

Lemma 31. Suppose $\{i, j\} \cap\{p, q\} \neq \varnothing$. Then each of the elements $\epsilon_{i, j} \epsilon_{p, q}$, $\mu_{i, j} \mu_{p, q}, \epsilon_{i, j} \mu_{p, q}, \mu_{i, j} \epsilon_{p, q}$ equals to the element of the form $u \theta_{1} v$ for some $u, v \in$ $\mathcal{I} \mathcal{S}_{n}$.

Proof. Using the argument from the proof of Lemma 8 it is enough to prove the statement only for the elements $\mu_{1,2} \mu_{2,3}, \mu_{1,2} \epsilon_{2,3}, \epsilon_{1,2} \mu_{2,3}$. We have

$$
\mu_{1,2} \mu_{2,3}=\xi_{1} \xi_{2}=\theta_{1} \vartheta_{1} \theta_{2} \vartheta_{2}=\theta_{1} \vartheta_{2} \theta_{2} \vartheta_{2}=\theta_{1} \vartheta_{2} \vartheta_{3}=\xi_{1} \vartheta_{3}
$$

by (5.2) and (5.3); and

$$
\begin{aligned}
\mu_{1,2} \epsilon_{2,3}= & \theta_{1} \vartheta_{1} \theta_{2}=\theta_{1} \vartheta_{1} \sigma_{1} \sigma_{2} \theta_{1} \sigma_{1} \sigma_{2}=\theta_{1} \sigma_{1} \vartheta_{2} \sigma_{2} \theta_{1} \sigma_{1} \sigma_{2}= \\
& \theta_{1} \sigma_{1} \sigma_{2} \vartheta_{3} \theta_{1} \sigma_{1} \sigma_{2}=\theta_{1} \sigma_{1} \sigma_{2} \theta_{1} \vartheta_{3} \sigma_{1} \sigma_{2}=\theta_{1} \sigma_{2} \theta_{1} \vartheta_{3} \sigma_{1} \sigma_{2}=\theta_{1} \vartheta_{3} \sigma_{1} \sigma_{2}
\end{aligned}
$$

by (3.1), (3.4), (3.3), (4.7). Finally,

$$
\epsilon_{1,2} \mu_{2,3}=\theta_{1} \theta_{2} \vartheta_{2}=\theta_{1} \sigma_{1} \sigma_{2} \theta_{1} \sigma_{2} \sigma_{1} \vartheta_{2}=\theta_{1} \sigma_{2} \vartheta_{1} \sigma_{1} .
$$

using (3.1), (3.3) and (3.4). The statement follows.

For each subset $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$ set $\vartheta\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)=\vartheta_{i_{1}} \ldots \vartheta_{i_{k}}$. Obviously, $\vartheta\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)$ is an idempotent and each idempotent of $\mathcal{I} \mathcal{S}_{n}$ has such a form. In the sequel we will use the obvious fact that each element of $\mathcal{I} \mathcal{S}_{n}$ can be written in the form $u v$, where u is an idempotent, and $v \in S_{n}$.

As in the previous sections we consider the $S_{n} \times S_{n}$-action on T given by $(g, h)(x)=g^{-1} x h$ for $x \in T$ and $(g, h) \in S_{n} \times S_{n}$.
Lemma 32. Every $S_{n} \times S_{n}$-orbit contains either e or an element of the form $\vartheta(A) \gamma_{i_{1}, j_{1}} \ldots \gamma_{i_{s}, j_{s}}$, where $A \subset\{1,2, \ldots, n\}$, the sets $\left\{i_{l}, j_{l}\right\}$ are pairwise disjoint, and each $\gamma_{i_{l}, j_{l}}$ equals either $\epsilon_{i_{l}, j_{l}}$ or $\mu_{i_{l}, j_{l}}$.
Proof. The idea of the proof is analogous to that of Lemma 9. Let $x \in T$. If $x \in S_{n}$ the statement is obvious. Assume that $x \notin S_{n}$. Since T is generated by $\mathcal{I} \mathcal{S}_{n}$ and θ_{1} we can write

$$
\begin{equation*}
x=w u \theta_{1} u_{1} g_{1} \theta_{1} u_{2} g_{2} \cdots \theta_{1} u_{k} g_{k} \tag{5.5}
\end{equation*}
$$

