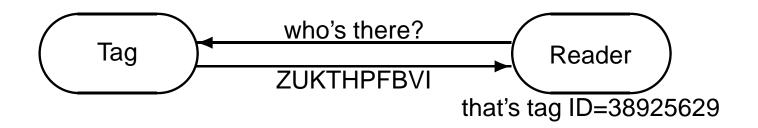

# **On Privacy Models for RFID**

Serge Vaudenay



http://lasecwww.epfl.ch/




- Introduction: The RFID Technology
- **2** Case Studies: Some RFID Schemes
- **3** Definitions:  $4 \times 2$  Adversarial Models
- 4 Results
- **5** Extension to Mutual Authentication

- Introduction: The RFID Technology
- Case Studies: Some RFID Schemes
- **3** Definitions:  $4 \times 2$  Adversarial Models
- 4 Results
- **5** Extension to Mutual Authentication

SV 2008 RFID Privacy Models ESC 08 3 / 40

# The RFID Concept



- stocks management (Wal-Mart)
- libraries (Santa Clara, KU Leuven)
- pets identification, meat traceability
- sensors (Michelin tires)
- access control (EPFL Labs)
- localization of people (amusement parks, hospitals)
- electronic documents (traveling passports)
- transport tickets

# **Nabaztag**



- several designs (ears)
- blinks, moves ears, speaks
- obeys voice
- clock
- reads lout RSS
- plays podcasts, music
- reads, sings, dances emails
- chat
- detects and react to RFID
- read books (with RFID) to kids

# **Current Cheap RFID Tags**

- communicate up to decimeters
- 1Kb of memory
- very little cryptography
- passive
- no battery (tag-to-reader signal pretty weak)
- not tamper resistant

SV 2008 RFID Privacy Models ESC 08 6 / 40

### This Talk

#### Covered:

- single system multiple tags
- identification of tag to reader
- authentication of tag to reader
- security and privacy

#### Uncovered:

- multiple systems
- authentication of reader to tag
- key agreement
- secure communication

SV 2008 RFID Privacy Models ESC 08 7 / 40

- Introduction: The RFID Technology
- **2** Case Studies: Some RFID Schemes
- **3** Definitions:  $4 \times 2$  Adversarial Models
- 4 Results
- **5** Extension to Mutual Authentication

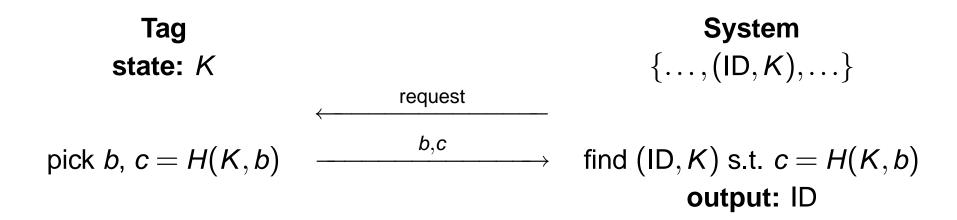
SV 2008 RFID Privacy Models ESC 08 8 / 40

### **RFID Scheme**

#### **Components:**

- SetupReader: generate key materials  $(K_S, K_P)$  + reset database
- SetupTag<sub>K<sub>P</sub></sub>: tag ID is given an initial state S and (ID, data) is inserted in database
- Protocols:

### **Functionality:**

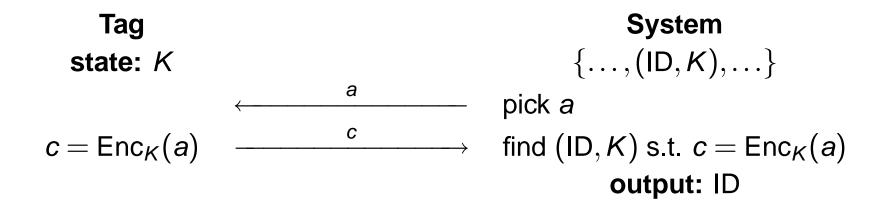

correctness: identification under normal execution

### **Crypto properties** (whenever required):

- security: adversary cannot impersonate a tag
- privacy: anonimity, unlikability

