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Abstract— Replay attackson security protocols have been dis-
cussed for quite some time in the literature. However, the efforts to
address these attacks have been largely incomplete, lacking gener-
ality and many times in fact, proven unsuccessful. In this paper we
address these issues and prove the efficacy of a simple and general
scheme in defending a protocol against these attacks. We believe
that our work will be particularly useful in security critical appli-
cations and to protocol analyzers that are unable to detect some or
all of the attacks in this class.

Index Terms—security protocols, replay attacks, adapted strand
spaces, run identifiers, component numbers.

I. I NTRODUCTION

REPLAY attacks have been discussed for quite some time
in the literature (eg. [1], [2], [3], [4]). We generalize the

definition of a replay attack as:an attack on a security proto-
col using replay of messages from a different context into the
intended (or original and expected) context, thereby fooling the
honest participant(s) into thinking they have successfully com-
pleted the protocol run.

Syverson in [2] presents an exhaustive taxonomy of replay
attacks classifying them at the highest level as run-external and
run-internal attacks, basing on the origin of messages. Each of
these can be further classified into interleavings, classic replays,
reflections, deflections and straight replays basing on message
destination.

Traditional methods to include nonces have proven to be of
little value against replay attacks (eg. [5], [6]). Attempts to
use time-stamps in messages were beset with problems such
as dealing with the asynchronous world [1]. Gong and Syver-
son present fail-stop protocols under a restrictive class of pro-
tocol design rules, that avoid these attacks under certain condi-
tions [3]. Some other attempts have been exclusively directed
towards countering reflections [7]. These mechanisms work
by including the identity of sender, recipient or both in mes-
sages. Suggestions of binding cryptographic keys to their in-
tended use, specialized use of shared keys to identify sender
and receiver have been cited in numerous places including [8],
[9], [10], [4] but are effective only in limited contexts eg. re-
flections and deflections but not straight replays. Syverson dis-
cusses these counter-measures exhaustively in [2].
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Strategies presented to counter reflection attacks using for-
mat asymmetry fail if the format asymmetry is itself attackable.
Although format asymmetry (type-flaws) was proven to with-
stand type-flaw attacks by Heatheret. al [11], the suggested
scheme of component numbering as a corollary does not con-
sider attacks using interleaving of different protocols1. Guttman
et. al prove “protocol independence” through disjoint encryp-
tion and suggest a protocol numbering scheme to achieve dis-
joint encryption. However, there is not yet an international stan-
dard on protocol numbering (to identify each protocol). An-
other suggestion in the same paper is to use a different key-
ing material for each application—an indeed strong assumption
since it is unlikely to be followed by all users due to the high
cost of certified keys. This was also discussed in [8].

Thus, one can observe some visible characteristics in all
these solutions—They are either unsuccessful, or too specific.
Some of them are too expensive to implement and some oth-
ers are interdependent (eg. as discussed above where solutions
using format asymmetry depend on type tagging or component
numbering and these in turn depend on using disjoint encryp-
tion). Hence, an interesting question to ask would be, “can
these interdependencies be taken advantage of to launch new
kinds of attacks?”.

Most of the automated analyzers also fail to detect at least
one attack in this class. Although, NRL protocol analyzer was
observed to have been able to detect all types of replays given
by Syverson, it was still observed to be difficult to analyze for
specific attacks in this class [12]. However, prevention is an-
other matter.

Carlsen presents a list of type information that can be at-
tached to messages and elements [13]. These include protocol
identifier, protocol run identifier, primitive types of data items,
transmission step identifier and message subcomponent identi-
fier. Aura [4] studies these techniques and comes up with some
strategies against replay attacks that are neither necessary nor
sufficient but enhance the robustness of a protocol. A recent
trend in the literature has been to prove protocol security against
specific attacks by suggesting tagging messages with one of the
type information suggested by Carlsen (eg. [14], [11]).

