ON PRIME GAMMA RINGS

Shoji Kyuno

The notion of a Γ -ring was introduced by N. Nobusawa. The class of Γ -rings contains not only all rings but also Hestenes ternary rings. Recently, W. E. Barnes, J. Luh, W. E. Coppage and the author studied the structure of Γ -rings and obtained various generalizations analogous of corresponding parts in ring theory. The object of this paper is to study the properties of prime Γ -rings. Main results are the following theorems: (1) A Γ -ring M is a subdirect sum of prime Γ -rings if and only if $\mathcal{P}(M) = 0$, where $\mathcal{P}(M)$ denotes the prime radical of M. (2) For the matrix $\Gamma_{n,m}$ -ring $M_{m,n}$ we have $\mathcal{P}(M_{m,n}) =$ $(\mathcal{P}(M))_{m,n}$, where M is a ring such that $x \in M\Gamma x \Gamma M$ for every $x \in M$.

2. Preliminaries. Let M and Γ be two abelian groups. If for all $x, y, z \in M$ and all $\alpha, \beta \in \Gamma$, the conditions (1) $x\alpha y \in M$ (2) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y + z) = x\alpha y + x\alpha z$, (3) $(x\alpha y)\beta z = x\alpha(y\beta z)$ are satisfied, then we call M a Γ -ring.

If A and B are subsets of a Γ -ring M and $\Theta \subseteq \Gamma$, we denote $A \Theta B$, the subset of M consisting of all finite sums of the form $\sum a_i \gamma_i b_i$ where $a_i \in A, b_i \in B$ and $\gamma_i \in \Theta$. For singleton subsets we abbreviate this notation for example, $\{a\}\Theta B = a\Theta B$. A right ideal (left ideal) of a Γ -ring M is an additive subgroup I of M such that $I\Gamma M \subseteq I$ $(M\Gamma I \subseteq I)$. If I is both a right and a left ideal, then we say that I is an ideal, or two-sided ideal of M. For each a of a Γ -ring M, the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $|a\rangle$. Similarly we define $\langle a | and \langle a \rangle$, the principal left and two-sided (respectively) ideals generated by a.

Let I be an ideal of a Γ -ring M. If for each a + I, b + I in the factor group M/I, and each $\gamma \in \Gamma$, we define $(a + I)\gamma(b + I) = a\gamma b + I$, then M/I is a Γ -ring which we shall call the Γ -residue class ring of M with respect to I.

If M_i is a Γ_i -ring for i = 1, 2 then an ordered pair (θ, ϕ) of mappings is called a homomorphism of M_1 onto M_2 if it satisfies the following properties: (1) θ is a group homomorphism from M_1 onto M_2 (2) ϕ is a group isomorphism from Γ_1 onto Γ_2 (3) For every $x, y \in M_1, \gamma \in \Gamma_1$, $(x\gamma y)\theta = (x\theta)(\gamma\phi)(y\theta)$. The kernel of the homomorphism (θ, ϕ) is defined to be $K = \{x \in M | x\theta = 0\}$. Clearly K is an ideal of M. If θ is a group isomorphism, that is, if K = 0, then (θ, ϕ) is called an isomorphism from the Γ_1 -ring M_1 onto the Γ_2 -ring M_2 .

Let I be an ideal of the Γ -ring M. Then the ordered pair (ρ, ι) of

SHOJI KYUNO

mappings, where $\rho: M \to M/I$ is defined by $x\rho = x + I$ and ι is the identity mapping of Γ , is a homomorphism called the natural homomorphism from M onto M/I.

For all other notions relevant to Γ -rings we refer to [4].

3. Semi-primeness.

DEFINITIONS. An ideal P of a Γ -ring M is prime if for any ideals A, $B \subseteq M$, $A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A subset S of M is an m-system in M if $S = \emptyset$ or if $a, b \in S$ implies $\langle a \rangle \Gamma \langle b \rangle \cap S \neq \emptyset$. The prime radical $\mathcal{P}(A)$ is the set of x in M such that every m-system containing x meets A. The prime radical of the zero ideal in a Γ -ring M is called the prime radical of the Γ -ring M which we denote by $\mathcal{P}(M)$. An ideal Q of M is semiprime if, for any ideal U, $U\Gamma U \subseteq Q$ implies $U \subseteq Q$. A Γ -ring M is semi-prime if the zero ideal is semiprime.