# Weis-Sarma-Rivest-Engel 2003 [WSRE 2003]

**Randomized Hash-Lock Identification** 




not secure: can replay (b, c) or intercept it and play it later

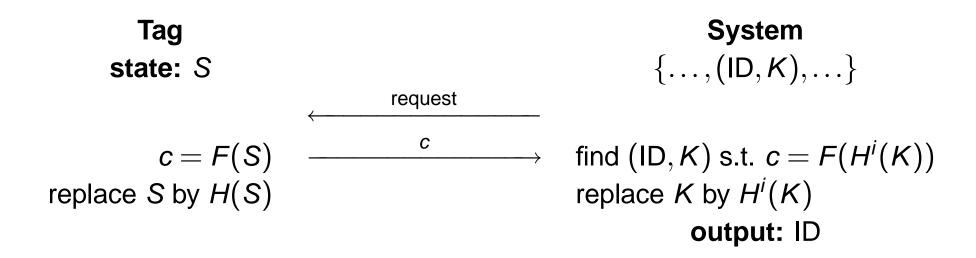
SV 2008 RFID Privacy Models ESC 08 10 / 40

## Feldhofer-Dominikus-Wolkerstorfer 2004 [FDW 2004]

ISO/IEC 9798-2 2-Pass Unilateral Authentication



traceability: replaying a leads to the same c


SV 2008 RFID Privacy Models ESC 08 11 / 40

### **Variant**

no forward privacy: trace tag by corrupting it in the future

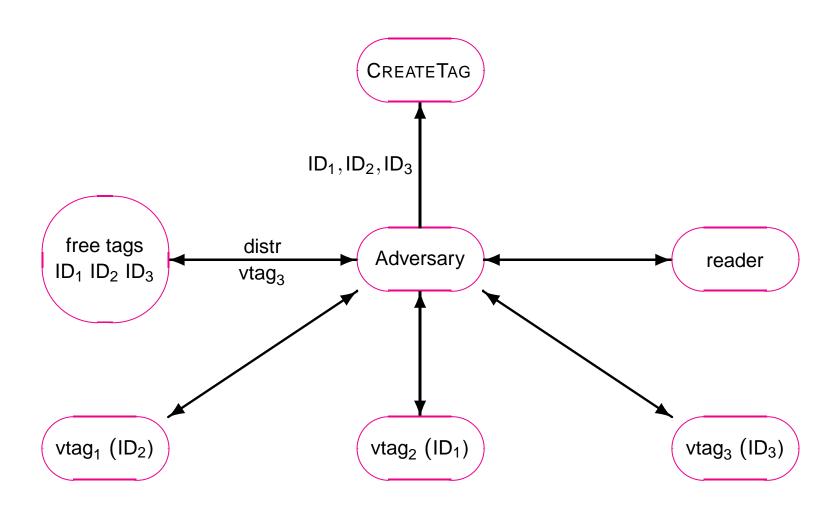
# Ohkubo-Suzuki-Kinoshita 2003 [OSK 2003]

