
 Open access Book Chapter DOI:10.1007/11429647_4

On private computation in incomplete networks — Source link

Amos Beimel

Institutions: Ben-Gurion University of the Negev

Published on: 24 May 2005 - International Conference on Structural Information and Communication Complexity

Topics: Private network

Related papers:

 On private computation in incomplete networks

 Secure communication: A mechanism design approach

 Privacy, additional information and communication

 The complexity of fixed point models of trust in distributed networks

 Local and global properties in networks of processors (Extended Abstract)

Share this paper:

View more about this paper here: https://typeset.io/papers/on-private-computation-in-incomplete-networks-
4wojo9omyk

https://typeset.io/
https://www.doi.org/10.1007/11429647_4
https://typeset.io/papers/on-private-computation-in-incomplete-networks-4wojo9omyk
https://typeset.io/authors/amos-beimel-3uif1xpopn
https://typeset.io/institutions/ben-gurion-university-of-the-negev-2goi3hza
https://typeset.io/conferences/international-conference-on-structural-information-and-24n0l9xo
https://typeset.io/topics/private-network-1a581e01
https://typeset.io/papers/on-private-computation-in-incomplete-networks-13w9cad75x
https://typeset.io/papers/secure-communication-a-mechanism-design-approach-53emwev4ff
https://typeset.io/papers/privacy-additional-information-and-communication-4g3fcoiwff
https://typeset.io/papers/the-complexity-of-fixed-point-models-of-trust-in-distributed-59cdf2ueur
https://typeset.io/papers/local-and-global-properties-in-networks-of-processors-2ck0p9mdgy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-private-computation-in-incomplete-networks-4wojo9omyk
https://twitter.com/intent/tweet?text=On%20private%20computation%20in%20incomplete%20networks&url=https://typeset.io/papers/on-private-computation-in-incomplete-networks-4wojo9omyk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-private-computation-in-incomplete-networks-4wojo9omyk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-private-computation-in-incomplete-networks-4wojo9omyk
https://typeset.io/papers/on-private-computation-in-incomplete-networks-4wojo9omyk

On Private Computation in Incomplete Networks∗

Amos Beimel

Dept. of Computer Science,

Ben Gurion University, Beer Sheva 84105, Israel.

Email: beimel@cs.bgu.ac.il.

July 4, 2006

Abstract

Suppose that some parties are connected by an incomplete network of reliable and private channels.

The parties cooperate to execute some protocol. However, the parties are curious – after the protocol

terminates each party tries to learn information from the communication it heard. We say that a function

can be computed privately in a network if there is a protocol in which each processor learns only the

information implied by its input and the output of the function (in the information theoretic sense).

The question we address in this paper is what functions can be privately computed in a given incom-

plete network. Every function can be privately computed in two-connected networks with at least three

parties. Thus, the question is interesting only for non two-connected networks. Generalizing results of

[Bläser et al. CRYPTO 2002], we characterize the functions that can be computed privately in simple

networks – networks with one separating vertex and no leaves. We then deal with private computations

in arbitrary non two-connected networks: we reduce this question to private computations of related

functions on trees, and give some sufficient conditions and necessary conditions on the functions that

can be privately computed on trees.

Key Words. Private computation, Incomplete communication networks, Connectivity.

∗This work was partially supported by the Frankel Center for Computer Science. Part of this work was done while the author was

on sabbatical at the University of California, Davis, partially supported by the David and Lucile Packard Foundation. A preliminary

version of this paper was published in Proc. of the 12th Colloquium on Structural Information and Communication Complexity

(SIROCCO), volume 3499 of Lecture Notes in Computer Science, pages 18–33, 2005.

1 Introduction

The question of private computation of functions on communication networks is a fundamental question.

For example, we would like to compute the output of an electronic election without revealing the votes of

individuals. The general scenario we consider is of some parties connected by a synchronous incomplete

network of reliable and private channels, where each party has a secret input. The parties cooperate to

honestly execute some protocol computing a given function, but they are curious. That is, after the protocol

terminates, each party tries to learn information from the communication it heard. A protocol is private

if each curious party does not gain any information that is not implied by its input and the output of the

function (in the information theoretic sense). This is a special case of t-privacy which requires that any

colluding coalition of at most t parties cannot learn additional information. For brevity, in this paper we use

the term privacy to denote 1-privacy.