The following theorem characterizes semi-primeness for ideals in Γ -rings. The proof is a minor modification of the proof of the corresponding theorem in ring theory, and we omit it.

THEOREM 1. If Q is an ideal in a Γ -ring M, all the following conditions are equivalent.

(1) Q is a semi-prime ideal.

(2) If $a \in Q$ such that $a \Gamma M \Gamma a \subseteq Q$, then $a \in Q$.

(3) If $\langle a \rangle$ is a principal ideal in M such that $\langle a \rangle \Gamma \langle a \rangle \subseteq Q$, then $a \in Q$.

(4) If U is a right ideal in M such that $U\Gamma U \subseteq Q$, then $U \subseteq Q$.

(5) If V is a left ideal in M such that $V \Gamma V \subseteq Q$, then $V \subseteq Q$.

COROLLARY 1. A Γ -ring M is semi-prime if and only if $a\Gamma M\Gamma a = 0$ implies a = 0.

DEFINITION. A subset S of M is strongly nilpotent if there exists a positive integer n such that $(S\Gamma)^n S = (0)$.

It follows easily by induction that if Q is a semi-prime ideal and A is an ideal such that $(A\Gamma)^n A \subseteq Q$ for an arbitrary positive integer n, then $A \subseteq Q$. Hence, (0) is a semi-prime ideal if and only if M contains no nonzero strongly nilpotent ideal. By Theorem 1 (4) and (5), we have also that (0) is a semi-prime ideal if and only if M contains no nonzero strongly nilpotent right (left ideal).

The author [3] showed the following result.

THEOREM 2. An ideal Q in a Γ -ring M is a semi-prime ideal in M if and only if $\mathcal{P}(Q) = Q$.

By Theorem 2, (0) is a semi-prime ideal if and only if $\mathcal{P}(M) = (0)$.

Thus we have the following theorem.

THEOREM 3. A Γ -ring M has zero prime radical if and only if it contains no strongly nilpotent ideal (right ideal, left ideal).

4. Prime Γ -rings. In this section we shall be concerned with the concept introduced in the following definition.

DEFINITION. A Γ -ring M is said to be prime if the zero ideal is prime.

The following theorem is analogous to the corresponding theorem in ring theory, and we omit its proof.

THEOREM 4. If M is a Γ -ring, the following conditions are equivalent:

(1) M is a prime Γ -ring.

(2) If $a, b \in M$ and $a \Gamma M \Gamma b = (0)$, then a = 0 or b = 0.

(3) If $\langle a \rangle$ and $\langle b \rangle$ are principal ideals in M such that $\langle a \rangle \Gamma \langle b \rangle = (0)$, then a = 0 or b = 0.

(4) If A and B are right ideals in M such that $A\Gamma B = (0)$, then A = (0) or B = (0).

(5) If A and B are left ideals in M such that $A \Gamma B = (0)$, then A = (0) or B = (0).

The importance of the concept of prime Γ -rings stems primarily from the following fact.

THEOREM 5. If P is an ideal in the Γ -ring M, then the Γ -residue class ring M/P is a prime Γ -ring if and only if P is a prime ideal in M.

We prepare the following lemma which is fairly easy to prove, and we omit the proof.

LEMMA 1. Let (θ, ι) be a homomorphism of Γ -ring M onto the Γ -ring N, with kernel K. Then each of the following is true:

(1) If I is an ideal (right ideal) in M, then $I\theta$ is an ideal (right ideal) in N.

SHOJI KYUNO

(2) If J is an ideal (right ideal) in N, then $J\theta^{-1}$ is an ideal (right ideal) in M which contains K.

(3) If I is an ideal (right ideal) in M which contains K, then $I = (I\theta)\theta^{-1}$.

(4) The mapping $I \rightarrow I\theta$ defines a one to one mapping of the set of ideals (right ideals) in M which contain K onto the set of all ideals (right ideals) in N.

Proof of Theorem 5. Let M/P be prime and A, B be ideals of M such that $A \Gamma B \subseteq P$. Let (ρ, ι) be the natural homomorphism from M onto M/P. Then by Lemma 1 $A\theta$ and $B\theta$ are ideals of M/P such that $A\theta\Gamma B\theta = (0)$. Since M/P is prime, it follows that $A\theta = (0)$ or $B\theta = (0)$, that is, $A \subseteq P$ or $B \subseteq P$. Thus P is a prime ideal in M.

