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Abstract

We obtain presentations for the Brauer monoid, the partial ana-
logue of the Brauer monoid, and for the greatest factorizable inverse
submonoid of the dual symmetric inverse monoid. In all three cases we
apply the same approach, based on the realization of all these monoids
as Brauer-type monoids.

1 Introduction and preliminaries

The classical Coxeter presentation of the symmetric group S,, plays an im-
portant role in many branches of modern mathematics and physics. In the
semigroup theory there are several “natural” analogues of the symmetric
group. For example the symmetric inverse semigroup ZS,, or the full trans-
formation semigroup 7,,. Perhaps a “less natural” generalization of S, is the
so-called Brauer semigroup B,,, which appeared in the context of centralizer
algebras in representation theory in [Br]. The basis of this algebra can be
described in a nice combinatorial way using special diagrams (see Section 2).
This combinatorial description motivated a generalization of the Brauer al-
gebra, the so-called partition algebra, which has its origins in physics, see
[Marl]. This algebra leads to another finite semigroup, the partition semi-
group, usually denoted by €,. Many classical semigroups, in particular, .S,,,
7S, B, and some others (again see Section 2) are subsemigroups in €,.

In the present paper we address the question of finding a presentation
for some subsemigroups of €,. As we have already mentioned, for S,, this is
a famous and very important result, where the major role is played by the
so-called braid relations. Because of the “geometric” nature of the generators
of the semigroups we consider, our initial motivation was that the additional
relations for our semigroups would be some kind of “singular deformations”
of the braid relations (analogous to the case of the singular braid monoid, see
[Ba, Bi]). In particular, we wanted to get a complete list of “deformations”
of the braid relations, which can appear in our cases. Surprizingly enough,



in some cases it turned out that the variations of the braid relations are not
enough. For example, already for the Brauer semigroup 8,, there appears the
“ghost relation” (3.5), which we can not interpret as any kind of deformation
of the braid relations. Analogous effect also happens for P*B,,.

As the main results of the paper we obtain a presentation for the semi-
group B, (see Section 3), its partial analogue PB,, (which can be also called
the rook Brauer monoid, see Section 5, and is a kind of mixture of B,, and
ZS,), and a special inverse subsemigroup Z7, of €,, which is isomorphic
to the greatest factorizable inverse submonoid of the dual symmetric inverse
monoid (see Section 4). The technical details in all cases are quite different,
however, the general approach is the same. We first “guess” the relations and
in the standard way obtain an epimorphism from the semigroup 7', given by
the corresponding presentation, onto the semigroup we are dealing with. The
only problem is to show that this epimorphism is in fact a bijection. For this
we have to compare the cardinalities of the semigroups. In all our cases the
symmetric group S, is the group of units in 7. The product S,, x .S,, thus
acts on T via multiplication from the left and from the right. The idea is to
show that each orbit of this action contains a very special element, for which,
using the relations, one can estimate the cardinality of the stabilizer. The
necessary statement then follows by comparing the cardinalities.
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2 Brauer type semigroups

For n € N we denote by .S, the symmetric group of all permutations on the set
{1,2,...,n}. We will consider the natural right action of S,, on {1,2,...,n}
and the induced action on the Boolean of {1,2,...,n}. For a semigroup, S,
we denote by E(S) the set of all idempotents of S.

Fixn € Nandlet M = M, ={1,2,...,n}, M'={1",2',... ,n'}. We will
consider ' : M — M as a bijection, whose inverse we will also denote by '.

Consider the set €, of all decompositions of M U M’ into disjoint unions
of subsets. Given o, € €,, a = X;U---UX, and § = Y U---UY], we define
their product v = af as the unique element of €, satisfying the following
conditions:



(P1) For ¢,5 € M the elements ¢ and j belong to the same block of the
decomposition v if an only if they belong to the same block of the
decomposition a or there exists a sequence, si,...,S,,, where m is
even, of elements from M such that i and s} belong to the same block
of a; 51 and sy belong to the same block of 3; s, and s; belong to the
same block of a and so on; s,,_; and s, belong to the same block of
B; st and j belong to the same block of «.

(P2) For i,5 € M the elements i and j' belong to the same block of the
decomposition v if an only if they belong to the same block of the
decomposition ( or there exists a sequence, s1, ..., S, where m is even,
of elements from M such that i" and s; belong to the same block of f3;
s7 and s} belong to the same block of «; s and s3 belong to the same
block of 3 ans so on; s/, and s/, belong to the same block of «; s,
and j’ belong to the same block of .

(P3) For i,5 € M the elements ¢ and j’ belong to the same block of the
decomposition v if an only if there exists a sequence, sy, ..., S,,, where
m is odd, of elements from M such that ¢ and s} belong to the same
block of «; s1 and s, belong to the same block of 3; s}, and s} belong to
the same block of @ and so on; s/, ; and s/, belong to the same block
of a; s, and j' belong to the same block of (.

One can think about the elements of €, as “microchips” or “generalized
microchips” with n pins on the left hand side (corresponding to the elements
of M) and n pins on the right hand side (corresponding to the elements of
M’). For a € €, we connect two pins of the corresponding chip if and only
if they belong to the same set of the partition a. The operation described
above can then be viewed as a “composition” of such chips: having o, 3 € &,
we identify (connect) the right pins of a with the corresponding left pins of
(3, which uniquely defines a connection of the remaining pins (which are the
left pins of a and the right pins of ). An example of multiplication of two
chips from €, is given on Figure 1. Note that, performing the operation
we can obtain some “dead circles” formed by some identified pins from «
and (3. These circles should be disregarded (however they play an important
role in representation theory as they allow to deform the multiplication in
the semigroup algebra). From this interpretation it is fairly obvious that
the composition of elements from €, defined above is associative. On the
level of associative algebra, the partition algebra was defined in [Marl]| and
then studied by several authors especially in recent years, see for example
[Bl, Mar2, MarEl, MarWo, Pa, Xi|. Purely as a semigroup it seems that &,
appeared in [Maz2].
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Figure 1: Multiplication of elements of &,,.