Many papers dealing with private computation, e.g., [3, 8, 9], assume that the communication network

is complete, that is, there is a private and reliable communication channel between each pair of parties.

The question we address in this paper is what functions can be privately computed in a given incomplete

network. If the network is sufficiently connected, then the situation is simple as proved by [3, 8, 12, 13].

Theorem 1.1 If n > 3 and the network G is two-connected, then every function can be privately computed

in G.

Bläser et al. [4] characterize the Boolean functions that can be privately computed in simple non two-

connected networks, that is, in connected networks with one separating vertex and 2 two-connected compo-

nents. We consider the more general question that naturally arises.

Our Goal. Given a communication network, characterize which functions can be privately computed in

this network.

1.1 Our Results

We first consider simple networks with one separating vertex, arbitrary number of two-connected compo-

nents, and no leaves. We give an exact characterization of the functions that can be computed privately in

such a network. This result generalizes the result of Bläser et al. [4] characterizing the Boolean functions

that can be privately computed in such a network with 2 two-connected components. While Boolean func-

tions that can be privately computed in such networks have a very simple structure (“if then else” functions),

the non-Boolean functions that can be privately computed in such networks have a richer structure. Our

proof is somewhat simpler than the proof of [4], and has two stages: We first reduce the private computation

in such a network with n two-connected components to private computation of a related function with n
variables in a simpler model which we call the eavesdropper model; this reduction uses ideas similar to the

player substitution method of [20]. We then characterize the functions that can be privately computed in the

eavesdropper model.

We next consider private computations in arbitrary non two-connected networks. In this case, character-

izing the functions that can be privately computed is more complicated. We reduce the private computation

of a function in arbitrary networks to private computation of a related function on a tree. The idea of this

reduction is that we can replace each two-connected component in the network by a single vertex holding

the inputs of the component. We then give sufficient conditions and necessary conditions on the functions

that can be privately computed on trees. However, the conditions are not tight and we do not know the exact

characterization of the functions that can be privately computed on trees. As an example of the difficulty

1

of the characterization, we characterize the functions that can be privately computed in a simple network

with one two-connected component and one leaf; this characterization is already more complicated than the

characterization for networks with 2 two-connected components.

1.2 Historical Notes

There are a few models of secure computation. One distinction is whether the “bad” parties have unlimited

power (the “information theoretic model”) or they are polynomial-time randomized machines (the “com-

putational model”). The other distinction is whether the “bad” parties are honest-but-curious, or they are

malicious, that is, they deviate from their protocol to gain more information or to disrupt the computa-

tion. In this work we consider honest-but-curious parties with unlimited power. We review some previous

results concerning this model. Chaum, Crépeau, and Damgård [8] and Ben-or, Goldwasser, and Wigder-

son [3] proved that in a complete network with n parties, if n > 2t, then every function can be computed

t-privately. Kushilevitz [23] characterizes the functions that can be privately computed in a network with

two parties. Chor and Kushilevitz [9] characterize the Boolean functions that can be computed t-privately

in complete networks when n ≤ 2t. The question of characterizing the (non-Boolean) functions that can be

computed t-privately in complete networks when n ≤ 2t is still open. All these works, as well as our work,

assume that the network is synchronous.

We next consider private computation in incomplete networks. Dolev, Dwork, Waarts, and Yung [13]

have proved that if there are at most t honest-but-curious parties, then every pair of parties can communicate

privately if and only if the network is (t + 1)-connected. Bläser, Jakoby, Liśkiewicz, and Manthey [4], in

a work that inspired the current work, characterize the Boolean functions that can be privately computed

in a network with one separating vertex and 2 two-connected components. They also considered the ran-

domness required for private protocols in incomplete networks. Jakoby, Liśkiewicz, and Reischuk [21]

considered tradeoffs between randomness and connectivity in private computation. Finally, Bläser et al. [5]

consider protocols that reveal minimum information for functions that cannot be computed privately in a

given incomplete network.