1Intuitively, different protocols can have different messages with the same
component number, still making it vulnerable to type-flaws. The original sug-
gestion to tag with primitive types of data items, however, would be effective in
the presence of interleaving of different protocols but is expensive to implement



In the same spirit, we prove thatall replay attacks can be pre-
vented by tagging each encrypted component with asession-
id (another name for Carlsen’s protocol run identifier) and a
component number(renaming Carlsen’s message subcompo-
nent identifier). However, unlike previous attempts, our sug-
gestion is ageneralsolution and prevents all types of replay
attacks in Syverson’s taxonomy. Although it is not an entirely
new solution, it solves the problem of replays using a combined
solution that is devoid of any possible vulnerabilities due to in-
terdependencies.

Introducing component numbers inside encryptions is intu-
itive, but the generation and use of session-ids requires some
explanation. Some have discussed tagging messages with all
the information that is in possession of a principal and relevant
to the protocol [15]. This is also called theprinciple of full in-
formation. Aura [4] hints at a trivial way of including a hash
of all previous messages in a protocol run, almost as a substi-
tute to the principle of full information and the run identifier.
This is prudent to some extent. In fact, as Aura points out, it
is enough to include only a hash of the redundant data that is
already known to the receiver. This doesn’t adversely affect the
performance for obvious reasons. However, careful observation
of this suggestion reveals a possible vulnerability—two proto-
col runs can overlap in the executed information at a typical
stage of the runs!

Therefore, we suggest a different approach to generate
session-ids to identify runs. For the purpose of this discus-
sion, it suffices to know that such identifiers can be gener-
ated to be used in an effective way and will possess a neces-
sary property—remaining unique to every protocol run. Briefly,
all participants need to choose a random number, and combine
those into a single long string of random bits. This value should
be hashed together with the identities of all principals, reducing
the chance of an accidental match in session-ids to a great ex-
tent. Two features are necessary to generate such an identifier
1. Every principal should possess the same hash function. 2.
A change in one of the random numbers/principals’ identities
should make the resulting value differ from it’s original value.

Observe that the generated session-id is different in proper-
ties from other similarly used identifiers. For example, the run
identifier used in Otway-Rees protocol [16] is generated by only
one participant and hence was shown to be prone to replay at-
tacks [17]. It is also similar to “cookies” coined in Photuris [18]
which are an add-on that can be used to make a protocol more
resistant to DOS attacks. A cookie is a unique nonce computed
from the names of the sending and receiving parties and local
secret information that only the sender possesses. Cookies pro-
vide initially weak authentication to users while they aid in sub-
sequent establishment of strong authentication. Session-ids are
similar to cookies in the kind of initial assumptions and their
ultimate use, except, unlike cookies where only the sender is
aware of the value, a session-id is publicly known.

However, the publicly known identifier needs to be unique
for every protocol run. Intuitively, a dishonest principal might
use a different value from the pre-agreed upon value. (In fact,
this will be definitely true if he replays components from previ-
ously completed runs and not from interleaved runs). However,
the proof we are going to present will establish that even such

behavior does not succeed in breaking a protocol in this scheme.
Further, hashing with participants’ identities (cited as useful
in numerous places including [4], [7], [10]) prevents other at-
tempts to spoof user identities and launch man-in-middle type
attacks.

The proof we are going to present in this paper follows a sim-
ple concept to establish the desired results, following a proof
structure laid out in [11]:

If a protocol is secure in the absence of replays, it is also se-
cure under our tagging scheme in the presence of replay attacks
OR

Whenever there is an attack on a protocol using the tagging
scheme, there should also be an attack on the protocol in the
absence of replays

The utility of the result of this paper is manifold. Firstly,
it reduces the task of protocol analyzers that fail to detect any
subset of replay attacks and increases the trust in the remaining
analysis. Secondly, it gives more leverage to a protocol designer
with the implicit protection that it provides against many known
threats. Lastly, it is relatively inexpensive to implement such a
scheme especially compared to those for example, that require
unique keys for each application.

The rest of the paper is organized as follows: In the next sec-
tion (2), we will introduce our model of a protocol. In section 3,
we will show that any given bundle can be transformed into an
equivalent but well-tagged bundle. In section 4, we will prove
our main result. We illustrate our concepts on the Otway-Rees
protocol as an example in section 5 and end with a conclusion.