Let o € €, and X be a block of a. The block X will be called
e a line provided that |X| =2 and X intersects with both M and M’;

e a generalized line provided that X intersects with both M and M’;

a bracket if | X| =2 and either X C M or X C M’;

e a generalized bracket if | X| > 2 and either X € M or X C M’

a point if | X| = 1.

By a Brauer-type semigroup we will mean a “natural” subsemigroup of the
semigroup &,. Here are some examples:

(E1) The subsemigroup, consisting of all elements a € €, such that each
block of « is a line. This subsemigroup is canonically identified with
S, and is the group of units of &,,.

(E2) The subsemigroup, consisting of all elements a € €, such that each
block of v is a either a line or a point. This subsemigroup is canonically
identified with the symmetric inverse semigroup ZS,,.

(E3) The subsemigroup B,,, consisting of all elements o € &,, such that each
block of « is a either a line or a bracket. This is the classical Brauer
semigroup, see [Ke, Mazl].
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(E4) The subsemigroup P*B,,, consisting of all elements o € €, such that
each block of « is a either a line or a bracket or a point. This is the
partial analogue of the Brauer semigroup, see [Mazl].

(E5) The subsemigroup ZP,,, consisting of all a € &, such that each block
of o is a generalized line. In this form the semigroup Z'P,, appeared in
[Mal2, Mal3]. It is easy to see that the semigroup ZP,, is isomorphic
to the dual symmetric inverse monoid Iy, from [FL].

(E6) The subsemigroup Z7,, consisting of all @ € €, such that each block
X of a is a generalized line and | X N M| = |X N M’|. In this form the
semigroup Z7,, appeared in [Mal3]. The semigroup Z7,, is isomorphic
to the greatest factorizable inverse submonoid Fy, of Z, from [FLJ.

All the semigroups described above are regular. S, is a group. The
semigroups 1S, ZP,, and Z7,, are inverse, while &,, ®B,, and P®B,, are not.
The partially ordered set consisting of these semigroups, with the partial
order given by inclusions, is illustrated on Figure 2.

In what follows we will need some easy combinatorial results for Brauer-
type semigroups. For a € €, we define the rank rk(a) of a as the number
of generalized lines in «, that is the number of blocks in « intersecting with
both M and M’. Note that for the semigroups S,, ZS,, B,, PB, and €,
ranks of the elements classify the D-classes (this is obvious for S, for ZS,
this is an easy exercise, for B,, and PB,, this can be found in [Mazl], and
for €, it can be obtained by arguments similar to those from [Maz1] for B,,).

For the semigroup Z7, we will need a different notion. Let X be a set
and X = UY_ | X} be a decomposition of X into a union of pairwise disjoint
subsets. For each 7, 1 < i < n, let m; denote the number of subsets of

b}



this decomposition, whose cardinality equals ¢. The tuple (mq,...,mx|)
will be called the type of the decomposition. Consider an element, o €
I7T ,. By definition « is a decomposition of M U M’ into a disjoint union of
subsets, whose intersections with M and M’ have the same cardinality. Let
(my, ..., may,) be the type of this decompositions (note that m; # 0 only if 4
is even). The element « induces a decomposition of M into disjoint subsets,
whose blocks are intersections of the blocks of a with M. By the type of a we
will mean the type of this decomposition of M, which is obviously equal to
(ma, My, ..., ma,). The types of elements from Z7,, correspond bijectively
to partitions of n (a partition, A = n, of n is a tuple, A = (A,..., \), of
positive integers such that A\; > Ag > -+ > Ay and A\ + -+ + A\, = n). The
types of the elements classify the D-classes in Z7,,, see [FL, Section 3].

For the semigroup P*B, we will need a more complicated technical tool.
Although D-classes are classified by ranks we will need to distinguish ele-
ments of a given rank, so we introduce the notion of a type. For a € PB,
let r denote the number of lines in a; b; the number of brackets in «, con-
tained in M; by the number of brackets in «, contained in M’; p; the number
of points in «, contained in M; p,; the number of points in «, contained in
M'. Obviously n = r+2b; +p; = r+2by+ps. Define the type of a as follows:

type(a) = (b2, b1 = b2,0,p1), b1 = by;
(bl’o7b2_blap2)a b2>b1.

We will need the following explicit combinatorial formulae for the number
of elements of a given rank or type.

Proposition 1. (a) For k € {0,...,n} the number of elements of rank k in
"2
IS8, equals (k) k!.
(b) For k € {1,...,n} the number of elements of rank k in B, equals 0 if

n—=kis oddand% ifn—k =2l is even.

(c) The number of elements of 7, of type (m1,...,my,) equals
(n!)?

[T(matn>)

i=1

(d) For all non-negative integers k,m,t such that 2k+2m-+t < n the number
of elements of the type (k,m,0,t) in PB, is equal to the number of
elements of the type (k,0,m,t) in PB,, and equals

(n!)?
K12kt 4 2m)!(k + m)!12ktmtl(n — 2k — 2m — t)!




Proof. This is a straightforward combinatorial calculation. O

Remark 2. The semigroup €, can be also connected to some other semi-
groups of binary relations. As we have already mentioned, the subsemigroup
IP, of &, is isomorphic to the dual symmetric inverse monoid Z;, from [FL],
which is the semigroup of all difunctional binary relations under the operation
of taking the smallest difunctional binary relations, containig the product of
two given relations. The semigroup Z7, is isomorphic to the greatest factor-
izable inverse submonoid of Z};, that is to the semigroup E(Z},)S,. One can
also deform the multiplication in &€, in the following way: given o, € &,
define v = a x (8 as follows: all blocks of v are either points or generalized
lines, and for i, 7 € M the elements ¢ and j" belong to the same block of v if
and only if 7 belongs to some block X of o and ;' belongs to some block Y
of B such that X N M' = (Y N M)'". It is straightforward that this deformed
multiplication is associative and hence we get a new semigroup, ¢,. This
semigroup is an inflation of Vernitsky’s inverse semigroup (Dx, <), see [Ve,
which is a subsemigroup of €, in the natural way. An isomorphic object
can be obtained if instead of points one requires that v contains at most one
generalized bracket, which is a subset of M, and at most one generalized
bracket, which is a subset of M.