The connectivity requirements for several distributed tasks in several models has been studied in many

papers; for example Byzantine agreement [12, 16], approximate Byzantine agreement [14, 31], reliable

message transmission [12, 13], and reliable and private message transmission [27, 13, 28, 29, 30]. Sim-

ple impossibility results and references can be found in [16, 24]. Connectivity requirements in partially

authenticated networks has been considered in [1, 2]. Secure communication and secure computation in

multi-recipient (multi-cast) models have been studied in [19, 18, 17, 10]. Secure computation in directed

networks has been studied in [11]. Secure communication against general adversarial structures has been

studied in [22].

Organization. In Section 2, we describe our model and present some background on connectivity. In Sec-

tion 3, we characterize the functions that can be privately computed in networks with one separating vertex

and no leaves. In Section 4, we reduce private computation of functions in arbitrary networks to private

computation on trees of related functions, and, in Section 5, we give sufficient conditions and necessary

conditions for the functions that can be privately computed on trees. Finally, in Section 6 we conclude and

mention some open problems.

2

2 Preliminaries

2.1 The Model

The communication network is modeled by an undirected graph G = (V, E), where

• The vertices V = {v1, v2, . . . , vn} are the parties in the network. We denote their number by n (i.e.,

|V | = n); in the sequel we refer to parties as vertices.

• The edges E describe the communication channels. That is, there is an edge (u, v) in E if and only

if there is a communication channel between u and v. We assume that these communication channels

are reliable and private: an adversary that does not control u or v (but might control all other vertices

in the network) cannot read, change, delete, or insert messages sent on the edge (u, v).

Protocols. We consider an n-party protocol for computing a given function executed in a synchronous

network. Briefly, in the beginning of the protocol, each vertex vi has a private input ai and a private random

input ri, where ri is distributed uniformly in some finite domain (the random inputs 〈r1, . . . , rn〉 are inde-

pendent). A protocol π computes its output in a sequence of rounds. For a round j, let i ← (j mod n) + 1.

In Round j, only Vertex vi is active and sends a message hj,k (i.e., a string) to vk for each of its neighbors;

this message will become an available input to vk in the next round. If vk is not a neighbor of vj , then hj,k

is the empty string. The message hj,k is a function of the round number j, the receiver k, the sender’s input

ai, the sender’s random input ri, and the previous messages vi got, i.e., 〈hj′,i〉1≤j′<j . A computation of the

protocol ends in a round in which each vertex computes an output. The assumption that only one vertex is

active in each round is made only to simplify notations and does not affect the generality of our results. We

next define the view of a set of parties after an execution of a protocol as all the information they have after

the execution, namely, their inputs, random inputs, and the messages they heard during the execution.

Definition 2.1 (Transcripts and Views) Let C ⊆ {v1, . . . , vn} be a subset of the parties. Considering an

execution of a protocol π on inputs 〈a1, . . . , an〉 and random inputs 〈r1, . . . , rn〉, we make the following

definitions:

• The transcript of C in the execution is the sequence of messages that vertices in C get during the

execution; it is denoted by TC(a1, . . . , an, r1, . . . , rn).

• The view of C is the triplet 〈〈ai〉vi∈C , 〈ri〉vi∈C , TC(a1, . . . , an, r1, . . . , rn)〉; it is denoted by

VIEWC(a1, . . . , an, r1, . . . , rn).

We consider the random variables TC(a1, . . . , an, 〈ri〉vi∈C) obtained by randomly selecting 〈ri〉vi /∈C and

outputting TC(a1, . . . , an, r1, . . . , rn). We also consider the similarly defined random variables for

VIEWC(a1, . . . , an, 〈ri〉vi∈C).

In the model we consider, the n-party honest-but-curious model, parties are curious, that is, each party

may try to deduce as much information as possible from its own view of an execution about the private

inputs of the other parties. However, each party is honest, that is, it scrupulously follows the instructions of

the protocol. In such conditions, it is easy to enforce the correctness condition (for securely computing a

function f), but not necessarily the privacy conditions.