II. T HE PROTOCOLMODEL

A. Tags, Facts and Subfacts

Tags and Facts2 are defined in the model as:

Tag ::= JOIN SID CNO

Fact ::= UF | EF | JOIN Fact Fact

UF ::= JOIN Atom UF

EF ::= ENCR TF

TF ::= JOIN Tag Fact

whereUF, EF, TF represent unencrypted, encrypted and
tagged fact respectively.

uf , ef denote the set of unencrypted and encrypted facts
respectively. Atom is the set of atomic values (eg.
Alice, Bob, NA, PubKey(A) etc.) assumed to be contained
in a protocol.

Often we need aprojection functionon tagged facts to obtain
the tag or fact components, defined as:

(t, f)1 =̂ t, (t, f)2 =̂ f.

We will denote the set of session-ids assid and the set of
component numbers ascno. A typical tag in a runα shall be
written as,(sidα, cno). The first part is the session-id ofα
and the second part is the component number for one of the

2Facts, components or messages will be used interchangeably but message
will be used to mean the entire collection of facts sent in a single protocol step.



encrypted facts ofα. JOIN andENCR represent concatenating
two data items and encrypting a data item respectively. When
two data itemsa, b are to be concatenated, we will write,a . b
or (a, b). When a data itema is to be encrypted with a keyk,
we will write, {a}k. Also, subfact relation@ on facts is defined
as follows:

Definition 1: The subfact relation is the smallest relation on
facts such that:

1) f @ f ;
2) f @ {tf ′}k′ if f @ (tf ′)2;
3) f @ (f1, f2) if f @ f1 ∨ f @ f2.

Also, f @ tf if (t, f) @ tf .

B. Adapting Strand Space Model with Tagged Facts

In this section, we define a new adapted strand space model
from the original strand space model [19] to suit tagged facts.

Definition 2: A strand is a sequence of communications by
either an agent (honest or dishonest) in a protocol run. It is
represented as a sequence of facts〈±f1,±f2, . . . ,±fn〉. A
‘+’ indicates transmission of a fact and ‘−’ indicates reception
of a fact. Every node in the set of nodesN transmits or receives
a fact (±f ) and belongs to a unique strand.

1) Let ni, ni+1 be consecutive nodes on the same strand.
Then, there exists an edgeni ⇒ ni+1 in the strand.

2) If ni = +f andnj = −f are nodes belonging to different
strands, then there exists an edgeni → nj .

3) N together with both the sets of edgesni ⇒ ni+1 and
ni → nj is a directed graph,〈N , (→ ∪ ⇒)〉.

A bundle represents a particular event history of the com-
munication. It is an acyclic, finite subgraph of〈N , (→ ∪ ⇒)〉.
Formally, if→C⊂→, ⇒C⊂⇒ and(→C ∪ ⇒C) is a finite set
of edges, thenC = (→C ∪ ⇒C) is a bundle if:

1) whenevern2 ∈ NC receives a fact, there exists a unique
n1 such thatn1 →C n2;

2) Whenevern2 ∈ NC with n1 ⇒ n2, n1 ⇒C n2 ∈ C;
3) C is acyclic.

A noden is anentry pointto a set of factsF if no node previous
to n has a fact+f with f ∈ F. A fact originateson n if n is
an entry point to{f ′ | f @ f ′}. Similarly, a tagged facttf
originateson n if n is an entry point to{tf ′ | tf @ tf ′}. A
fact or a tagged fact isuniquely originating in a bundle if it
originates on a unique node of the bundle.

1) Honest Strands: We use the concept of strand tem-
plates [11] to define roles in a protocol. These templates make
use of a set of variables,Var defined as below:

V ar ::= UV | EV | JOIN V ar V ar

UV ::= AtomV ar | JOIN AtomV ar UV

EV ::= ENCR TaggedV ariable

TaggedV ariable ::= JOIN TagV ar V ar

where,UV - Unencrypted Variable,EV - Encrypted Variable.
TagV ar - Tag Variable.

Var consists of unencrypted (uv), encrypted (ev) and func-
tion variables (fv)3) with fv ⊂ uv. We define an instantiation
function ins to instantiate elements inVar, to correspond to
elements inFact.

Let,

inst : TagVar → Tag, andinsv : AtomVar → Atom

so that,∀tv ∈ TagVar ∧ v ∈ AtomVar,
inst(tv) = t andinsv(v) = f for somet ∈ Tag ∧ f ∈ Atom.