for some $k \geq 1, w, g_{1}, \ldots, g_{k} \in S_{n}$ and $u, u_{1}, \ldots, u_{k} \in E\left(\mathcal{I} \mathcal{S}_{n}\right)$. Moreover, we may assume that x can not be written as a product of θ_{1} 's and elements of $\mathcal{I} \mathcal{S}_{n}$, which contains less than k occurrences of θ_{1}. We claim that x can be written as

$$
\begin{equation*}
x=w u^{\prime} \gamma_{1}^{1} g_{1}^{\prime} \gamma_{1}^{2} g_{2}^{\prime} \cdots \gamma_{1}^{k} g_{k}^{\prime}, \tag{5.6}
\end{equation*}
$$

where, $w, g_{1}^{\prime}, \ldots, g_{k}^{\prime} \in S_{n}, u^{\prime} \in E\left(\mathcal{I} \mathcal{S}_{n}\right)$, and each γ_{1}^{i} is equal to either θ_{1} or ξ_{1}. Let us prove this by induction on k. Let $k=1$ and $x=w u \theta_{1} u_{1} g_{1}$. We know that $u_{1}=\vartheta(B)$ for some $B \subset\{1, \ldots, n\}$. Let $A=B \backslash\{1,2\}$. Using (5.1) and (5.2) we obtain that

$$
x=\left\{\begin{array}{l}
\text { wuu }_{1} \theta_{1} g_{1}, \text { if } B \cap\{1,2\}=\varnothing ; \\
w u \vartheta(A) \xi_{1} g_{1}, \text { if } B \cap\{1,2\} \neq \varnothing,
\end{array}\right.
$$

as required. Let now $k \geq 2$. Applying the basis of the induction to $\theta_{1} u_{k} g_{k}$ we obtain

$$
\begin{aligned}
& x=w u \theta_{1} u_{1} g_{1} \theta_{1} u_{2} g_{2} \cdots \theta_{1} u_{k-1} g_{k-1} \theta_{1} u_{k} g_{k}= \\
& w u \theta_{1} u_{1} g_{1} \theta_{1} u_{2} g_{2} \cdots \theta_{1} u_{k-1} g_{k-1} u_{k}^{\prime} \gamma_{1}^{k} g_{k},
\end{aligned}
$$

where u_{k}^{\prime} is an idempotent of $\mathcal{I} \mathcal{S}_{n}$ and γ_{1}^{k} is either ξ_{1} or θ_{1}. Now, since $u_{k-1} g_{k-1} u_{k}^{\prime} \in \mathcal{I} \mathcal{S}_{n}$, we can write $u_{k-1} g_{k-1} u_{k}^{\prime}=u_{k-1}^{\prime} g_{k-1}^{\prime}$ for some $g_{k-1}^{\prime} \in S_{n}$ and $u_{k-1}^{\prime} \in E\left(\mathcal{I} \mathcal{S}_{n}\right)$. Now (5.6) follows by applying the inductive assumption to $w u \theta_{1} u_{1} g_{1} \theta_{1} u_{2} g_{2} \cdots u_{k-2} g_{k-2} \theta_{1} u_{k-1}^{\prime} g_{k-1}^{\prime}$.

Similarly to (3.7) we can rewrite (5.6) as follows:

$$
\begin{aligned}
x=w u^{\prime}\left(g_{1}^{\prime}\right. & \left.\cdots g_{k}^{\prime}\right)\left(g_{1}^{\prime} \cdots g_{k}^{\prime}\right)^{-1} \gamma_{1}^{1}\left(g_{1}^{\prime} \cdots g_{k}^{\prime}\right) \\
& \cdot\left(g_{2}^{\prime} \cdots g_{k}^{\prime}\right)^{-1} \gamma_{1}^{2}\left(g_{2}^{\prime} \cdots g_{k}^{\prime}\right) \cdots\left(g_{k-1}^{\prime} g_{k}^{\prime}\right)^{-1} \gamma_{1}^{k-1}\left(g_{k-1}^{\prime} g_{k}^{\prime}\right) g_{k}^{\prime-1} \gamma_{1}^{k} g_{k}^{\prime},
\end{aligned}
$$

and therefore we can write

$$
\begin{equation*}
x=v u^{\prime} \gamma_{i_{1}, j_{1}} \cdots \gamma_{i_{k}, j_{k}} \tag{5.7}
\end{equation*}
$$