3 Presentation for ‘B,

Fori=1,...,n—1 we denote by s; the elementary transposition (i,i+ 1) €
Sp, and by m; the element {i,i + 1} U {&', (i + 1)} U U;4,,,1{4, 5"} of B,
(the elementary atom from [Mazl]). It is easy to see (and can be derived
from the results of [Mazl] and [Mall]) that %B,, is generated by {s;} U {m;}
as a monoid. Moreover, B, is even generated by {s;} and, for example, ;.
However, we think that the set {s;} U {m;} is more natural as a system of
generators for 9B, for example because of the connection between Brauer
and Temperley-Lieb algebras (and analogy with the singular braid monoid,
see [Ba, Bi]). In this section we obtain a presentation for 9B, with respect to
this system of generators.

Let T denote the monoid with the identity element e, generated by the
elements o;, 0;, i = 1,...,n — 1, subject to the following relations (where



i,je{1,2,...,n—1}):

ol =e; o0;=00 |i—j|>1; o050 =000 |i—j =1 (3.1)

07 =0 0.0, =00, |i—j|>1; 00,0, =0 |i—jl=1; (3.2)

0o = 0i0; = 05, 0;05 = 0;0;, i —j| > 1; (3-3)

oibjo; = 00,05, 6,00, =06, |i—j|=1; (3.4)

and 0;0;,10;0;10 = 0;120;110:0;42. (3.5)

Theorem 3. The map o; — s; and 0; — m;, i =1,...,n — 1, extends to an

1somorphism, ¢ : T — B,,.

The rest of the section will be devoted to the proof of Theorem 3.

It is a direct calculation to verify that the generators s; and m; of B,
satisfy the relations, corresponding to (3.1)—(3.5). Thus the map o; — s;
and 0; — m;, i = 1,...,n — 1, extends to an epimorphism, ¢ : T" — B,,.
Hence, to prove Theorem 3 we have only to show that |T'| = [8,|. To do
this we will have to study the structure of the semigroup 7" in details.

Let W denote the free monoid, generated by o;, 6;, i =1,...,n— 1, and
v : W — T denote the canonical projection. Let ~ be the corresponding
congruence on W, that is v ~ w provided that ¥ (v) = ¥ (w). We start with
the following description of units in 7™

Lemma 4. The elements o;, 1 = 1,...,n — 1, generate the group G of units
in T, which is isomorphic to the symmetric group S,,.

Proof. Let v,w € W be such that v ~ w. Assume further that v contains
some ;. Since @’s allways occur on both sides in the relations (3.2)—(3.5)
and do not occur in the relations (3.1), it follows that w must contain some

¢;. In particular, the submonoid, generated in W by o;, 7 =1,...,n—1,is a
union of equivalence classes with respect to ~. Using the well-known Coxeter
presentation of the symmetric group we obtain that o;, i = 1,...,n — 1,

generate in T a copy of the symmetric group. All elements of this group are
obviously units in 7. On the other hand, if v,w € W and v contains some
f;, then vw contains #; as well. By the above arguments, vw can not be
equivalent to the empty word. Hence v is not invertable in T". The claim of
the lemma follows. O

In what follows we will identify the group G of units in 7" with .S,, via the
isomorphism, which sends o; € G to s;. There is a natural action of .S, on
T by inner automorphisms of 7" via conjugation: z9 = ¢ 'ag for each z € T,
gES,.



Lemma 5. The S, -stabilizer of 0 is the subgroup H of S,, consisting of all
permutations, which preserve the set {1,2}. This subgroup is isomorphic to

SQ X Sn_g .

Proof. We have 0;6,10; = 6;, j # 2, by (3.3). Since 0, j # 2, generate H, we
obtain that all elements of H stabilize #,. In particular, the S,,-orbit of
consists of at most |S,|/|H| = (}) elements. At the same time, it is easy to
see that the S,-orbit of p(6:) consists of exactly (%) different elements and
hence H must coincide with the .S,-stabilizer of 6;. O

Since S,, acts on T' via automorphisms and 6; is an idempotent, all ele-
ments in the S,-orbit of §; are idempotents. From Lemma 5 it follows that
the elements of the S,,-orbit of #; are in the natural bijection with the cosets
H\S,,. By the definition of H, two elements, z,y € S,, are contained in the
same coset if and only if z({1,2}) = y({1,2}).

Lemma 6. The S,,-orbit of 01 contains all 0;, i = 1,...,n — 1. Moreover,
for w € S,, we have w™t01w = 0; if and only if w({1,2}) = {i,7 + 1}.

Proof. We use induction on ¢ with the case ¢ = 1 being trivial. Let ¢ > 1 and
assume that #;_; is contained in our orbit. Then 0; = 0,_10;0,_10;0;—1 and
hence 6; is contained in our orbit as well. Hence all §; indeed belong to the
Sy,-orbit of ;. The second claim follows from

0;-10;0;_920;_1""" 0'10'2({]_, 2}) == {Z,Z + 1}7 (36)
which is obtained by a direct calculation. This completes the proof. O

For w € S, such that w({1,2}) = {4,j}, where i < j, we set ¢;,; =
w0, w, which is well defined by Lemma 5.

