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Abstract 

An additive privacy homomorphism is an encryption function in which the decryption of a sum (or possibly some 

other operation) of ciphers is the s u m  of the corresponding messages. Rivest, Adleman, and Dertouzos have proposed 

four different additive privacy homomorphisms. In this paper, we show that two of them are insecure under a 

ciphertext only attack and the other two can be broken by a known plaintext attack. We also introduce the notion of an 

R -additive privacy homomorphism, which is essentially an additive privacy homomorphism in which only at most R 

messages need to be added together. We give an example of an R -additive privacy homomorphism that appears to be 

secure against a ciphertext only attack. 

1. Introduction 

A privacy homomorphism is an encryption function which allows the encrypted data to be operated on without 

knowledge of the decryption function. Privacy homomorphisms were introduced by Rivest, Adleman, and D e r t O u z o S  

[RAD]. Secure privacy homorphisms could be applied to protect data-bases against eavesdropping by the system 

manager. 

[RAD] mentioned that privacy homomorphisms could be used lo establish data base systems in wbich an encrypted 

total of a list of items could be computed using only the encrypted values of the list of items. Privacy homomorphisms 

could also be used to establish a s a m e  conference telephone call. In a typical conference call, a central facility adds 

together the signals of the speakers. If the signals were encrypted using an additive privacy homomorphism, then the 

central facility could “add” the signals together without decrypting them. 

We must now give a more formal definition. A privacy homomorphism is a family of functions (ek , dk, a, 7) such 

that dk(y(e t (m ,) ,..., e,(m,)) = a ( m  , ,.... m,) for each k in key space K and any m, ,.... m, in message space M. The 
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definition given in [RADl is more general. In considering the security of these systems, we will assume that the 

cryptanalyst knows the functions e,. dt, a. y but does not know the key k. Ahituv, Lapid & Neumann [ALNj showed 

lhat any privacy homomorphism, which has addition as its ciphertext domain operation is insecure under chosen 

ciphertext attack. 

One privacy homomorphism mentioned in [RAD] is based on the multiplicative property of the RSA encryption 

function WSA]. Let n =pq wherep andq  are largeprimes. Leta(m, , . . . ,n t , )=ml  -m, modn a n d y = a  Define 

e and d in the usual manner for RSA. This privacy homomorphism is as secure as RSA. 

There are four more privacy homomorphms mentioned in w]. There are weahesses in each of these which 

will be discussed in section 2. 

We now introduce the notion of an R -additive privacy homomorphism, in which only the addition of at most R 

messages is allowed and a is addition over the integers. Let M be a subset of the integers. An R -additive privacy 

homomorphism is a family of functions (et , dk, a, y) such that dt (y(ek(m ,) ,... ; ek (m,)) = m , +-+ m, for r S R and 

for each k in key space K and any m I ,___. m, in message space M. We do not know of any example of an R -additive 

privacy homomorphism that it thought to be secure against a known plaintext attack. It would be very interesting to 

know whether such a function exists that is provably secure in the sense that cryptanalysis can be shown equivalent to 

some well studied problem. 

An R-additive privacy homomorphism would provide a nice solution to the problem of designing a secure 

conference call [BLY]. For this application, it would only be necessary for R to be 2 or 3, but it would be desirable to 

h i t  the data expansion. For large enough R ,  R -additive privacy homomorphisms for which y is addition will be 

insecure under the chosen ciphertext attack of [ALNj. However for small R . this attack does not apply. This will be 

explained in more detail in section 3. It is possible that a privacy homomorphism that is succeptible to a known 

plaintext attack or a chosen ciphertext attack could still be secure for encrypting digitized speech. Therefore, we think 

lhat it is worthwhile to examine the security of R -additive privacy homomorphisms against a ciphertext only attack. 

