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Abstract. We investigate the existence of principal eigenvalues (i.e., eigenval-
ues corresponding to positive eigenfunctions) for the boundary value problem

−∆u(x) = λg(x)u(x) on D; ∂u
∂n

(x)+αu(x) = 0 on ∂D, where D is a bounded

region in RN , g is an indefinite weight function and α ∈ R may be positive,
negative or zero.

We discuss the existence of principal eigenvalues (i.e., eigenvalues corresponding
to positive eigenfunctions) for the boundary value problem

−∆u(x) = λg(x)u(x) on D;
∂u

∂n
(x) + αu(x) = 0 on ∂D,(1)α

where D is a bounded region in RN with smooth boundary, g : D → R is a smooth
function which changes sign on D, and α ∈ R.

Such problems have been studied in recent years because of associated nonlinear
problems arising in the study of population genetics (see [3]). The study of the
linear ordinary differential equation case, however, goes back to Picone and Bôcher
(see [2]). Attention has been confined mainly to the cases of Dirichlet (α = ∞) and
Neumann boundary conditions.

In the case of Dirichlet boundary conditions it is well known (see [4]) that there
exists a double sequence of eigenvalues for (1)α

. . . λ−2 < λ−1 < 0 < λ+
1 < λ+

2 . . . ,

λ+
1 (λ−1 ) being the unique positive (negative) principal eigenvalue. It is also well

known that the case where 0 < α < ∞ is similar to the Dirichlet case. In the case
of Neumann boundary conditions, 0 is clearly a principal eigenvalue and there is a
positive (negative) principal eigenvalue if and only if

∫
D g(x) dx < 0 (> 0); in the

case where
∫

D
g(x) = 0 there are no positive and no negative principal eigenvalues.

We shall investigate how the principal eigenvalues of (1)α depend on α, obtaining
new results for the case where α < 0. This case seems to have been considered far
less often than the case α ≥ 0, probably because it is more natural that the flux
across the boundary should be outwards if there is a positive concentration at the
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126 G. A. AFROUZI AND K. J. BROWN

boundary, and also because α ≥ 0 is an easier condition to use when applying
the maximum principle to discuss positive solutions. By studying the case α < 0,
however, we obtain a much clearer overall view of how the principal eigenvalues
of (1)α depend on α. We shall show that, depending on α, (1)α has two, one
or zero principal eigenvalues, and that the natural way of distinguishing between
principal eigenvalues is by considering the sign of

∫
D

g(x)u2
0 dx, where u0 denotes

the corresponding eigenfunction rather than the sign of the eigenvalues themselves.
Our analysis is based on a method used by Hess and Kato ([4]). Consider, for

fixed λ, the eigenvalue problem

−∆u(x)− λg(x)u(x) = µu(x) on D;
∂u

∂n
(x) + αu(x) = 0 on ∂D.(2)α

We denote the lowest eigenvalue of (2)α by µ(α, λ). Let

Sα,λ = {
∫

D

|∇φ|2 dx + α

∫
∂D

φ2 dSx − λ

∫
D

gφ2 dx : φ ∈ W 1,2(D) ,

∫
D

φ2 dx = 1}.

When α ≥ 0, it is clear that Sα,λ is bounded below. It is shown in Smoller [5]
by variational arguments that µ(α, λ) = inf Sα,λ and that an eigenfunction cor-
responding to µ(α, λ) does not change sign on D. Thus, clearly, λ is a principal
eigenvalue of (1)α if and only if µ(α, λ) = 0.

When α < 0, the boundedness below of Sα,λ is no longer obvious a priori, but
is a consequence of the following lemma.

Lemma 1. For every ε > 0 there exists a constant C(ε) > 0 such that∫
∂D

φ2 dSx ≤ ε

∫
D

|∇φ|2 dx + C(ε)
∫

D

φ2 dx

for all φ ∈ W 1,2(D).

Proof. Suppose that the result does not hold. Then there exist ε0 > 0 and a
sequence {un} ⊆ W 1,2(D) such that

∫
D |∇un|2 dx = 1 and∫

∂D

u2
n dSx ≥ ε0 + n

∫
D

u2
n dx.(3)

Suppose first that {∫
D

u2
n dx} is unbounded. Let vn = un/||un||L2(D). Clearly {vn}

is bounded in W 1,2(D), and so in L2(∂D). But
∫

∂D v2
n dSx ≥ n

∫
D v2

n dx = n, which
is impossible.