**Introducing Forward Privacy** 



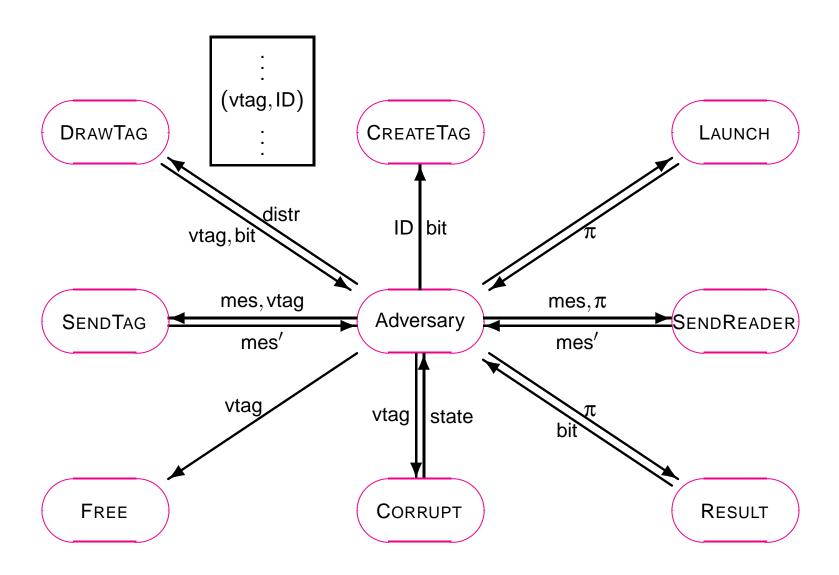
not secure: can intercept c and play it later ( $\equiv$  hash lock)

SV 2008 RFID Privacy Models ESC 08 13 / 40


### **Variant**

Tag System 
$$\{\dots, (\mathsf{ID}, K), \dots\}$$
  $\leftarrow$   $\longrightarrow$  pick  $a$  
$$c = F(S, a) \longrightarrow$$
 find  $(\mathsf{ID}, K)$  s.t. 
$$c = F(H^i(K), a) \text{ and } i < t$$
 replace  $K$  by  $H^i(K)$  output:  $\mathsf{ID}$ 

no privacy with a side channel: DoS [JW 2006]


- Introduction: The RFID Technology
- Case Studies: Some RFID Schemes
- **3** Definitions:  $4 \times 2$  Adversarial Models
- Results
- **5** Extension to Mutual Authentication

### **Adversarial Model**



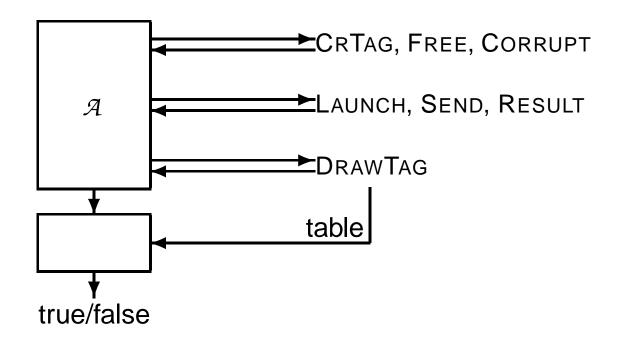
SV 2008 RFID Privacy Models ESC 08 16 / 40

### **Oracle Accesses**



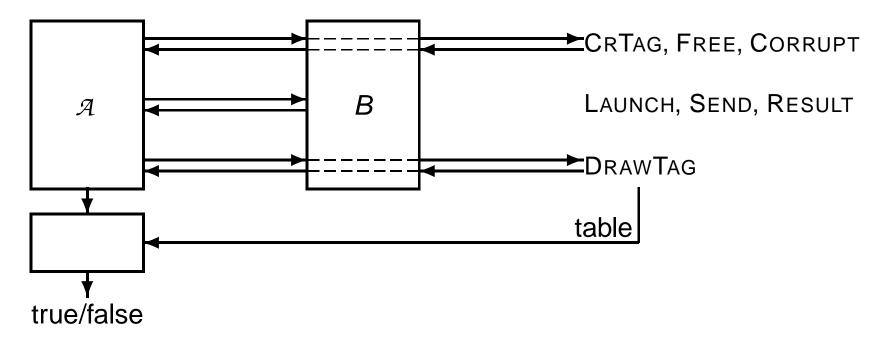
SV 2008 RFID Privacy Models ESC 08 17 / 40

# **Security**


Wining condition: one reader-protocol instante  $\pi$  identified ID but this tag did not have any matching conversation (i.e. same transcript and well interleaved messages).