where $v=w g_{1}^{\prime} \cdots g_{k}^{\prime},\left\{i_{t}, j_{t}\right\}=\left\{\left(g_{t}^{\prime} \cdots g_{k}^{\prime}\right)(1),\left(g_{t}^{\prime} \cdots g_{k}^{\prime}\right)(2)\right\}, 1 \leq t \leq k$, and each $\gamma_{i_{l}, j_{l}}$ is equal to either $\epsilon_{i_{l}, j_{l}}$ or $\mu_{i_{l}, j_{l}}$. Since x is initially chosen such that it can not be reduced to an element of T, which contains less that k entries of θ_{1}, from Lemma 31 it follows that $\left\{i_{t}, j_{t}\right\} \cap\left\{i_{l}, j_{l}\right\}=\varnothing$ for any two factors $\gamma_{i_{t}, j_{t}}, \gamma_{i l, j_{l}}$ in (5.7). This implies that the $S_{n} \times S_{n}$-orbit of x contains $u^{\prime} \gamma_{i_{1}, j_{1}} \cdots \gamma_{i_{s}, j_{s}}$ such that $\left\{i_{t}, j_{t}\right\} \cap\left\{i_{l}, j_{l}\right\}=\varnothing$ for all $l \neq t$. The statement follows.

Corollary 33. Any $S_{n} \times S_{n}$ - orbit contains either e or an element of the form $\vartheta(A) \gamma_{i_{1}, j_{1}} \cdots \gamma_{i_{s}, j_{s}}$, such that
(i) the sets $\left\{i_{l}, j_{l}\right\}$ are pairwise disjoint;
(ii) each $\gamma_{i_{l}, j_{l}}$ equals to either $\epsilon_{i_{l}, j_{l}}$ or $\mu_{i_{l}, j_{l}}$ or $\nu_{i_{l}, j_{l}}$;
(iii) $A \cap\left\{i_{1}, j_{1}, \ldots i_{s}, j_{s}\right\}=\varnothing$.

Proof. This follows from Lemma 32 and Lemma 29.
Now we introduce the notion of a canonical element. Let k, l, m, t be some non-negative integers satisfying $2 k+2 l+2 m+t \leq n$. Set $\delta(0,0,0,0)=e$ and if at least one of k, l, m, t is not zero, set

$$
\begin{array}{r}
\delta(k, l, m, t)=\theta_{1} \theta_{3} \cdots \theta_{2 k-1} \xi_{2 k+1} \xi_{2 k+3} \cdots \xi_{2 k+2 l-1} \cdot \nu_{2 k+2 l+1} \nu_{2 k+2 l+3} \cdots \\
\cdot \nu_{2 k+2 l+2 m-1} \vartheta_{2 k+2 l+2 m+1} \vartheta_{2 k+2 l+2 m+2} \cdots \vartheta_{2 k+2 l+2 m+t} . \tag{5.8}
\end{array}
$$

The element $\delta(k, l, m, t)$ such that $l=0$ or $m=0$ will be called a canonical element of type (k, l, m, n).

Corollary 34. Every $S_{n} \times S_{n}$-orbit contains a canonical element.
Proof. Because of Corollary 33 we have to prove that, the $S_{n} \times S_{n}$-orbit of the element $\vartheta(A) \gamma_{i_{1}, j_{1}} \cdots \gamma_{i_{s}, j_{s}}$, satisfying the conditions of Corollary 33, contains a canonical element. Using conjugation, we can always reduce $\vartheta(A) \gamma_{i_{1}, j_{1}} \cdots \gamma_{i_{s}, j_{s}}$ to some $\delta(k, l, m, t)$. However, it might happen that both m and l will be non-zero. Without loss of generality we may assume $m \geq$ $l \geq 1$. Using (5.4) and conjugation we get that the $S_{n} \times S_{n}$-orbit of the element $\mu_{i, j} \nu_{p, q}$ contains $\theta_{i, j} \vartheta_{p} \vartheta_{q}$ provided that $\{i, j\} \cap\{p, q\}=\varnothing$. Hence the $S_{n} \times S_{n}$-orbit of our $\delta(k, l, m, t)$ contains $\delta(k+1, l-1, m-1, t+2)$. Proceeding by induction we get that the $S_{n} \times S_{n}$-orbit of our $\delta(k, l, m, t)$ contains $\delta(k+l, 0, m-l, t+2 l)$, which is canonical. This completes the proof.