Lemma 7. Suppose {i,j} N {p,q} = @. Then €; j€pq = €py€ij-

Proof. Since all elements ¢; ; are obtained from 6, via automorphisms, it is
enough to show that ¢, commutes with all elements ¢; ; such that {i,j} N
{1,2} = @. Take any v € S, such that v({1,2}) = {1,2} and v({i,j}) =
{3,4}. Such v obviously exists. Then #; commutes with ¢, ; if and only if
v '01v = 6; commutes with v™'e; ju = 5. The statement now follows from

(3.2). O

Lemma 8. Suppose {i,j} N {p,q} # @. Then € e,, = ubyiv for certain
U, v € Sy.



Proof. 1f {i,j} = {p,q} the statement is obvious as ¢;; is an idempotent.
Assume [{i,j} N {p,q}| = 1. Since all elements ¢; ; are obtained from 6, via
automorphisms, it is enough to consider the case when {i, j} = {1,2}, p =2
and ¢ > 2. Consider v € S, such that v(1) = 1,v(2) = 2 and v(q) = 3.
Then, using (3.3) and (3.4) we have

071916p7q1} = 9192 = (91010'2010’201 = 9102910201 = 910201.
The statement follows. n

For each k, 1 < k < [3], set &, = 0103...0_1. Set also 0y = e. The
elements &;, 0 <4 < [§], will be called canonical. The group S, x S, acts
naturally on T via (g, h)(x) = g 'ah for x € T and (g,h) € S,, x S,.

Lemma 9. Fvery S, x S,-orbit contains a canonical element.

Proof. Let x € T. If x € S, the statement is obvious. Assume that x &
S,. By Lemma 6 we can write x = w#,9,1601¢9> ...61g, for some k£ > 1 and
w,g1,...,9 € S,. Moreover, we may assume that x can not be written as

a product of #,’s and elements of 5, which contains less than k occurrences
of ;. We have

r=w(gr...9%)(g1-- .gk)_lel(gl e Ok)
(g2 1) 01(g2 - ) - - (Gh-198) " O1(gk-19k) 95, 019k, (3.7)

and hence we can write
T = UCiy 51 -+ - Cigjis (38)

where u = wgi ... gr and {ig, 5 }={(g¢ ... gr)(1), (g¢---9%)(2)}, 1 <t < k.
Since z is chosen such that it can not be reduced to an element of T" which

contains less that k entries of #;, from Lemma 7 and Lemma 8 it follows that
{ir, 3¢} N {is, js} = @ for any two factors e, j,, €. ;. in (3.8). This implies
that the S, x S,-orbit of z contains €, j, ... €, ;, with {i;, ji} N {is, js} = @
for all s # t.

Now consider some v € S, such that v(iy) = 1, v(j1) = 2, v(i2) = 3
and so on, v(jr) = 2k. Then the element v~'¢;, j, - -~ €;, v is canonical by
definition. This completes the proof. m

Remark 10. From the proof of Lemma 9 it follows that each x € T' can be
written in the form z = w6,g.16019> ... 01gx, where k < | 7.

Lemma 11. The S, x Sy-orbit of the canonical element 0, 0 < k < [F],
contains at most
(n!)?

92k (11)2(n — 2k)!

elements.

10



Proof. 1t is enough to show that the stabilizer of §; under the S,, x S,-action
contains at least (k!)222%(n — 2k)! elements. Set

0 - )
Y, = 0902;-1092i+10%;, 1 <1<k —1;

1 .
Y = 02i02i-102i110202;—1, 1 <1 <k—1.

Then both ¢ and X} swap the sets {2i —1,2i} and {2i+1,2i+2}. It follows
that the group H, generated by all ¥, consists of all permutations of the set
{1,2},{3,4},...,{2k — 1,2k} and is therefore isomorphic to the group Sk.
It is further easy to see that the group H, generated by all ¥ and X}, is
isomorphic to the wreath product H?S,. From (3.5) and (3.3) it follows that
the left multiplication with both X? and X} stabilizes d;. Therefore for each
element of H the left multiplication with this element stabilizes 05 as well.
Similarly one proves that the right multiplication with each element from H
stabilizes ;. Apart from this, from (3.3) we have that the conjugation by
any element from the group H' = (0911, ...,0,-1) = S,_o stabilizes Jy.
Observe that the group, generated by the left copy of H, the right copy
of H, and the H’ is a direct product of these three componets. Using the
product rule we derive that the cardinality of the stabilizer of d;, is at least

(1H 2 Sa|)?Sn—ok| = (K1)?2%F(n — 2k)!,
and the proof is complete. n

Corollary 12.
5]

()?
TV< 2 Syt a1

k=0 )

Proof. The proof follows from Lemma 11 and Remark 10 by a direct calcu-
lation. 0

Proof of Theorem 3. Comparing Corollary 12 and Proposition 1(b) we have
1T < |B,|. Since ¢ : T — B, is surjective we have |T'| > [B,|. Hence
|T| = |B,| and ¢ is an isomorphism. O

4 Presentation for 77,

For i € {1,2,...,n — 1} let o; denote the element {i,i + 1,4, (i + 1)’} U
Ujziinild: 0’} € IT,. By [Mal3, Proposition 9], the elements {o;} and {o;}
generate Z7,, (and even {o;} and, say g1, do).

11



Let T denote the monoid with the identity element e, generated by the
elements o;, 7;, i = 1,...,n — 1, subject to the following relations (where
i,7€{1,2,...,n—1}):

ol =e; o05=004 |i—j|>1; o050 =000 li—ji=1 (
7'1-227'1'; TiTj = TjTi, 7 J (

TiOp = 0T = Ty Ti0j = 0Ty, |i—j| > 1 (

(

UiTjJi = O'jTiO'j and TinTi = TiTj, |’L —j| =1.

Theorem 13. The map o, — s; and 7; — 0;, 1 = 1,....,n—1, extends to an
isomorphism, ¢ : T — IT,,.