In section 3. we will describe an example of an R -additive privacy homomorphism. At first glance, it appears that 

the attacks that broke the knapsack type cryptosystems would also break this system using a ciphertext only attack. In 

section 4, we will show that this is probably not the case. In section 5,  we will describe how this system could be 

modifred to possibly improve the security. 
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2. Cryptanalysis of [RADJ privacy homomorphisms 

We present cryptanalysis of four privacy homomorphism systems which appear in [RADJ (examples 15.3.4 in this 

order). 

System 1 

k 
Let g be a generator modulo a primep. wherep -1 = n p”.  and for all i . p i  S B ,  for some small B.  Let q be a 

large prime and let n = p  . q . Message M is encrypted by computing: C I gM mod n . Decryption is M m log, C 

modp. The structure of P. enables computation of the discrete logarithm by the method of Pohlig and Hellman [pH) 

m time 0 (B 3. This is a privacy homomorphism with a being addition modp-1 and y multiplication modn . 

i=l 

Cryptanalysis 

This system is insecure because the modulus n can be factored by the Pollard p-1 method Ip]. This method is 

effective because p-1 is highly composite. To explain the basic idea of this factoring algorithm. let 

d2max(di l  1 S i S k ) .  

t 

I-IP-< IIp: 
Proof. up-’ = 1 modp , hence u ‘-I I 1 modp . Since p,$ B !d ; u’!’ = a ’-’ = 1 modp .O 

i=l  

Thecryptanalystwill not know thevaluesofB andd.HecanjustchoosesomeB’andd’. Ifgcd(u”!”-l .n)= 1. 

then he b o w s  that he picked B ‘ or d’ too small, and he could just increase them, perhaps by doubling them. The gcd 

could also be n ,but this would only happen if q-1 was also highly composite. In this case, the cryptanalyst could just 

modify the values of B’ and d‘ until he found one that would give a gcd of either p or q . The expected running time 

for this cryptanalysis is 0 (dB logB logn ). 

System 2 

Let u0. u , ..... uk-, be randomly chosen positive integers. Let A be the matrix 
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Given an integer x ,  with binary representation x,, x ,  ,..., xk- , ,  let X = (x, ,_... xk-,). The encryption of x is the vector 

7 = AY. Decryption is preformed by multiplying by A-I.  This is a privacy homomorphism with y being addition or 

subtraction over the integers, and a being componentwise addition or subtraction over the integers. 

Cryptanalysis 

Suppose j is the largest index such that xi = 1, i.e., ,_.., xt-, =O. Let z be any positive integer. Then 

zJ I C x i z i  I C z’  < (z +ly .  Thus I[ x i z i ]  ‘J = z .  This leads to an obvious ciphertext only attack. Given a 

cipher y = (yo ..... yr - l ) ,  guess a value for j ,  the largest index such that x j  = 1. Compute Lyd’q = b,,. Write y o  in base 

bo notation. If all the coefficients are 0 and 1, then probably 6, = a o  and x is easily found. If not hy a different choice 

for j .  The values of y ,..., yt-[  can be used as an additional check. 

j i .  

id i d l  i=o 

System 3 

Let p and q be large primes. Encryption of message M is an ordered pair (M modp , M mod q ). This is a privacy 

homomorphism with y being addition, subhactioo or multiplication compowntwise, and a being addition, subtraction 

or mulliplicalion modpq. Decryption is done using the Chinese remainder theorem. 

Cryptanalysis 

We will argue that this can be broken by a known plaintext attack. Let the encryption of a message M be 

represented by a pair ( C ,  D), where C = M mod p and D EM mod q .  Assume that the crypmalyst has plaintext- 

ciphertext pairSMi, C i P , .  i =1.2,3 ,..., r .  p I C ; - M , ~  Letp’be thegcd [ C ,  - M ,  : 1 2 i  I r ] .  C l e a r l y , ~  I p’ .  