Combininginst andinsv, we defineins as:

ins : Var → Fact

so that∀v ∈ Var, ins(v) = f, for somef ∈ Fact.
Also, ins can be defined on all possible variables as:

ins(v) =

{
{(inst(tv′), insv(v′))}insv(k′) v = {(tv′, v′)}k′

(ins(v1), ins(v2)) v = (v1, v2).

As an example, lettemp represent the role ‘b’ in the Woo
and Lam protocolΠ1 [15]:

temp =̂ 〈−(a),+(nb),−(x),+({t2, a, b, x}shbs
),

− ({t3, a, b, nb}shbs
)〉

(‘x’ represents that ‘b’ is not expected to decrypt this variable,
according to the protocol).

A typical execution byBob (B) in a runβ with Alice (A),
would look like (assuming that Bob is honest):

ins(temp) = 〈−(A), + (NB), − (X),
+ ({(SIDβ , CNO2), A,B,X}shBS

),
− ({(SIDβ , CNO3), A,B,NB}shBS

)〉

where,

ins(a) = A, ins(b) = B, ins(s) = S, ins(nb) = NB ,

ins(x) = {(SIDβ , CNO1), A,B,NB}shBS
(= X).

It is important here to note that, the functionins can be de-
fined to map to a new set of values each time. So that, this
captures the aspect of different protocol runs containing differ-
ent values. It is also interesting to see for which mapping of the
ins function, we will be able to obtain an attack on a protocol.

2) Correct-tagging: An encrypted fact is said to be well-
tagged if the tag component of the fact has the correct session-
id and component number in it, i.e. the encrypted fact is being
generated and sent in the expected context. We capture this
using the formalizations that we present below.

Let Σ∗ represent the strand spaces of all possible protocol
runs, where the single protocol runα ∈ Σ∗ and,

CNo : Σ∗ × ef → cno such that,

3Function variables are of the form,APPLY Fn UV whereFn is any func-
tion. eg.Hash, PK etc.



∀f1, f2 ∈ ef · f1 6= f2 ⇒ CNo(α, f1) 6= CNo(α, f2)

Also let,SId : Σ∗ → sid such that∀α ∈ Σ∗ · SId(α) ∈ sid

∀α1, α2 ∈ Σ∗ · α1 6= α2 ⇒ SId(α1) 6= SId(α2)

These properties ensure unique tags for every subcomponent
of any protocol and any run of a protocol.

UsingSId andCNo, an ideal tag environment,ω can be for-
mally defined:

ω : Σ∗ × ef → Tag such that,

∀α ∈ Σ∗,∀f ∈ ef · ω(α, f) = (SId(α),CNo(α, f))
So that, for each protocol runα, SId(α) is the session-id for
α. (when the context is understood, we will simply writeω(f)).

Definition 3: Let f = {tf ′}k′ be a fact in a protocol runα;
then well-tagged(f) can be inductively defined on all possible
facts as follows:

• if (tf ′)2 ∈ uf then4 well-tagged(f) ⇔ (tf ′)1 = ω(f);
• if (tf ′)2 ∈ ef then, well-tagged(f) iff

well-tagged((tf ′)2) ∧ (tf ′)1 = ω(f);
• well-tagged(f1, f2) ⇔ (well-tagged(f1) ∧

well-tagged(f2))

Note that, well-tagged is a partial function. Therefore, it is
undefined for facts that are not encrypted.

Assumption 1:There exists an ideal tag environment,ω, for
each set of strands representing a protocol run, that is obtained
by instantiating a set of strand templates such that all the facts
in the protocol run are well-tagged with respect toω.

Assumption 2:If the fact f originates on a regular strand,
then well-tagged(f ).

In other words, we assume that an honest agent always tags
an encrypted fact with a correct tag (as defined above). On the
other hand, we allow a penetrator to tag a message with any
arbitrary tag. If a fact is ill-tagged, this would mean that either
the penetrator has “replayed” it from another context or he did
not chose to tag with the correct component number and/or the
pre-agreed upon session-id.