Suppose now that {∫
D u2

n dx} is bounded. Then {un} is bounded in W 1,2(D)
and so has a subsequence, which we again denote by {un}, converging weakly to u
in W 1,2(D). Since W 1,2(D) is compactly embedded in L2(∂D) (see Adams [1], page
144) and in L2(D), it follows that {un} converges to some function u in L2(∂D)
and in L2(D). Thus {∫∂D u2

n dSx} is bounded, and so it follows from (3) that
limn→∞

∫
D

u2
n dx = 0, i.e., {un} converges to zero in L2(D). Hence {un} converges

to 0 in L2(∂D), and this is impossible because of (3).

Choosing ε < 1
α , it is easy to deduce from the above result that Sα,λ is bounded

below, and it follows exactly as in [5] that µ(α, λ) = inf Sα,λ and that an eigen-
function corresponding to µ(α, λ) does not change sign on D. Thus it is again the
case that λ is a principal eigenvalue of (1)α if and only if µ(α, λ) = 0.

For fixed φ ∈ W 1,2(D), λ → ∫
D
|∇φ|2 dx+α

∫
∂D

φ2 dSx−λ
∫

D
gφ2 dx is an affine

and so concave function. As the infimum of any collection of concave functions is
concave, it follows that λ → µ(α, λ) is a concave function. Also, by considering test
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µ

λ

Figure 1. Graph of λ → µ(α, λ) when α > 0.

functions φ1, φ2 ∈ W 1,2(D) such that
∫

D
gφ2

1 dx > 0 and
∫

D
gφ2

2 dx < 0, it is easy
to see that µ(α, λ) → −∞ as λ → ±∞. Thus λ → µ(α, λ) is an increasing function
until it attains its maximum, and is a decreasing function thereafter.

Suppose that 0 < α < ∞, i.e., we have the ‘usual’ Robin boundary condition.
Then, as can be seen from the variational characterisation of µ(α, λ) or the fact
that −∆ has a positive principal eigenvalue, µ(α, 0) > 0 and so λ → µ(α, λ) must
have a graph similar to that shown in Figure 1, i.e., λ → µ(α, λ) has exactly two
zeros. Thus in this case (1)α has exactly two principal eigenvalues, one positive
and one negative.

In the case α ≤ 0 we have that µ(α, 0) ≤ 0, and the situation is less clear.

Lemma 2. Suppose that u0 is an eigenfunction of (2)α corresponding to the prin-
cipal eigenvalue µ(α, λ). Then

dµ

dλ
(α, λ) = −

∫
D

gu2
0 dx∫

D u2
0 dx

.

Proof. Regarding u and µ as functions of λ, we have

−∆u(λ)− λg(x)u(λ) = µ(λ)u(λ) on D;
∂

∂n
u(λ) + αu(λ) = 0 on ∂D.

Let v(λ) = du
dλ . Then v(λ) satisfies

−∆v(λ)− λg(x)v(λ) − µ(λ)v(λ) = g(x)u(λ) +
dµ

dλ
(λ)u(λ) on D.(4)

In addition, ∂
∂nv(λ) + αv(λ) = 0 on ∂D.

Multiplying (4) by u(λ) and integrating over D gives

0 =
∫

D

g(x)[u(λ)]2 dx +
dµ

dλ
(λ)

∫
D

[u(λ)]2 dx

and so the result follows.

The above lemma shows that where λ → µ(α, λ) is an increasing (decreasing)
function we have that

∫
D g(x)[u(λ)]2 dx < 0 (> 0), and at critical points we must

have
∫

D g(x)[u(λ)]2 dx = 0. The next lemma shows that λ → µ(α, λ) has a unique
critical point.
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(a) (b) (c)

Figure 2. Graph of λ → µ(α, λ) when α = 0 in the cases where
(a)

∫
D g > 0 , (b)

∫
D g < 0 , (c)

∫
D g = 0.

Lemma 3. Suppose that u0 is an eigenfunction of (2)α corresponding to the prin-
cipal eigenvalue µ(α, λ0) such that

∫
D g(x)u2

0 dx = 0. Then µ(α, λ0) > µ(α, λ)
whenever λ 6= λ0, i.e., the unique global maximum of λ → µ(α, λ0) occurs when
λ = λ0.

Proof. We may assume without loss of generality that
∫

D
u2

0 dx = 1. Then

µ(α, λ0) =
∫

D

|∇u0|2 dx + α

∫
∂D

u2
0 dSx.

Hence

µ(α, λ) ≤
∫

D

|∇u0|2 dx + α

∫
∂D

u2
0 dSx − λ

∫
D

g(x)u2
0 dx

=
∫

D

|∇u0|2 dx + α

∫
D

u2
0 dSx = µ(α, λ0).