A q’ such that q I q’ can be found in a similar manner. If p ’ = p  and q ’=q .  the cryptanalyst can decrypt any 

ciphertext. Even for small r . there is a high probability that p’ = p  and q’ = q.  Even if lh is is not the case, then for 

any new ciphertext the cryplanalyst can either determine the plaintext, or if he is given the plaintext, he can improve 

his knowledge of either p or q . Specifically. given ciphertext (C , D ), the cryptanalyst can find M’ such thal M’ = C 
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modp' and M' P D mod q'. E M ' #  M.  then either M & C modp' or M D mod q'. So if the cryptanalyst is given 

this M ,  he can improve either p' or q' by replacing p '  by gcd(M - C , p ' )  and q' by gcd(M - D , q ' ) .  The 

cryptanalyst would have to be given at most log p +. log q such messages before he knows p and q.  

System 4 

In this system encryption is just writing the message in a secret radix system. Referring to the least s i ~ t c a n t  

digit, this reduces to the cryptanalysis of the previous system. 

3. An R-additive privacy homomorphism 

In this section, we introduce the notion of an R -additive privacy homomorphism in which only the addition of at 

most R messages is allowed. We will also give an example that appears to be secure against a ciphertext only attack. 

We will call this example the modular multiplication R -additive privacy homomorphism or MM-RAPH. 

Let M be a subset of the integers. An R -additive privacy homomorphism is a family of functions (eL, d k ,  a, y )  

such that dk(y(ek(mI) ..... ek(m,)) = m l  + - + m ,  for r S R  and for each k in key space K and any m l  ,..., m, in 

message space M. 

The IALNl chosen ciphertext attack on privacy homomorphisms in which y is addition will also apply to R -  

additive privacy homomorphisms if R is large enough. In particular, if C is the set of integers between 0 and 2", then 

the chosen ciphertext attack will work as follows. For i = 0, I ..... n - 1, f i d  q- such that +(mi) = 2'. Given a cipher 

C =  EX;2',forxi E { O . I } , t h e n d ~ ( c ) =  C x i m i  i f R  > Cxz. S o i f R  :,n,thisattackwillalwayswork. However,* 
n-l n-1 n- l  

id i=O i=Q 

R is a small constant, then Ib is  attack would need an exponential number of chosen ciphertext-plaintext pairs to be 

successful. 

suppose that the messages that we actually want to encrypt are the integers between 0 and B . Let f be a fmd 

positive integer. Let N = RB . Let z be an integer randomly chosen in the interval [N(, ;?N(I, and let y be chosen 

relatively prime to z . 

CI 
A block of f messages mo ,..., m L ,  will be encrypted by computing t = C mi N', and then computing 

i d  

c = r y  modz.  
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The decryption process is obvious. Given a cipher c form t =q-' mod z. Write r base N to obtain mo ,...+ mLl .  

Showing that this is an R -additive privacy homomorphism is straightforward as well. 

We can modify System 3 of l3AD] to make an RAPH similar to the MM-RAPH. We merely choose p and q SO 

that p q  is in the interval [N'. 2N4.  Then to encrypt a block of messages mo ,..., mC, we again compute t = C mi N' . 
and then form the ordered pair (r modp,  t mod 4). The security of this system is similar to the security of the h4M- 

RAPH, but we will not discuss the details here. 

LI 

;a 

4. Attacks on the R-additive privacy homomorphism 

The modular multiplication RAF'H is immediately suspect to (he attacks thaf broke Lhe knapsack cryptosystems. 

However, it appears that these attacks will not be successful against the modular multiplication RAPH when z is large 

enough relative to R .  We will not specify how large z must be, because it depends upon the performance of the 

Lovasz basis reduction algorithm [LLL], and there have not been enough computational experiments to estimate what 

this performance is. 

For a a,, , A ,  b ,...., b,. B all positive integers, we will say that a vector = [ iL ,..., %] is a Squality 

simultaneous Diophantine approximation (or just a &-approximation) 

a; 
1 5 i ~ n  A 
man I B - - b; I <Ab.  See [L]. 

For most tuples a I,..., a, .A  there are no &approximations for fued 6 > 1 -. On the other hand, by Dirichlet's 
n 

r I 1-1 - 1 theorem, there is always a Gapproximation for fyrd 6 < -, specifically i f ~ d  > [ [ A  1 - 11 . 