3) Penetrator Strands:We make two changes in the pene-
trator strands in this model—firstly, we assume that a penetra-
tor possesses a set of encrypted facts,EP that he would have
somehow obtained (e.g., by eavesdropping over a network, or
obtained in a previous run in which he was a legitimate user),
in addition to a set of keysKP and texts,TP. Secondly, we in-
clude a replaying (R) strand to capture the action of a penetrator
replaying an encrypted component.

Definition 4: A penetrator strand is one of the following:

4By definition, subscript “2” is a projection that returns the fact component
of a tagged fact (section II-A).

M Text message〈+f〉 with f ∈ TP.
F flushing 〈−f〉.
T Tee〈−f,+f,+f〉.
C Concatenation〈−f1,−f2,+f1f2〉.
S Separation〈−f1f2,+f1,+f2〉.
K Key〈+k〉 with k ∈ KP.
E Encryption 〈−k,−f,+{(t, f)}k〉, k ∈ KP.
D Decryption〈−k−1,−{(t, f)}k,+f〉, k ∈ KP.
R Replaying〈+f〉, f ∈ EP.

Note that we consider not only replaying of encrypted com-
ponents, but also replaying of unencrypted components. In fact,
we allow the penetrator to replay a message of any type into a
message of a different (expected) type. For example, anAtom
in place of anAtom, anAtom in place of an encrypted com-
ponent, an encrypted component in place of an encrypted com-
ponent and so on. For example, sending a message,f1.f2 with
f1 ∈ uf andf2 ∈ ef in place off3 ∈ uf can be constructed as
a sequence ofM andR strands.

However, this does not restrict the generality of the scheme.
As we will show in the proof, the scheme also prevents all
such type flaw attacks too, due to component numbering. The
session-id helps in preventing all type-flaw attacks that occur
not only in the same run or a different run of the same protocol,
but also those that occur from a different run using a different
protocol.

Lemma 1:Every ill-tagged fact originates on anE or anR
strand.

Proof. According to assumption 1, ill-tagged facts do not
originate on honest strands. The only possible strands for the
origin of a fact are,M, K, E andR strands. In the case ofM
andK strands, there is no tagging. In the case of nE strand, it
may or may not be well-tagged (we do not restrict the penetrator
to put correct tags inside encryptions). That leaves us withR
strands. Since these involve replaying old messages, they would
necessarily be ill-tagged.

III. T RANSFORMINGBUNDLES

A. Overview

In this section, we focus on transforming bundles to “well-
tagged bundles”. We will show that, given a bundleC, we can
change all the tags inC so that the resulting bundle has facts, all
of which are well-tagged. Since we assume that an honest agent
checks all accessible tags in a message that he receives, we do
not change the tags inside those messages. On the other hand,
receiving an ill-tagged fact that cannot be decrypted should not
change the behavior of an honest agent when it is changed to
well-tagged. This is the sole concept around which our trans-
formation revolves.

B. The Transformation Function,ψ

The definition below states the required properties ofψ:
Definition 5: Given a bundleC, executed in an ideal tag en-

vironmentω, we defineψ : Fact → Fact to be a transforma-
tion function that transformsC as a well-tagged bundle if:

1) ψ preserves unencrypted facts: ifψ(f) = f if f ∈ uf .
2) ψ returns well-tagged terms: well-tagged(ψ(f)).



3) ψ is the identify function over well-tagged terms:
if well-tagged(f ) thenψ(f) = f .

4) ψ distributes through encryptions:

ψ({(t, f)}k) = {(ω(f), ψ(f))}k

5) ψ distributes through concatenations:

ψ(f1, f2) = (ψ(f1), ψ(f2))

6) When ψ is applied to an ill-tagged factf of C, it
produces a fact that has an essentially new tag. i.e. a fact
that has a tag not in common withψ(f ′) for any other
factf ′ of C:
∀f, f ′′ ∈ ef ,¬well-tagged(f) ∧ f ′ @ ψ(f) ∧ (f ′)2 6=
(f ′′)2 ⇒
(f ′)1 6= ψ(f

′′
)1

This establishes an injectivity property forψ over facts of
C.

The following lemma proves that such aψ can always be
found:

Lemma 2:For any given bundleC in an ideal tag environ-
mentω, it is possible to define some transformation functionψ
for C.