#### **Definition**

An RFID scheme is secure if for any polynomially bounded adversary the probability of success is negligible.


SV 2008 RFID Privacy Models ESC 08 18 / 40

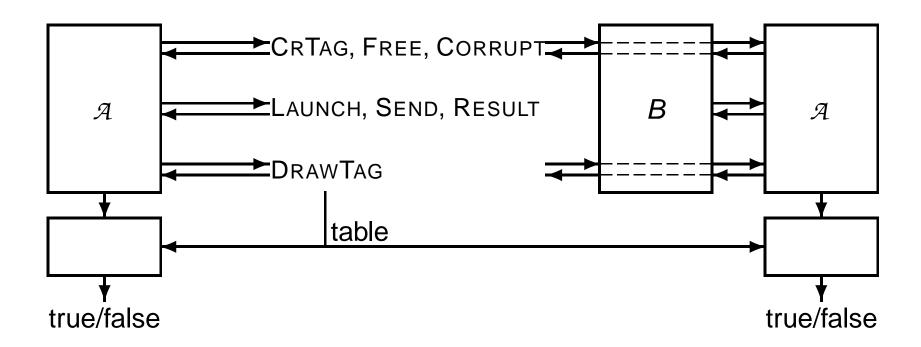
# **Privacy Adversary**



- Wining condition: the adversary outputs true
- Problem: there are trivial wining adversaries
  (e.g. an adversary who always answers true)

### **Blinders**



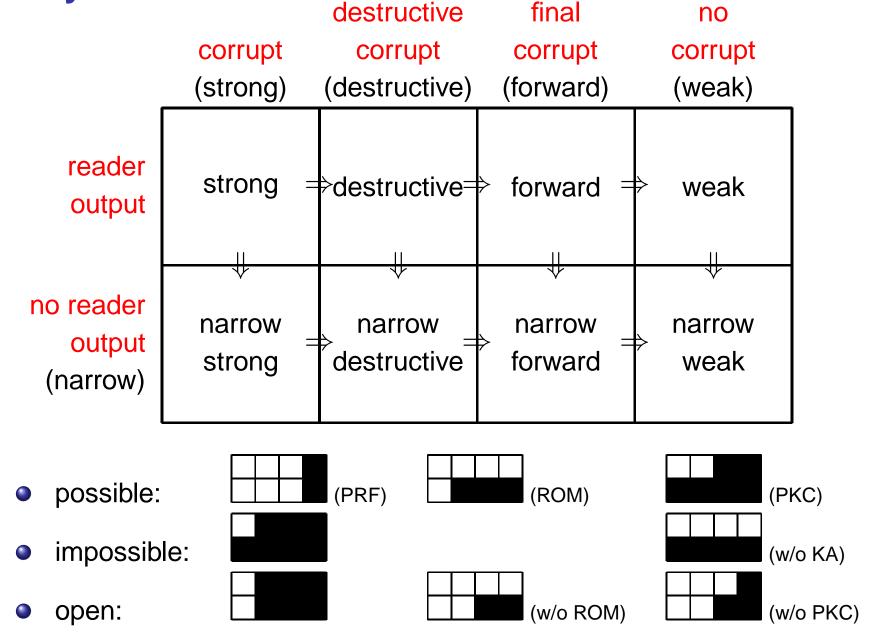

#### **Definition**

A blinder is an interface between the adversary and the oracles that

- passively looks at communications to CREATETAG, DRAWTAG,
  FREE, and CORRUPT queries
- simulates the oracles Launch, SendReader, SendTag, and Result

SV 2008 RFID Privacy Models ESC 08 20 / 40

# **Privacy**




#### **Definition**

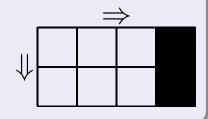
An RFID scheme protects privacy if for any polynomially bounded  $\mathcal{A}$  there exists a polynomially bounded blinder B such that  $Pr[\mathcal{A} \text{ wins}] - Pr[\mathcal{A}^B \text{ wins}]$  is negligible.