The rest of the section will be devoted to the proof of Theorem 13.

It is a direct calculation to verify that the generators s; and p; of 77,
satisfy the relations, corresponding to (4.1)—(4.4). Thus the map o; — s; and
T, — 0, 0 =1,...,n—1, extends to an epimorphism, ¢ : T" — Z7T,. Hence,
to prove Theorem 13 we have only to show that |T'| = |Z7,|. As in the
previous section, to do this we will study the structure of 7" in details. Let
W denote the free monoid, generated by o;, 7, i =1,....n—1, ¢ W = T
denote the canonical projection, and ~ be the corresponding congruence on
W. The first part of our arguments is very similar to that from the previous
Section.

Lemma 14. The elements o;, © = 1,...,n—1, generate the group G of units
in T, which is isomorphic to the symmetric group S, (and will be identified
with Sy, in the sequel).

Proof. Analogous to that of Lemma 4. n
There are two natural actions on 7"
(I) The group S,, acts on T' by inner automorphisms via conjugation.

(IT) The group S, x S, acts on T via (g,h)(x) = g~'xh for x € T and
(g,h) € Sy X Sy,

Lemma 15. The S,-stabilizer of 71 is the subgroup H of S,, consisting of
all permutations, which preserve the set {1,2}. This subgroup is isomorphic
to SQ X San-

Proof. Analogous to that of Lemma 5. O

12



Since S,, acts on T' via automorphisms and 77 is an idempotent, all ele-
ments in the S,-orbit of 7 are idempotents. From Lemma 15 it follows that
the elements of the S,-orbit of 7; are in the natural bijection with the cosets
H\S,,. By the definition of H, two elements, z,y € S,,, are contained in the
same coset if and only if z({1,2}) = y({1,2}).

Lemma 16. The S,-orbit of 7y contains all 7;, i = 1,...,n — 1. Moreover,
for w € S,, we have w™ryw = 7; if and only if w({1,2}) = {i,i + 1}.

Proof. Analogous to that of Lemma 6. [
Lemma 17. All elements in the S,-orbit of 71 commute.

Proof. Since all elements in the S,-orbit of 71 are obtained from 7 via auto-
morphisms, it is enough to show that 71 commutes with all elements in this
orbit. Let w € S, be such that w({1,2}) = {4,5}. If {i,5} = {1,2} then
w™'mw = 7 by Lemma 16 and hence we may assume {i,j} # {1,2}.

Take any v € S,, such that

o v({1,2}) = {1,2} and v({i,j}) = {3.4} if {4, j} N {1,2} = &;
o v({1,2}) = {1,2} and v({i,j}) = {23} if {4, j} N {1,2} £ @.

1 1

Such v obviously exists. Then 7, commutes with w™ 7w if and only if v™ v
commutes with v 'w~!mwv. Using our choice of v and Lemma 16 we have
v irv = 7 and v lw T twe = 75, where j = 3 if {i,j} N {1,2} = &, and
j = 2 otherwise. The statement now follows from (4.2). O

For w € S, such that w({1,2}) = {i,j}, where i < j, we set ¢;; =

w~lTw, which is well defined by Lemma 15.

Lemma 18. Let {i,j,k} C{1,2,...,n} andi < j < k. Then
€i,j€jk = Eik€jk = EijEik-

Proof. We prove that ¢; je;, = €€, and the second equality is proved by
analogous arguments. Let w € S, be such that w(i) = 1, w(j) = 2, w(k) = 3.
Conjugating by w we reduce our equality to the equality 77 = 0911097
Using (4.3) and (4.4) we have

09T109Ty — 01720179 — 01T1T2 =— T172.

The claim follows. O
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For i,5 € M set ¢;; = e and ¢, ; = ¢;; if j < ¢. For a non-empty binary
relation, p, on M set
6/) = H gi,j-

ipJ
Corollary 19. Let p be non-empty binary relation on M and p* be the
reflexive-symmetric-transitive closure of p. Then €, = €«

Proof. Follows easily from Lemma 17, Lemma 18 and the fact that all ¢; ;’s
are idempotents. O

Let A : {1,...,n} = Xj U---U X} be a decomposition of M into an
unordered union of pairwise disjoint sets. With this decomposition we as-
sociate the equivalence relation p) on M, whose equivalence classes coincide
with X;’s.

Corollary 20. Let A\ and p be two decompositions of M as above. Assume
that the types of A and p coincide. Then €,, and €,, are conjugate in T

Proof. Let v € S, be an element, which maps A to p (such element exists
since the types of A and y are the same). One easily sees that v™1e, v = Eppu-
The statement follows. m

A decomposition, A : {1,...,n} = X3 U---U Xy, is called canonical
provided that (up to a permutation of the blocks) we have | X;| > |X5| >
e > Xk, X = {42, 0 Xo={lL+ 1,1 +2,...,l; + I} and so on.
Note that in this case A can also be viewed as a partition of n. The element
e,, Will be called canonical provided that A is canonical.

Lemma 21. Fvery S, x S,-orbit contains a canonical element.

Proof. Because of Corollary 20 it is enough to show that every .S, x S,-orbit
contains €,, for some decomposition A. Let z € T. If x € S,, then the
statement is obvious. Let x € T\ S,. From Lemma 16 we have that the
semigroup 7' is generated by S, and 7. Hence we have z = wrg17192 - - - T1 gk
for some w, g1, ..., € S,. Therefore

v=w(g...q0)(q...g9r) ‘191 .. gr)
(g2-91) 'm(g2 k) - (Gr—19%) T (gro19%) 95 " TLGE,

and hence we can write v = ue;, j, ... €, j,, Where u = wg; ... g and

{ie, e} = {09 96)(1), (g - gr)(2)}, 1<t <K

14



Define the equivalence relation p as the reflexive-symmetric-transitive closure
of the relation { (i1, j1),- .., (ix, jx)} and X be the corresponding decomposi-
tion of {1,2,...,n}. From Corollary 19 we get that the S, x S,-orbit of x

contains €, = €,,. This completes the proof. ]
Lemma 22. Let A be a canonical decomposition of {1,2,...,n}. For i =
1,...,n set \D = |{j : |X;| = i}|. Then the S, x Sy-stabilizer of x contains
at least .