Lemma 35. The $S_{n} \times S_{n}$-orbits of the canonical element $\delta(k, l, 0, t)$ and $\delta(k, 0, l, t)$ contain at most

$$
\frac{(n!)^{2}}{(k+l)!2^{k+l} t!k!2^{k}(2 l+t)!(n-2 k-2 l-t)!}
$$

elements.
Proof. We will prove the statement for the element $\delta(k, l, 0, t)$. For $\delta(k, 0, l, t)$ the proof is analogous. We use the arguments similar to those from the proof of Lemma 11. It is enough to show that the stabilizer of $\delta(k, l, 0, t)$ under the $S_{n} \times S_{n}$-action contains at least $(k+l)!2^{k+l} t!k!2^{k}(2 l+t)!(n-2 k-2 l-t)$! elements. Set

$$
\begin{gathered}
\Sigma_{i}^{0}=\sigma_{2 i} \sigma_{2 i-1} \sigma_{2 i+1} \sigma_{2 i}, \quad 1 \leq i \leq k+l-1 \\
\Sigma_{i}^{1}=\sigma_{2 i} \sigma_{2 i-1} \sigma_{2 i+1} \sigma_{2 i} \sigma_{2 i-1}, \quad 1 \leq i \leq k+l-1 .
\end{gathered}
$$

Then both Σ_{i}^{0} and Σ_{i}^{1} swap the sets $\{2 i-1,2 i\}$ and $\{2 i+1,2 i+2\}$. It follows that the group H, generated by all Σ_{i}^{0}, consists of all permutations of the set $\{1,2\},\{3,4\}, \ldots,\{2 k+2 l-1,2 k+2 l\}$ and is therefore isomorphic to the group S_{k+l}. It is further easy to see that the group \tilde{H}, generated by all Σ_{i}^{0} and Σ_{i}^{1}, is isomorphic to the wreath product $H 2 S_{2}$. From (3.5) and (3.3) it follows that the left multiplications with Σ_{i}^{0} and $\Sigma_{i_{\sim}}^{1}$ stabilizes $\delta(k, l, 0, t)$. Therefore the left multiplication with each element of \tilde{H} stabilizes $\delta(k, l, 0, t)$ as well. Now, from (4.7) and (5.2) it follows that

$$
\sigma_{i} \eta_{i}=\sigma_{i} \vartheta_{i} \vartheta_{i+1} \theta_{i}=\vartheta_{i+1} \sigma_{i} \vartheta_{i+1} \theta_{i}=\vartheta_{i} \sigma_{i} \vartheta_{i} \theta_{i}=\vartheta_{i} \vartheta_{i+1} \theta_{i}=\eta_{i} .
$$

for all $i=1, \ldots, n-1$. Moreover,

$$
\begin{aligned}
\sigma_{i+1} \eta_{i} \eta_{i+2}=\sigma_{i+1} \vartheta_{i+1} \theta_{i} \vartheta_{i+2} \theta_{i+2}= & \sigma_{i+1} \vartheta_{i+1} \vartheta_{i+2} \theta_{i} \theta_{i+2}= \\
& \vartheta_{i+1} \vartheta_{i+2} \theta_{i} \theta_{i+2}=\vartheta_{i+1} \theta_{i} \vartheta_{i+2} \theta_{i+2}=\eta_{i} \eta_{i+2}
\end{aligned}
$$

for all $i=1, \ldots, n-3$ by (5.1) and (4.7) and

$$
\sigma_{i+1} \eta_{i} \vartheta_{i+2}=\sigma_{i+1} \vartheta_{i+1} \theta_{i} \vartheta_{i+2}=\sigma_{i+1} \vartheta_{i+1} \vartheta_{i+2} \theta_{i}=\vartheta_{i+1} \vartheta_{i+2} \theta_{i}=\eta_{i} \vartheta_{i+2}
$$

for all $i=1, \ldots, n-2$ again by (5.1) and (4.7). Using this and the fact that η_{i} commutes with each of $\theta_{j}, \eta_{j}, \xi_{j}$ whenever $|i-j|>1$ we see that each of the elements $\sigma_{i}, 2 k+2 l-1 \leq i \leq 2 k+2 l+t$, stabilizes $\delta(k, l, 0, t)$ under the left multiplication. All these elements generate the group $H_{0} \simeq S_{t}$, which stabilizes $\delta(k, l, 0, t)$ and has trivial intersection with \tilde{H}. Let $H_{1}=H_{0} \times \tilde{H}$.