SV 2008 RFID Privacy Models ESC 08 21 / 40

## **Privacy Models**



- Introduction: The RFID Technology
- Case Studies: Some RFID Schemes
- **3** Definitions:  $4 \times 2$  Adversarial Models
- Results
- **5** Extension to Mutual Authentication


SV 2008 RFID Privacy Models ESC 08 23 / 40

# **Challenge-Response RFID Scheme**

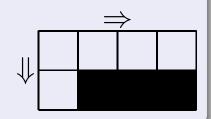
#### **Theorem**

Assuming that F is a pseudorandom function, this RFID scheme is

- correct
- secure
- weak private



no forward privacy: trace tag by corrupting it in the future


### Modified Ohkubo-Suzuki-Kinoshita

Tag System  $\{\dots, (\mathsf{ID}, K), \dots\}$   $\leftarrow$  c = F(S, a) c = F(S, a)  $c = F(G^i(K), a)$  and i < t replace S by  $G^i(K)$  output:  $\mathsf{ID}$ 

#### **Theorem**

Assuming that F and G are random oracles, this RFID scheme is

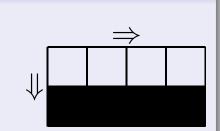
- correct
- secure
- narrow-destructive private



no privacy with a side channel: DoS [JW 2006]

# Narrow-Strong Privacy Implies Public-Key Cryptography

#### **Theorem**


An RFID scheme that is

- correct
- narrow-strong private

can be transformed into a secure key agreement protocol.



SV 2008 RFID Privacy Models ESC 08 26 / 40



### Idea

### 

key: k

SV 2008 RFID Privacy Models ESC 08 27 / 40

key: k

# **Public-Key-Based RFID Scheme**

#### **Tag**

state:  $K_P$ , ID, K

$$c = \mathsf{Enc}_{\mathcal{K}_{\mathcal{P}}}(\mathsf{ID}||\mathcal{K}||a)$$

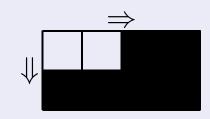
### **System**

secret key:  $K_S$ 

$$\{\ldots,(\mathsf{ID},K),\ldots\}$$

pick a

$$Dec_{K_S}(c) = ID||K||a$$


check a, (ID, K)

output: ID

#### **Theorem**

Assuming that Enc/Dec is an IND-CCA public-key cryptosystem, this RFID scheme is

- correct
- secure
- narrow-strong and forward private



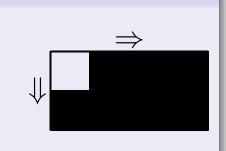
### **Not Destructive Private**

- 1: CREATETAG(0)
- 2:  $(vtag_0, \cdot) \leftarrow DRAWTAG(0)$
- 3:  $S_0 \leftarrow CORRUPT(vtag_0)$
- 4:  $(\cdot, S_1) \leftarrow SETUPTAG_{K_P}(1)$
- 5: flip a coin  $b \in \{0, 1\}$
- 6:  $\pi \leftarrow LAUNCH$
- 7: simulate a tag of state  $S_b$  with reader instance  $\pi$
- 8:  $x \leftarrow \mathsf{RESULT}(\pi)$
- 9: if T(x) = b then
- 10: output true
- 11: **else**
- 12: output false
- 13: **end if**

We have  $Pr[A \text{ wins}] \approx 1$ .

A blinder who computes x translates into an IND-CPA adversary against the public-key cryptosystem, thus  $Pr[\mathcal{A}^B \text{ wins}] \approx \frac{1}{2}$  for any B.