[T

i=1
elements.

Proof. Fix i € {1,2,...,n}. Let X, Xo11...,Xp be all blocks of X of car-
dinality 7. Then for any non-maximal element j of any of X,, X,11..., X},
using Lemma 17, the definition of €), and (4.3) we have oje\ = €)0; = €.
Moreover, for any w € S,,, which stabilizes all elements outside X, U X, U
-+ U X, and maps each X, to some X;, we have w(A) = X and hence
wlesw = 5. This gives us exactly A®1(i1)22” elements of the S, X -
stabilizer. The statement of the lemma now follows by applying the product
rule since for different 7 the elements above act on pairwise disjoint subsets
of {1,...,n}. O

Corollary 23.

<y (n!)” —.
A-n H()\(i)!(i!)%\“))

=1

Proof. Canonical elements of T are in bijection with partitions A = n by
construction. By Lemma 21, every S,, X S,,-orbit contains a canonical element.

We have |S, x S,| = (n!)?>. By Lemma 22, the stabilizer of a canonical
element, corresponding to A, contains at least [7,(A®@!(i)**’) elements,
The statement now follows by applying the sum rule. O]

Proof of Theorem 13. Comparing Corollary 23 and Proposition 1(c) we have
7| < |IT,|. Since ¢ : T — IT, is surjective we have |T'| > |Z7,|. Hence
|T| = |Z7,| and ¢ is an isomorphism. O

Remark 24. From the above arguments it follows that the inequality ob-
tained in Lemma 22 is in fact an equality. From the proof of Lemma 22 one
easily derives that the S, x S,-stabilizer of ¢, is isomorphic to the direct
product of wreath products Syu U (S; X .S;).

15



Remark 25. Following the arguments of the proof of Theorem 13 one easily
proves the following presentation for the symmetric inverse semigroup ZS,,:
IS, is generated, as a monoid, by oy,...,0,.1,%,...,1, subject to the
following relations:

ol =e; o005=004 |i—j|>1; o000 =000; |i—j =1 (4.5)
O'ﬂ9i = 191#10'1'; O'ﬂ?j = 19j0'i, j 7é Z,’L + 1, 1910'1191 = 19ﬂ9i+1. (47)

The classical presentation for ZS,, usually involves only one additional gen-
erator (namely ¢J;) and can be found for example in [Li, Chapter 9].

5 Presentation for P8,

For i € {1,...,n} let ¢; denote the element {i} U {i'} UJ,;,{j,j'}. Using
[Mazl], it is easy to see that P*B,, is generated by {o;} U {m} U {¢} (and
even by {o;}, m and ¢).

Let T" denote the monoid with the identity element e, generated by the
elements 0;, 0;,1=1,...,n—1,and ¥;, i = 1,...,n, subject to the relations
(3.1)—(3.5), the relations from Remark 25, and the following relations (for all
appropriate i and j):

0:0; = 0011 = 00911, 036 = Ui 110; = 030,41 0;; (5.2)

Oi420i410:0i 12V 43 = 0;05410;:0;0; 19012 (5.4)

Theorem 26. The map o; — s;, 6; — m, i =1,...,n—1, and ¥; — g,
1=1,...,n, extends to an isomorphism, ¢ : T — PB,,.

As in the previous section, one easily checks that this map extends to
an epimorphism and hence to complete the proof one has to compare the
cardinalities of T" and P*B,,.

Similarly to what was done in Section 4, using the presentation of 7S,

given in Remark 25, one proves that elements o;, 2 = 1,...,n — 1, generate
the symmetric group S,, and that the elements o;, © = 1,...,n — 1; 9;,
i =1,...,n, generate the semigroup, which is isomorphic to ZS,, (and which

will be identified with it). As in Section 4 we consider the natural action of
S,, on T by inner automorphisms of T' via conjugation: z9 = g~ 'zg for each
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Lemma 27. The S,,-stabilizer of each of 01, &1, m1 is the subgroup H of S,
consisting of all permutations, which preserve the set {1,2}. This subgroup
15 1somorphic to Sy X S,_s.

Proof. For ¢, this follows from Lemma 5. For each j > 2 we have that o;
commutes with both & and 7 by (3.3) and (4.7) respectively, and hence
0;j&i0j =& and o;mo; = 1. Let 7 = 1. Then

015101 = 019119101 = 019101192 = 91792 = 91191 = 51%

ooy = 01010101 = V9010101 = V90 = 010, =y

by (4.7) and (3.3). Hence oy also stabilizes & and 7. Since oj, j # 2,
generate H, we obtain that all elements of H stabilize &; and 7;. In particular,
the S,-orbits of &; and of ; consist of at most |S,|/|H| = (}) elements each.
At the same time, the S,-orbits of ¢(&) and ¢(;) consist of exactly (3)
different elements and hence H must coincide with the S,-stabilizer of both
51 and m- ]

Since S, acts on T via automorphisms and 6, &, 1, are idempotents,
all elements in the S,-orbits of 6, &, n; are idempotents as well. From
Lemma 27 it follows that the elements of the S,-orbits of 61, &, n; are in
the natural bijections with the cosets H\S,. By the definition of H, two
elements, z,y € S, are contained in the same coset if and only if z({1,2}) =

y({1,2}).

Lemma 28. The S,-orbits of 61, &, m contain all elements 6;, & and n;,
i=1,...,n— 1, respectively. Moreover, for w € S, we have w™10,w = 0; if
and only if w({1,2}) = {i,i + 1} and analogously for & and n;.