Proof: The method we give below gives a recipe for con-
structing a transformation functionψ defined in definition 5.
Let there be a factf . We shall define how the transformation
would be done on all possible smallest sub facts off before
defining it onf itself.

1) If f ∈ uf , lift the transformation function onf for con-
dition 1: ψ(f) = f .

2) If f = {(t′, f ′)}k′ ∈ ef and well-tagged(f ), then, define
ψ{(t′, f ′)}k′ = {(t′, f ′)}k′ for condition 3.

3) If f = {(t′, f ′)}k′ ∈ ef , f ′ ∈ uf and¬well-tagged(f),
then, defineψ{(t′, f ′)}k′ = {(t′′, f ′)}k′ so thatt′′ =
ω(f ′) for condition 3.

4) If f = {(t′, f ′)}k′ ∈ ef , f ′ ∈ ef and¬well-tagged(f),
then, defineψ{(t′, f ′)}k′ = {(t′′, ψ(f ′))}k′ wheret′′ =
ω(f ′) for condition 4.

5) If f = (f1, f2), then defineψ(f) = (ψ(f1), ψ(f2)) (for
condition 5).

6) Sinceω generates unique tags, condition 6 is satisfied.

C. Regular Strands

If S is a regular strand (= ins(temp) for some strand
templatetemp), then ψ(S) is also a regular strand. Con-
sider, S′ = ins′(temp) and ins′(v) = ψ(ins(v)) so that,
ins′(v) = ins(v), ∀v ∈ uv. The following lemma proves that
S′ is a regular strand obtained by transforming all the facts in
S to be well-tagged, usingψ.

Lemma 3:Let temp, ψ, ins, ins′ be as above; Then,
ψ(ins(temp)) = ins′(temp).

Proof: Let v be a variable intemp. We will do a case
analysis of all the possible forms thatv can take intemp:

• Casev is an encrypted fact; say,v = {(tv′, v′)}kv′ ; then:

ψ(ins(v)) = ψ({(inst(tv′), insv(v′))}insv(kv′))
= {(inst(tv′), insv(v′))}insv(kv′)

〈from condition 3 of definition 5 and since

well-tagged(ins(v)) from assumption 2〉
= {(ins′t(tv

′), insv(v′))}insv(kv′)

〈by assumption 2, and since

well-tagged(ins′(v)), ins′t(tv
′) = inst(tv′)〉

= ins′(v)
〈from definition ofins andins′v(v

′) = insv(v′),
ins′v(kv

′) = insv(kv′)〉

• Casev is a pair; say,v = (v1, v2); then,

ψ(ins(v)) = ψ(ins(v1), ins(v2)) 〈by definition ofins〉
= (ψ(ins(v1)), ψ(ins(v2))) 〈cond. 5 of def. 3〉
= (ins′(v1), ins′(v2)) 〈from above results〉
= ins′(v1, v2)
= ins′(v)

D. Penetrator Strands

In this section we will show how we transform penetrator
strands inC to equivalent penetrator strands in the well-tagged
bundle (sayC ′), without any additional penetrator knowledge.
We consider each type of penetrator strand defined in defini-
tion 4 and define a corresponding strand inC ′. In most cases,
we will preserve the strand structure, but will retain the same
set of facts in every case.

• M Text message: Let S = 〈+x〉 with x ∈ TP. Define
S′ = 〈+ψ(x)〉, which is anM strand becauseψ(x) = x
whenx ∈ uf from condition 1 of definition 5.

• F Flushing: LetS = 〈−f〉. DefineS′ = 〈−ψ(f)〉, which
is anF strand.

• T Tee: Let S = 〈−f,+f,+f〉. Define S′ =
〈−ψ(f),+ψ(f),+ψ(f)〉, which is aT strand.

• C Concatenation: Let S = 〈−f1,−f2,+f1f2〉. Define
S′ = 〈−ψ(f1),−ψ(f2),+ψ(f1, f2)〉which is a valid con-
catenation strand, becauseψ(f1, f2) = (ψ(f1), ψ(f2)) by
condition 5 of definition 5.