Hence,  $\mathcal{A}$  is a significant destructive adversary.


# **Strong Privacy is Infeasible**

#### **Theorem**

An RFID scheme cannot be

- correct
- narrow-strong and destructive private

at the same time.



no strong privacy!

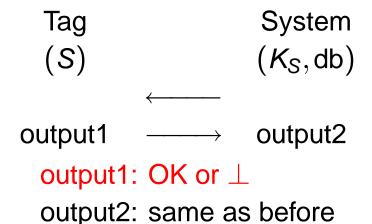
SV 2008 RFID Privacy Models ESC 08 30 / 40

### **Scheme with No Database**

Tag System state: 
$$K_P$$
, ID,  $K$  secret keys:  $K_S$ ,  $K_M$   $\leftarrow$  pick  $a$   $c = \operatorname{Enc}_{K_P}(\operatorname{ID}||K||a)$   $\longrightarrow$  Dec $_{K_S}(c) = \operatorname{ID}||K||a$  check  $a$ ,  $K = \operatorname{PRF}_{K_M}(\operatorname{ID})$  output: ID

- SetupTag must now use a secret key K<sub>M</sub>
- all the theory remains valid if SetupTag produces keys which are indistinguishable from simulated ones

SV 2008 RFID Privacy Models ESC 08 31 / 40


- Introduction: The RFID Technology
- Case Studies: Some RFID Schemes
- **3** Definitions:  $4 \times 2$  Adversarial Models
- 4 Results
- **5** Extension to Mutual Authentication

SV 2008 RFID Privacy Models ESC 08 32 / 40

### **RFID Scheme with Mutual Authentication**

### **Components:**

- SetupReader: same as before
- SetupTag $_{K_p}$ : same as before
- Protocols:



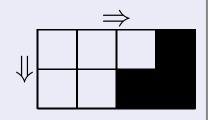
### **Functionality:**

tag identification: same as before + output1 is OK

### **Crypto properties** (whenever required):

- tag authentication + tag privacy: same as before
- reader authentication: adversary cannot impersonate a reader

SV 2008 RFID Privacy Models ESC 08 33 / 40


# **Forward Privacy is Infeasible**

#### **Theorem**

An RFID scheme cannot be

- correct
- with secure reader authentication
- narrow-forward private

at the same time.



### Idea

- in the protocol, we say that a message from reader to tag is crucial if there exists a simulator who can generate further messages from reader and make the tag happy but this message cannot be simulated
- if a protocol provides secure reader authentication, there must be a message from reader which is crucial
- consider this adversary:
  - run a protocol between a tag and the reader
  - 2 guess which message is crucial and does not forward it
  - release the tag and draw one
  - corrupt it
  - simulate the tag with this state with the crucial message and a simulator for further messages is a
  - yield output1

### This is a significant narrow-forward adversary

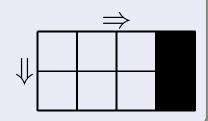
SV 2008 RFID Privacy Models ESC 08 35 / 40

# **How to Study Mutual Authentication?**

# assume that tags have volatile memory which resets itself when the tag is freeed

consequence: adversaries can no continue an interupted protocol after freeing and drawing a tag again

SV 2008 RFID Privacy Models ESC 08 36 / 40


# **Challenge-Response RFID Scheme**

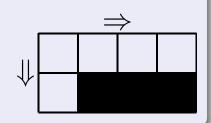
Tag System 
$$\{\ldots, (\mathsf{ID}, K), \ldots\}$$
 pick  $b \leftarrow \frac{a}{b,c}$  pick  $a$   $c = F_K(0, a, b)$  find  $(\mathsf{ID}, K)$  s.t.  $c = F_K(0, a, b)$  if not:  $K = \mathsf{random}$ ,  $\mathsf{ID} = \bot$  check  $d = F_K(1, a, b)$  output:  $\mathsf{OK}$  output:  $\mathsf{ID}$ 