Conversely, let P be a prime ideal in M. Lemma 1 shows that each ideal in M/P is of the form A/P, where A is an ideal in M which contains P. Thus we may assume that A/P, B/P be ideals of M/P such that $(A/P)\Gamma(B/P) = (0)$, which implies $A\Gamma B \subseteq P$. Then by the primeness of P we have $A \subseteq P$ or $B \subseteq P$. Hence A = P or B = P and so A/P = (0) or B/P = (0). This completes the proof.

Barnes [1] has characterized $\mathcal{P}(M)$ as the intersection of all prime ideals of M.

The author [4] has shown the following lemma.

LEMMA 2. A Γ -ring M is a subdirect sum of Γ -rings S_i , $i \in \mathfrak{A}$, if and only if for each $i \in \mathfrak{A}$ there exists in M a two-sided ideal K_i such that $M/K_i \cong S_i$, moreover $\bigcap_{i \in \mathfrak{A}} K_i = (0)$.

Thus, these facts and Theorem 5 yield the following theorem which is analogous to Theorem 4.3 in [4].

THEOREM 6. A Γ -ring M is a subdirect sum of prime Γ -rings if and only if $\mathcal{P}(M) = (0)$.

Following Luh [2], we introduce the matrix ring $M_{m,n}$.

Let G be an additive group. We shall denote by $G_{m,n}$ the additive group of all $m \times n$ matrices over the group G. For $1 \le i \le m, 1 \le j \le n$, and $a \in G$, let aE_{ij} denote the matrix having a at the *i*th row and *j*th column, and 0 elsewhere.

Let M be a Γ -ring. Consider the group $M_{m,n}$ and $\Gamma_{n,m}$. For $(a_{ij}), (b_{ij}) \in M_{m,n}$ and $(\gamma_{ij}) \in \Gamma_{n,m}$, define $(a_{ij})(\gamma_{ij})(b_{ij}) = (c_{ij})$, where $c_{ij} = \sum_{k=1}^{m} \sum_{h=1}^{n} a_{ih} \gamma_{hk} b_{kj}$. Then $M_{m,n}$ forms a $\Gamma_{n,m}$ -ring.

We now prove the next theorem which will indicate one way to construct new prime Γ -rings from given ones.

THEOREM 7. If M is a Γ -ring, the matrix ring $M_{m,n}$ is a prime $\Gamma_{n,m}$ -ring if and only if M is a prime Γ -ring.

Proof. Let us prove that if M is not prime, then $M_{m,n}$ is not prime. If M is not prime, there exist nonzero elements a and b of M such that $a\Gamma M\Gamma b = 0$. Then, we have, for example, $aE_{11}\Gamma_{n,m}M_{m,n}\Gamma_{n,m}bE_{11} = 0$ with aE_{11} and bE_{11} nonzero elements of $M_{m,n}$. Hence, $M_{m,n}$ is not prime. Conversely, suppose that $M_{m,n}$ is not prime, and hence that there exist nonzero matrices $\sum_{i,j}a_{ij}E_{ij}$ and $\sum_{i,j}b_{ij}E_{ij}$ such that $(\sum_{i,j}a_{ij}E_{ij})\Gamma_{n,m}M_{m,n}\Gamma_{n,m}(\sum_{i,j}b_{ij}E_{ij}) = 0$. Let p, q, r and s be fixed positive integers such that $a_{p,q} \neq 0$ and $b_{rs} \neq 0$. As a special case of the preceding equation, we find that for each $x \in M$, each $\gamma, \eta \in \Gamma$,

 $(\Sigma a_{ij}E_{ij})(\gamma E_{qp})(xE_{ps})(\eta E_{sr})(\Sigma b_{ij}E_{ij}) = \Sigma a_{iq}\gamma x\eta b_{ri}E_{ij} = 0.$

In particular, the (p, s) element must be zero, that is, $a_{pq}\gamma x\eta b_{rs} = 0$. Since this is true for every x in M and every γ , η in Γ , we have $a_{pq}\Gamma M\Gamma b_{rs} = 0$, and M is not prime. This completes the proof.

Luh [2] has obtained the following lemma.

LEMMA 3. Let M be a Γ -ring such that $x \in M\Gamma x \Gamma M$ for every $x \in M$. Then the ideals of the $\Gamma_{n,m}$ -ring $M_{m,n}$ are the form $U_{m,n}$, where U is an ideal of M.