Proof. The proof for the S,-orbit of #; is analogous to that of Lemma 6.
We prove the statement for the S,-orbit of &. For the S,-orbit of n; the
arguments are analogous. We use induction on ¢ with the case ¢ = 1 being

trivial. Let 7 > 1 and assume that &;_; is contained in our orbit. Then, using
(4.7), we compute

& =0 = 0i-100;_10,0_19; = 0;_100;_1000;_105_1 =
0i—1030; 10105051 = 0i-10:§i-10:04_1,

and hence &; is contained in our orbit as well. The second claim follows from
(3.6). This completes the proof. O

For w € S, such that w({1,2}) = {4,j}, where i < j, we set ¢;; =
w0 w, Wij = w & w, Vij = w™tnw. All these elements are well defined
by Lemma 27.
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Lemma 29. (CL) 79@'61',3' = ﬂjei,j = ﬁiﬂjei,j = Vi,j; 19]66@]' = Ei,jﬁk; k g {Z,j}

(b) Oipeij = Vi = 0005 = 095 iy = pi iV, k & {4, 7}

Proof. First we prove (a). Because of Lemma 28 it is enough to check that
V1619 = Ua€1 0 = V10261 2 = 11 2 and that J3€; 5 = € 2U5. The latter equalities
follow from (5.2) and (5.1).

Now we prove (b). Again, because of Lemma 28 it is enough to check
that 191#172 = 192[1172 = 191192,&172 = 191192 and that ’193#172 = ,u172’l93. Using
(5.3), (5.2) and (5.1) we have

191#1,2 = 01010, = V179 191#2,3 = V10205 = 020109 = 00201 = ,u2,31917
as required. O

Lemma 30. Suppose {i,7} N{p,q} = @. Then € j€pq = €pq€ijs Hijlpg =

Proof. Following the arguments from the proof of Lemma 7 it is enough to

show that H12M34 = 3412 and H12€34 = €341 2, that is that 5153 = gggl
and &,05 = 03&,. Using (5.1), (4.6) and (3.2) we have

5153 - 0119193193 - 9103191793 - 0391793191 - 93793‘91791 - 53&17

and using (5.1) and (3.2) we also obtain &05 = 019,03 = 6,030, = 05&, as
required. O]

Lemma 31. Suppose {i,j} N{p,q} # @. Then each of the elements €; je, 4,
i jlp.qs €ijlhp.qs Mij€pq €quals to the element of the form ub v for some u,v €

1S$,.

Proof. Using the argument from the proof of Lemma 8 it is enough to prove
the statement only for the elements f1q 2123, ft1,2€23, €1.2/12,3. We have

piopoz = E1&o = 01010205 = 01020505 = 010203 = 1903
by (5.2) and (5.3); and

H12€23 = 01010y = 01010102010109 = 0101V2020,10102 =

010’10'2?93910'10'2 = 910'10'26)11930'10'2 = 010’2611930’10'2 = 911930'10'2
by (3.1), (3.4), (3.3), (4.7). Finally,
€12M23 = 010205 = 0101020,020102 = 01020107.

using (3.1), (3.3) and (3.4). The statement follows. O
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For each subset {iy, ..., it} of {1,2,...,n}set 9({i1,...,ix}) =0y, ... V;,.
Obviously, ¥({i1,...,i}) is an idempotent and each idempotent of ZS,, has
such a form. In the sequel we will use the obvious fact that each element of
IS, can be written in the form uwv, where u is an idempotent, and v € S,,.

As in the previous sections we consider the S, x S,,-action on T' given by

(g9,h)(x) = g~'zh for x € T and (g,h) € S, x S,.

Lemma 32. Fvery S, x S,-orbit contains either e or an element of the
form O(A)Viy gy - - Visjo, where A C {1,2,...,n}, the sets {is, ji} are pairwise
disjoint, and each vy;, j, equals either €, ;, or [ ;-

Proof. The idea of the proof is analogous to that of Lemma 9. Let x € T'. If
x € S, the statement is obvious. Assume that x ¢ S,,. Since T is generated
by ZS,, and 6, we can write

xr = wubu19101u29s - - - 01Uk gy (5.5)

for some k > 1, w, g1,...,9x € S, and u,uyq,...,ux € E(ZS,). Moreover, we
may assume that x can not be written as a product of 6;’s and elements of
7S, which contains less than k£ occurrences of ;. We claim that x can be

written as
T = WU g1V Gh ks (5.6)

where, w, g}, ...,q) € Sn, v € E(ZS,), and each ~} is equal to either 6; or
&1. Let us prove this by induction on k. Let £ = 1 and x = wubu;9;. We
know that u; = ¥(B) for some B C {1,...,n}. Let A= B\ {1,2}. Using
(5.1) and (5.2) we obtain that

| wuwbhg, if BNA{L,2} = o;

| wud(A)ég, if BN{l,2} # o,
as required. Let now k& > 2. Applying the basis of the induction to 6yuggx
we obtain

x = wubiuyg161usgs - - - O1uk_19k_101ukgr =
wubyur g1 01uags - - - 01Uk -1 Gk 1 U}V Gk,

where uj, is an idempotent of ZS,, and fyf is either & or 6;. Now, since
Uk—19k—1U), € LS, we can write ug_1gx—1u), = u)_,g,_, for some g, _, € S,
and uj,_, € E(ZS,,). Now (5.6) follows by applying the inductive assumption
to wubiuig101u2gs - - - Uk—2gk—201U)_1G),_4-