#### **Theorem**

Assuming that F is a pseudorandom function, this RFID scheme is

- correct
- secure
- weak private




### Modified Ohkubo-Suzuki-Kinoshita

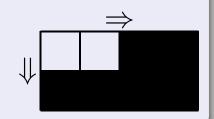
Tag System 
$$\{\ldots, (\mathsf{ID}, K), \ldots\}$$
  $c = F(0, S, a) \longleftrightarrow \frac{a}{c}$  pick  $a$   $d' = F(1, S, a) \longleftrightarrow \frac{c}{c}$  find  $(\mathsf{ID}, K)$  s.t.  $c = F(0, G^i(K), a)$  and  $i < t$  (if not:  $K = \mathsf{random}$ ,  $\mathsf{ID} = \bot$ ) if yes, replace  $K$  by  $G^i(K)$  output: OK  $d = F(1, K, a)$  output: ID

#### **Theorem**

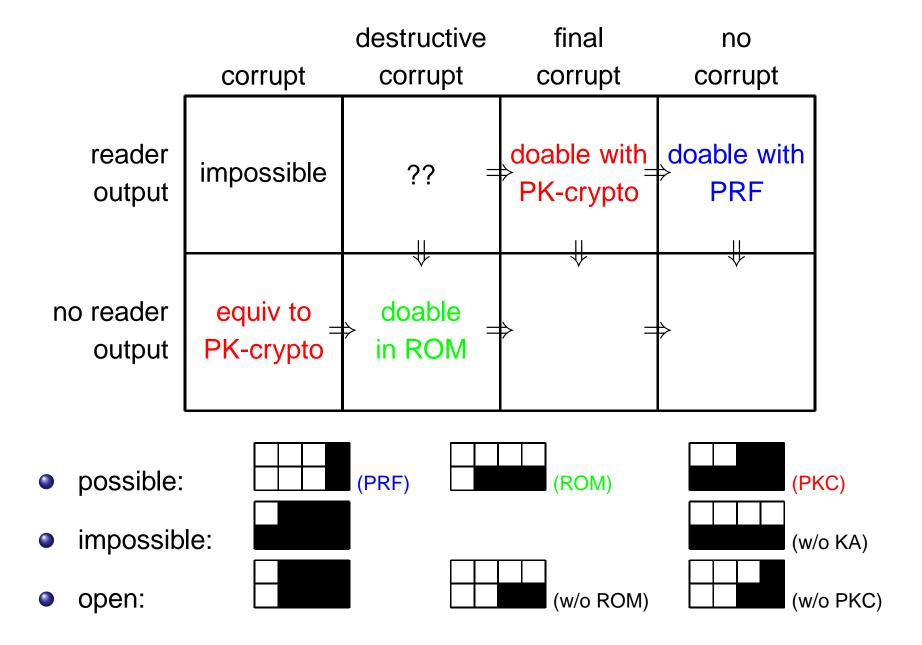
Assuming that F and G are random oracles, this RFID scheme is

- correct
- secure
- narrow-destructive private




# **Public-Key-Based RFID Scheme**

#### 


#### **Theorem**

Assuming that Enc/Dec is an IND-CCA public-key cryptosystem, this RFID scheme is

- correct
- secure
- narrow-strong and forward private



### Conclusion



SV 2008 RFID Privacy Models ESC 08 40 / 40

# Q & A

### References

- Feldhofer-Dominikus-Wolkerstrofer 2004: CHES 2004
- Juels-Weis 2006: http://eprint.iacr.org/2006/137
- Ohkubo-Suzuki 2005: Communications of the ACM 2005
- Ohkubo-Suzuki-Kinoshita 2003: RFID Privacy Workshop 2003
- Paise-Vaudenay 2008: ASIACCS 2008
- Vaudenay 2007: ASIACRYPT 2007
- Weis-Sarma-Rivest-Engel 2003: SPC 2003