We prepare the following lemma.

LEMMA 4. If I is an ideal in the Γ -ring M, then the matrix $\Gamma_{n,m}$ -ring $(M/I)_{m,n}$ is isomorphic to the $\Gamma_{n,m}$ -ring $M_{m,n}/I_{m,n}$.

Proof. Let θ be a mapping of the $\Gamma_{n,m}$ -ring $(M/I)_{m,n}$ to the $\Gamma_{n,m}$ -ring $M_{m,n}/I_{m,n}$ such that $(x_{ij} + I)\theta = (x_{ij}) + I_{m,n}$. Clearly, θ is a group isomorphism from $(M/I)_{m,n}$ onto $M_{m,n}/I_{m,n}$. Let ι be an identity mapping from $\Gamma_{n,m}$ onto $\Gamma_{n,m}$. By the definition of multiplications of the Γ -residue class ring, we have that

$$[(x_{ij} + I)(\gamma_{ij})(y_{ij} + I)]\theta = (z_{ij} + I)\theta, \text{ where } (z_{ij}) = (x_{ij})(\gamma_{ij})(y_{ij})$$
$$= (x_{ij})(\gamma_{ij})(y_{ij}) + I_{m,n}$$
$$= [(x_{ij}) + I_{m,n}](\gamma_{ij})[(y_{ij}) + I_{m,n}]$$
$$= (x_{ij} + I)\theta(\gamma_{ij})\iota(y_{ij} + I)\theta.$$

This shows that (θ, ι) is an isomorphism of $(M/I)_{m,n}$ onto $M_{m,n}/I_{m,n}$.

We now prove the following result.

SHOJI KYUNO

THEOREM 8. Let M be a Γ -ring such that $x \in M\Gamma x \Gamma M$ for every $x \in M$. If $\mathcal{P}(M)$ is the prime radical of the Γ -ring M, then $\mathcal{P}(M_{m,n}) = (\mathcal{P}(M))_{m,n}$.

Proof. From Lemma 3 it follows easily that $I \to I_{m,n}$ (I an ideal in M) is a one to one mapping of the set of all ideals in M onto the set of all ideals in $M_{m,n}$. Moreover, by Lemma 4, $(M/I)_{m,n} \cong M_{m,n}/I_{m,n}$. Hence, by Theorem 7, $M_{m,n}/I_{m,n}$ is a prime $\Gamma_{n,m}$ -ring if and only if M/I is a prime Γ -ring. From Theorem 5 it follows that $I_{m,n}$ is a prime ideal of $M_{m,n}$ if and only if I is a prime ideal of M. Thus, if $\{P_i \mid i \in \mathfrak{A}\}$ is the set of all prime ideals in M, we have

$$\mathscr{P}(M_{m,n}) = \bigcap_{i \in \mathfrak{A}} (P_i)_{m,n} = (\bigcap_{i \in \mathfrak{A}} P_i)_{m,n} = (\mathscr{P}(M))_{m,n}$$

REMARKS. A Γ -ring M is said to be simple if (1) $M\Gamma M \neq 0$ and (2) M has no ideals other than 0 and M itself. If M is simple, $M\Gamma x\Gamma M = M$ for each nonzero element x in M. Hence $x \in M\Gamma x\Gamma M$. Thus, for a simple Γ -ring $M, \mathcal{P}(M_{m,n}) = (\mathcal{P}(M))_{m,n} = 0$.

If there exists an element ϵ in M and an element δ in Γ such that $x\partial\epsilon = \epsilon\partial x = x$ for every element $x \in M, \epsilon$ is called an unity of M. If M has an unity, for every x in $M \ x \in M\Gamma x \Gamma M$, and then $\mathcal{P}(M_{m,n}) = (\mathcal{P}(M))_{m,n}$.

REFERENCES

- 1. W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
- 2. J. Luh, On the theory of simple Γ-rings, Michigan Math. J., 16 (1969), 65-75.
- 3. S. Kyuno, On the radicals of Γ -rings, Osaka J. Math., 12 (1975), 639-645.
- 4. S. Kyuno, On the semi-simple gamma rings, Tohoku Math. J., 29 (1977), 217-225.
- 5. N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.

Received March 9, 1977.

Tohoku Gakuin University Asahigaoka Tagajo-City, 985 Japan