Similarly to (3.7) we can rewrite (5.6) as follows:
z=wu' (g g) (g g1) (9L gk)
gy g V(G k) (1 gk) T NG 19k) g Y G
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and therefore we can write
T = UU/%LJ& © Yigodeo (57)

where v = wg| -+~ gl {in jol={(g - g) (1), (g} g1)(2)}, 1 < ¢ < k, and
each v; j, is equal to either €; j or p, ;. Since z is initially chosen such
that it can not be reduced to an element of 7', which contains less that &
entries of 0, from Lemma 31 it follows that {i;, j;} N {i;, j;} = @ for any two
factors i, j,, V4,5, in (5.7). This implies that the S,, x S,-orbit of 2 contains
Wiy gy Visje Such that {i, 5.} N {i, 51} = @ for all [ # t. The statement
follows. O

Corollary 33. Any S, x S,- orbit contains either e or an element of the
form O(A)Yi, jy -+ Vis.jo, Such that

(i) the sets {i;, ji} are pairwise disjoint;
(ii) each v, ;, equals to either € j, or ; j, or vi j,;

(iti) AN {i1, 1, is,js} = .
Proof. This follows from Lemma 32 and Lemma 29. O

Now we introduce the notion of a canonical element. Let k, [, m,t be some
non-negative integers satisfying 2k + 20 4+ 2m + ¢ < n. Set 6(0,0,0,0) = e
and if at least one of k, [, m,t is not zero, set

Ok, l,m,t) = 60103 - Oop_1Eop1Eok+3 -+ - Eoktai—1 * Vok4241V2k+2043 - *

Vol 214 2m—1V2k 4204 2m4102k 4204 2m42 * - Vokgoigome.  (5.8)

The element 6(k, [, m,t) such that [ = 0 or m = 0 will be called a canonical
element of type (k,l,m,n).

Corollary 34. FEvery S, x S,-orbit contains a canonical element.

Proof. Because of Corollary 33 we have to prove that, the S, x S,-orbit
of the element ¥(A)vi, j, - - - Vi..j.» satisfying the conditions of Corollary 33,
contains a canonical element. Using conjugation, we can always reduce
V(A) Vi gy -+ Visj, to some 6(k, 1, m,t). However, it might happen that both
m and [ will be non-zero. Without loss of generality we may assume m >
[ > 1. Using (5.4) and conjugation we get that the S, x S,-orbit of the
element 4, jv, , contains 6; ;9,1, provided that {7, j} N {p, ¢} = @. Hence the
Sy, X Sp-orbit of our §(k, I, m,t) contains 6(k+ 1,1 —1,m —1,¢t+2). Proceed-
ing by induction we get that the S, x S,-orbit of our §(k, [, m,t) contains
d(k+1,0,m — [, t + 2[), which is canonical. This completes the proof. O]
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Lemma 35. The S, x S,-orbits of the canonical element 6(k,l,0,t) and
d(k,0,1,t) contain at most

(n!)
(k + D)12FHkI2F (20 + )1 (n — 2k — 20 — 1)

elements.

Proof. We will prove the statement for the element §(k, [, 0,t). For 6(k,0,1,t)
the proof is analogous. We use the arguments similar to those from the proof
of Lemma 11. It is enough to show that the stabilizer of d(k, [, 0,t) under the
S, X Sp-action contains at least (k + 1)!2F¢1E127(20 + ¢)!(n — 2k — 21 — t)!
elements. Set

Y0 = 091091024102, 1 <i<k+1-1;

Y} = 0909 102i4109i09;1, 1<i<k+1—1.

Then both ¢ and X} swap the sets {2i —1,2i} and {2i+1,2i+2}. It follows
that the group H, generated by all XY, consists of all permutations of the
set {1,2},{3,4},...,{2k+ 2l — 1,2k + 21} and is therefore isomorphic to the
group Si.;. It is further easy to see that the group H, generated by all 0
and Y}, is isomorphic to the wreath product H ! Sy. From (3.5) and (3.3)

[

it follows that the left multiplications with ¥ and X} stabilizes d(k,1,0,1).
Therefore the left multiplication with each element of H stabilizes 6(k,,0,t)
as well. Now, from (4.7) and (5.2) it follows that

oini = 0i¥i¥i110; = ¥;110:9;110; = 9;0:0:0; = U;0;110; = n;.
forallz=1,...,n — 1. Moreover,
Oip1NiNiv2 = Oip1Vip 10012050 = 0ip10i 1105 420i0; 2 =
Viy1Vi120i0i10 = Ui10;0: 1900 = nimito
foralli=1,...,n—3 by (5.1) and (4.7) and
Oir1MiViy2 = 0ip1Vi410i0i2 = 0ip10ip10i20; = Vip10i20; = 0t

foralli=1,...,n—2 again by (5.1) and (4.7). Using this and the fact that
n; commutes with each of 8;, n;, £ whenever |i — j| > 1 we see that each of
the elements o;, 2k 4+ 21 — 1 < i < 2k + 2] + ¢, stabilizes §(k, [, 0, t) under the
left multiplication. All these elements generate the group Hy ~ S;, which
stabilizes 0(k,(,0,t) and has trivial intersection with H. Let H, = Hy x H.
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Analogously one shows that there is a group, Hs, isomorphic to the
wreath product (Sy ! S3) X Sgyy, such that each element of this group sta-
bilizes 6(k,1,0,t) with respect to the right multiplication. Apart from this,
from (3.3) we have that conjugation by any element from the group Hs =
(Ook+20tt41s -y On—1) = Sp_og_o—¢ stabilizes d(k,1,0,t). Observe that the
group, generated by Hy, Hy and Hj, is a direct product of Hy, Hy and Hs.
Hence, using the product rule we derive that the cardinality of the stabilizer
of 6(k,1,0,t) is at least

(k + D)12F1E12F (20 + ¢)1(n — 2k — 21 — ¢)1,
and the proof is complete. O

Proof of Theorem 26. Comparing Lemma 35 and Proposition 1(d) we have
T < |%B,|. Since ¢ : T" — B, is surjective we have |T'| > [B,|. Hence
|T| = |®B,| and ¢ is an isomorphism. O
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