• S Separation: Let S = 〈−f1f2,+f1,+f2〉. DefineS′ =
〈−ψ(f1, f2),+ψ(f1),+ψ(f2)〉which is a valid separation
strand, again by condition 5 of definition 5.

• K Key: Let S = 〈+k〉 with k ∈ KP. Define S′ =
〈+ψ(k)〉, which is aK strand sinceψ(k) = k, ∀k ∈ uf
from condition 1 of definition 5.

• E Encryption: Let S = 〈−k,−f,+{(t, f)}k〉, k ∈ KP.
Define S′ = 〈−ψ(k),−ψ(f),+ψ({(t, f)}k)〉 which
is a valid encryption strand because,ψ({(t, f)}k) =
{ω(f), ψ(f)}k by condition 4 of definition 5.

• D Decryption: Let S = 〈−k−1,−{(t, f)}k,+f〉, k ∈
KP. Define S′ = 〈−ψ(k−1),−ψ({(t, f)}k),+ψ(f)〉,



which is a valid decryption strand because,
ψ({(t, f)}k) = {(ω(f), ψ(f))}k by condition 4 of
definition 5.

• R Replaying: Let S = 〈+f〉, f ∈ EP. Define S′ =
〈+ψ(f)〉 which is a valid replaying strand because,ψ(f)
is merely well-tagged without any additional change in the
message.

One special case here concerns when the penetrator
receives a well-tagged fact and sends another fact in
it’s place, either by replaying or by “retagging”: i.e.
a combination of (a) F and R strands: 〈−f,+f ′〉
with f ′ ∈ EP or (b) D and E strands: 〈−f,+f ′〉
(〈−{(t1, f1)}k1 ,−k1,+f1,+{(t2, f2)}k2 ,−k2,+f2〉), with
k1, k2 ∈ KP, f = {(t1, f1)}k1 andf ′ = {(t2, f2)}k2 .

E. Preserving Unique Origination in Bundles

Usingψ, for every edge+n → −n in C, we have created
a similar edge+ψ(n) → −ψ(n) transformingC into a well-
tagged bundle. We have appliedψ only on the tag component
of a tagged fact. We did not introduce new facts any where in
the bundle. We have changed the strand structure in the special
case where a penetrator receives a fact and replays a fact or
retags a fact, which is dealt with as explained above.

Lemma 4:LetC andC ′ be defined as above. Iff0 is a fact,
uniquely originating inC, then,f0 also originates uniquely in
C ′.

Proof: ψ is effectively applied only on ill-tagged facts.
From Lemma 1, they originate only onE andR strands. By
definition,ψ does not change the fact component. Also, by the
injectivity property ofψ, there is no duplication of tags. Hence,
unique origination is preserved inC ′.

IV. PROOF

A. Overview

In this section we will prove our main result, whenever there
is an attack on a protocol using our tagging scheme, there is
also an attack on the protocol in the absence of replays. To be
precise, we need to prove that,

If there is an attack on a protocol under the tagging scheme,
there is also an attack on the protocol when adopting the tag-
ging scheme with all tagged messages correctly tagged.

In other words, an attack on a protocol using the tagging
scheme does not revolve around replays. We will consider an
attack to mean a failure of authentication at the end of a proto-
col run. Any other properties can be similarly considered and
proven, e.g., non-repudiation, anonymity, fairness. For defin-
ing security properties and their violations, we will follow the
definitions and terminology given by Heatheret. al [11]..

B. Authentication

Theorem 1:LetC be a bundle andC ′ be a well-tagged bun-
dle obtained by transformingC. i.e. ψ(C) = C ′. If there is a
failure of authentication inC, there is also a failure of authen-
tication inC ′.

Proof:

Suppose there is a failure of authentication inC as below [11,
definition 2]:

1) There is a strands1 = ins1(temp1) with C-height at
leasth1. (an honest strand inC with C at a minimal
heighth1).

2) ∀k ∈ Keys � ins1(k) /∈ KP. (no secret keys are com-
promised).

3) There is no strands2 = ins2(temp2) with C-height at
leasth2 such that∀x ∈ X · ins1(x) = ins2(x). (there
is no matching strand fors1 in C, agreeing on some data
setX). (This says that since there is no matching honest
participant to match the accepted authentication ins1, the
authentication is bogus.)