Suppose now that we are given n + 1 ciphers co, c ,,..., c , .  The attack that we will examine involves finding 

simu~taneous diophantine approximations to the vector 1 z,..., ZJ . We will assume that c,, is the largest of the c; .  

If it is not, we would need LO reduce the ci mod co and this would complicate our discussion. If the ci were random, 

we would expect the best Gapproximation to be for 6 = --. However, these c, are not random. In particular there exist 1 
n 
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integers k; ,  such that c; y-' - 4 z = rj < L. This implies that 
R 

If C> 1, there are other approximations that are of about this same quality. The reason for these other 

approximations is similar to the reason for other approximations existing in the multiple iterated knapsacks, [B], but 

we will not go into the details here. We will simply indicate that these other approximations exist because each 

ti = C m j  Nit and mii < N / R  . If we had only mji < N ,  these other approximations would not exist. It can be shown 
CI 

;a 

that if fsuch interesting approximations can be found then the privacy homomorphism can be broken. 

-I 1 
R 

In n k la@ enough so that - < < c :-, i.e. R"  > > c ,, then the interesting approximations will probably be best 

1 
R 

approximations, but only by a factor of -. So the security of this system depends on whether we can find these 

approximations. 

The Lovasz algorithm can be used to find good simultaneous diophaatine approximations. It is guaranteed to f i d  

a Gapproximation within a factor of 2" of the best approximation for a given vector of integers. Computational 

experience has shown that it often does much better. The attacks on some knapsack systems relied on the Lovasz 

algorithm fmdiog approximarim that are withi0 n of the best approximations. However computational experience 

indicates that the Lovasz algorithm is unlikely to find approximations that are only within a coostant of the best. 

Further computational experiments on OUT privacy homomorphism will be necessary to conclude that the Lovasz 

algorithm will not break i t  

5. A modification to the MM-RAPH 

In this section, we discuss a modification to the MM-RAPH that appears to increase security. although it is still 
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susceptible to a known plaintext attack. 

Again, let the integers between 0 and B be the messages that we want to encrypt. Let N = R B . Let p be a prime 

larger than N. (The fust prime larger than N will be satisfactory.) Let A be an [by Cmatrix chosen randomly such 

that A is nomingular modp . Let q be an integer >Rp . Let z be an integer randomly chosen in the interval [q: 2q'l 

and let y be chosen relatively prime to z . 

A block of C messages m0 ,.._, m ,,, will be encrypted by taking the vector K = (m, ,.... mcl)  and forming 

61 . 
S = A  % modp. Let S = (so ,.... scI). Compute r = C si 4'. Finally set c = ry modz. 

i=O 

The decryption process is obvious. Given a cipher c form t =q-' modz. Write t base q to obtain 

S = (so ,.... sc,). Then A-' S modp gives the desired message G .  

Showing that this is an R -additive privacy homomorphism is straightforward as well. Suppose El ,.... 5, are r 

messages for r I R .  Let S;. = ( s ~ , ~  ...., sj ,Ll) .  r j ,  and cj be the values computed in the encryption of Ej.  We need to 

show that when c = c I +--+ c, is decrypted the result is E = (m +-+ q,o ,..., m +-+ mr,cI). 

Clearly 

r r 

O S i S C - I .  So C t j < z  and writing r base q gives the values Csj,, for O S i I k l .  Let 
j= l  j=l 

. ThenFA-'rt%,+-+K, modp. Butsincem,, +-+n~,,~ < p , f o r O S i  SC-1,theresdt 

follows. 

We will not give all of the details of why this modified system is still susceptible to a known plaintext attack. The 

basic idea is that known plaintextciphertext pairs can be used to produce vectors that have simultaneous Diophantine 

approximations that are better than the approximations described in (4.1). 

6. Open problems 

We have introduced an R -additive privacy homomorphism for which we have argued that it cannot be broken by 

an obvious application of the attacks that broke the knapsack cryptosystems. Is this scheme in fact secure? It would 

be interesting to find other privacy homomorphisms. 
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