Analogously one shows that there is a group, H_{2}, isomorphic to the wreath product $\left(S_{k} \backslash S_{2}\right) \times S_{2 l+t}$, such that each element of this group stabilizes $\delta(k, l, 0, t)$ with respect to the right multiplication. Apart from this, from (3.3) we have that conjugation by any element from the group $H_{3}=$ $\left\langle\sigma_{2 k+2 l+t+1}, \ldots, \sigma_{n-1}\right\rangle \simeq S_{n-2 k-2 l-t}$ stabilizes $\delta(k, l, 0, t)$. Observe that the group, generated by H_{1}, H_{2} and H_{3}, is a direct product of H_{1}, H_{2} and H_{3}. Hence, using the product rule we derive that the cardinality of the stabilizer of $\delta(k, l, 0, t)$ is at least

$$
(k+l)!2^{k+l} t!k!2^{k}(2 l+t)!(n-2 k-2 l-t)!,
$$

and the proof is complete.
Proof of Theorem 26. Comparing Lemma 35 and Proposition 1(d) we have $|T| \leq\left|\mathfrak{B}_{n}\right|$. Since $\varphi: T \rightarrow \mathfrak{B}_{n}$ is surjective we have $|T| \geq\left|\mathfrak{B}_{n}\right|$. Hence $|T|=\left|\mathfrak{B}_{n}\right|$ and φ is an isomorphism.

References

[Ba] J. Baez, Link invariants of finite type and perturbation theory. Lett. Math. Phys. 26 (1992), no. 1, 43-51.
[Bi] J. Birman, New points of view in knot theory. Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287.
[Bl] M. Bloss, The partition algebra as a centralizer algebra of the alternating group. Comm. Algebra 33 (2005), no. 7, 2219-2229.
[Br] R. Brauer, On algebras which are connected with the semisimple continuous groups. Ann. of Math. (2) 38 (1937), no. 4, 857-872.
[FL] D. FitzGerald, J. Leech, Dual symmetric inverse monoids and representation theory. J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 345-367.
[Ke] S. Kerov, Realizations of representations of the Brauer semigroup. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 164 (1987), Differentsialnaya Geom. Gruppy Li i Mekh. IX, 188-193, 199; translation in J. Soviet Math. 47 (1989), no. 2, 2503-2507.
[Li] S. Lipscomb, Symmetric inverse semigroups. Mathematical Surveys and Monographs, 46. American Mathematical Society, Providence, RI, 1996.
[Mal1] V. Maltcev, Systems of generators, ideals and the principal series of the Brauer semigroup, Proceedings of Kyiv University, Physical and Mathematical Sciences 2004, no. 2, 59-65.
[Mal2] V. Maltcev, On one inverse subsemigroups of the semigroup \mathfrak{C}_{n}, to appear in Proceedings of Kyiv University.
[Mal3] V. Maltcev, On inverse partition semigroups $\mathcal{I P}_{X}$, preprint, Kyiv University, Kyiv, Ukraine, 2005.
[Mar1] P. Martin, Temperley-Lieb algebras for nonplanar statistical mechanics - the partition algebra construction. J. Knot Theory Ramifications 3 (1994), no. 1, 51-82.
[Mar2] P. Martin, The structure of the partition algebras. J. Algebra 183 (1996), no. 2, 319-358.
[MarEl] P. Martin, A. Elgamal, Ramified partition algebras. Math. Z. 246 (2004), no. 3, 473-500.
[MarWo] P. Martin, D. Woodcock, On central idempotents in the partition algebra. J. Algebra 217 (1999), no. 1, 156-169.
[Maz1] V. Mazorchuk, On the structure of Brauer semigroup and its partial analogue, Problems in Algebra 13 (1998), 29-45.
[Maz2] V. Mazorchuk, Endomorphisms of $\mathfrak{B}_{n}, \mathcal{P} \mathfrak{B}_{n}$, and \mathfrak{C}_{n}. Comm. Algebra 30 (2002), no. 7, 3489-3513.
[Pa] M. Parvathi, Signed partition algebras. Comm. Algebra 32 (2004), no. 5, 1865-1880.
[Ve] A. Vernitski, A generalization of symmetric inverse semigroups, preprint 2005.
[Xi] Ch. Xi, Partition algebras are cellular. Compositio Math. 119 (1999), no. 1, 99-109.
G.K.: Algebra, Department of Mathematics and Mechanics, Kyiv Taras Shevchenko University, 64 Volodymyrska st., 01033 Kyiv, UKRAINE, e-mail: akudr@univ.kiev.ua
V.M: Department of Mathematics, Uppsala University, Box. 480, SE-75106, Uppsala, SWEDEN, email: mazor@math.uu.se