We show that there is a corresponding attack inC ′. Let,
ins1′(v) = ψ(ins1(v)). Then:

1) There is a strands1′ = ins1′(temp1) = ψ(ins1(temp1))
with C ′-height at leasth1, corresponding tos1, from the
way we have constructed the honest strands ofC ′.

2) ∀k ∈ Keys · ins1′(k) /∈ KP, becauseins1′(k) =
ins1(k) for suchk.

3) There is no strands2′ = ins2′(temp2) with C ′-height at
leasth2 such that∀x ∈ X � ins1′(x) = ins2′(x).

Suppose there were such ans2′; then, by the way we have
constructed the honest strands inC ′, s2′ would correspond to
some strands2′′ = ins2′′(temp2) with C ′-height at leasth2
such that:
∀v ∈ Var � ins2′(v) = ψ(ins2′′(v))
But then, we would have for everyx ∈ X:

ψ(ins1(x)) = ins1′(x)
= ins2′(x)
= ψ(ins2′′(x))

However, contradicting part 3 of the definition, we would
haveins1(x) = ins2′′(x), because of the injectivity property of
ψ (condition 6 of definition 5).

C. Example

We illustrate our concepts with the Otway-Rees protocol.
Thayeret. al establish a number of properties of this proto-
col in [20, section 7.2]. This protocol can be represented in our
scheme in the form of the following templates:
init =̂ 〈+(M,A,B{t1,M,Na, A,B}KAS

),
− (M{t3, Na,KAB}KAS

)〉

resp =̂ 〈−(M,A,B{t1,M,Na, A,B}KAS
),

+(M,A,B{t1,M,Na, A,B}KAS
{t2, Nb,M,A,B}KBS

),
− (M{t3, Na,KAB}KAS

{t4, Nb,KAB}KBS
),

+ (M, {t3, Na,KAB}KAS
)〉

serv =̂ 〈−(M,A,B{t1,M,Na, A,B}KAS
{t2,M,Nb, A,

B}KBS
),+(M{t3, Na,KAB}KAS

{t4, Nb,KAB}KBS
)〉

Thayeret. al also extend these results when this protocol is
executed in a “mixed” environment [21], when:



1) Ticket(L0) = set of all terms of the form{NK ′}K is
unserved in Σ. i.e. secondary strands (strands belonging
to other runs) do not have entry points to this set.

2) Request(L0) = set of all terms of the form{NMAB}K

is strongly unservedi.e. no term of this set ever originates
on a secondary strand.

3) L0 ∩KP 6= φ;
In particular, they establish the following ‘initiator’s guaran-

tee’ under the above assumptions:
If s ∈ Σinit is an initiator strand in a bundle, then there al-

ways exist primary strandssresp ∈ Σresp andsserv ∈ Σserv

which agree on the initiator, responder, andM values. i.e. au-
thentication is guaranteed w.r.t. [11, definition 2]: there is no
failure of authentication iftemp1 = init, temp2 = resp,X =
{A,B,M}, h1 = h2 = 4 andKeys = {KAS}.

We can again use our main result in section IV to show that
this protocol achieves this guarantee even when all the three
conditions are dropped and the tagging scheme adopted (with
the appropriateins defined oninit and resp). In addition, com-
ponent numbering assures us that the protocol remains invulner-
able to the type-flaw attack shown in [17] which succeeds due
to replay of encrypted components inside the same run.

V. CONCLUSION

Many times protocols are successfully attacked when an hon-
est agent incorrectly accepts messages, “believing” that they
possess some properties (eg. freshness). Whether a technique
prevents certain attacks depends upon preventing the honest
user from accepting messages that do not have their claimed
properties and on the inability of the penetrator to create ‘valid’
messages having those properties. In this paper we have intro-
duced one such scheme to prevent replay attack and proven that
it stops replay attacks. In particular, we have taken an arbitrary
bundle, used a transformation on it to change it to a well tagged
bundle, where no term represents replays. This was possible be-
cause, if an honest agent is willing to accept an ill-tagged fact, it
should accept any value in it’s place. Attacks were then shown
to be existing on both or on none, indirectly proving that the
attacks are not based on replays, but on some other mechanism.
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