Suppose λ 6= λ0 and µ(α, λ) = µ(α, λ0). Then u0 is a minimizer for Sα,λ, and it
follows that u0 must satisfy

−∆u0(x) − λg(x)u0(x) = µ(α, λ)u0(x) on D;
∂u0

∂n
(x) + αu0(x) = 0 on ∂D.

But as µ(α, λ) = µ(α, λ0), u0 also satisfies

−∆u0(x) − λ0g(x)u0(x) = µ(α, λ)u0(x) on D;
∂u0

∂n
(x) + αu0(x) = 0 on ∂D,

and this is a contradiction. Hence µ(α, λ) < µ(α, λ0).

Thus λ → µ(α, λ) is a concave function which is increasing on some interval of
the form (−∞, λ̂), has a maximum turning point at λ = λ̂, and is decreasing on
(λ̂,∞). Hence the graph of λ → µ(α, λ) may have 2, 1 or 0 intersections with the
µ-axis, and so (1)α may have 2, 1 or 0 principal eigenvalues.

We have already seen that when α > 0, (1)α has 2 principal eigenvalues, one
positive and one negative. If α = 0, i.e., we have Neumann boundary conditions,
then µ(α, 0) = 0 and the corresponding eigenfunction is a constant. Hence dµ

dλ (0) >

0 (= 0) (< 0) as
∫

D g(x) dx < 0 (= 0) (> 0). Thus, when α = 0, µ = 0 is a
principal eigenvalue in all cases; if

∫
D

g(x) dx < 0, there is an additional positive
principal eigenvalue; and, if

∫
D

g(x) dx > 0, there is an additional negative principal
eigenvalue and, if

∫
D g(x) dx = 0, µ = 0 is the only principal eigenvalue (see

Figure 2).
We now consider what happens when α < 0. We first assume that

∫
D

g(x) dx < 0.
It is clear from the variational characterisation of µ(α, λ) that α → µ(α, λ) is a
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(a) (b) (c)

Figure 3. Graph of λ → µ(α, λ) when
∫

g < 0 and α < 0, where
(a) α is small, (b) α is large, and (c) α = α0.

strictly increasing, concave (and so continuous) function. Thus, for α sufficiently
small and negative, λ → µ(α, λ) must have a graph of the form shown in Figure 3(a),
and so (1)α has two positive principal eigenvalues. This state of affairs does not
persist, however, for all α < 0.

Lemma 4. There exists α∗ < 0 such that (1)α has no principal eigenvalues if
α < α∗.

Proof. Suppose α < 0 and u0 is a positive eigenfunction of (1)α corresponding to a
positive principal eigenvalue λ0. It is easy to show by using the maximum principle
that u0(x) > 0 for all x ∈ D. Also 0 = µ(α, λ0) < µ(0, λ0). Hence λ0 < µ0 (the
positive principal eigenvalue for the Neumann problem.)

Dividing (1)α by u0 and integrating over D, we have∫
D

−∆u0

u0
dx = λ0

∫
D

g(x) dx,

and so

−
∫

∂D

∂u0

∂n
u0 dSx −

∫
D

|∇u0|2
u2

0

dx = λ0

∫
D

g(x) dx,

i.e.,

α

∫
∂D

dSx −
∫

D

|∇u0|2
u2

0

dx = λ0

∫
D

g(x) dx.

Hence α = (λ0

∫
D

g(x) dx +
∫

D
|∇u0|2

u2
0

dx) / |∂D|. Since λ0 < µ0, α cannot be too
negative, and the proof is complete.

It follows that for large negative α the graph of λ → µ(α, λ) must be as in
Figure 3(b), and so by the continuity of α → µ(α, λ) there must exist α0 such
that maxλµ(α0, λ) = 0 (see Figure 3(c)). Clearly (1)α0 has precisely one principal
eigenvalue.

A similar analysis can be carried out in the case
∫

D
g(x) dx > 0; in this case two

negative principal eigenvalues will occur for an appropriate range of negative α.
Our results may be summarized in the following theorem.

Theorem 5. There exists α0 ≤ 0 such that
(i) if α < α0, then (1)α does not have a principal eigenvalue;
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(ii) if α = α0, then (1)α has a unique principal eigenvalue with corresponding
eigenfunction u0 such that

∫
D g(x)u2

0 dx = 0;
(iii) if α > α0, then (1)α has exactly two principal eigenvalues λ and µ, λ <

µ; if u0 and v0 are eigenfunctions corresponding to λ and µ, respectively, then∫
D

g(x)u2
0 dx < 0 and

∫
D

g(x)v2
0 dx > 0;

(iv) α0 = 0 if and only if
∫

D g(x) dx = 0.
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