3

In the following definition we consider functions f : A1 × . . . × An → O, where A1, . . . , An and O
are some finite sets, and the ith input of f is the input of vi. The privacy requirement we consider is uncon-

ditional, that is, even a curious adversary with unlimited power will not gain information. Furthermore, we

consider perfect security, that is, we require no error in the correctness, and exactly the same distributions

in the privacy requirement. In the following definition we define privacy against an adversarial structure

S ⊆ V , that is, S is a subset of the vertices. We require that each party in S will not gain information from

its view that is not implied by its input and the output of the function. (Parties not in S and sets of parties of

size at least two might learn information.) In this work we mainly want to protect the privacy against each

individual, namely achieve privacy. We define the more general case of S-privacy as it is used as a tool to

characterize privacy. We note that our notion of adversarial structure is a simplification of the notion used

in other papers. In the more common notion, an adversarial structure is a collection of subsets of the parties

and the protocol should “protect the privacy” even if parties of a set in the adversarial structure collude and

try to gain information.

Definition 2.2 (Private Computation) Let G = (V, E) be network with n vertices, A1, . . . , An, and O be

finite sets, f : A1 × . . . × An → O be a function, and S ⊆ V be an adversarial structure. A protocol π
S-privately computes f , if the following conditions hold:

CORRECTNESS. For every vector of inputs 〈a1, . . . , an〉 and every vector of random inputs 〈r1, . . . , rn〉,
the output of each vi with VIEW{vi}(a1, . . . , an, r1, . . . , rn) is f(a1, . . . , an).

PRIVACY. For every vi ∈ S, for every 〈a1, . . . , an〉 ∈ A1 × . . .×An and every 〈a′1, . . . , a
′
n〉 ∈ A1 × . . .×

An such that ai = a′i, and every ri, if f(a1, . . . , an) = f(a′1, . . . , a
′
n), then the random variables

VIEW{vi}(a1, . . . , an, ri) and VIEW{vi}(a
′
1, . . . , a

′
n, ri) are equally distributed.

A function f can be computed privately in G if there is a protocol π that V -privately computes f in G.

We require that the privacy is protected only when f(a1, . . . , an) = f(a′1, . . . , a
′
n) since each vertex

learns the output of f (and knows its input). We assume that all parties in the system know the topology of

the graph G. Furthermore, we assume that the system is synchronous and all the parties in the system know

in which round the protocol starts. We note that our definition of privacy is a special case of t-privacy which

requires that any colluding coalition of at most t parties cannot learn additional information (for a formal

definition of t-privacy see, e.g., [9]). For brevity, in this paper we use the term privacy to denote 1-privacy.

2.2 Modular Composition of Private Protocols

To prove the privacy of protocols in this paper we use the modular composition paradigm [26, 7]. We want

to be able to design private protocols for simple tasks and then use them in more complex protocols as

subroutines; the goal is to prove the privacy of the complex protocols while relying on the privacy of the

subroutines. This approach, which is the natural approach in the design of non-private protocols, has been

formulated and proved for several models of secure computation in, e.g., [26, 7]. Specifically, for the model

considered in this paper, the proof of the following theorem is quite simple.

Theorem 2.3 (Modular Composition Theorem [26, 7]) Assume that there are protocols π1, . . . , πm pri-

vately computing functions f1, . . . , fm respectively. Furthermore, there is a protocol π privately computing

a function g while using calls to ideal evaluations of f1, . . . , fm. Then, the protocol ππ1,...,πm , obtained by

replacing each subroutine call to the ideal evaluation of fi by the protocol πi, privately computes g.

4

2.3 Connectivity

The reliability of a network is closely related to its connectivity. In this section, we review the relevant

concepts related to connectivity. For more details, the reader can consult, e.g., [6, 15].

We consider vertex connectivity of undirected graphs. A graph G = (V,E) is connected if for every

two vertices u, v there is a path connecting them in G. In this paper, we only consider connected graphs. A

vertex z ∈ V is called a separating vertex (or a cut-vertex) if, for some u, v ∈ V \ {z}, every path between

u and v passes through z. For a connected graph, a vertex z is a separating vertex if and only if removing z
from G results in an unconnected graph. A connected graph is two-connected if it contains at least 3 vertices

and it does not contain a separating vertex. By a result of Menger [25], a graph G with at least 3 vertices is

two-connected if and only if for every vertices u, v ∈ V either (u, v) ∈ E or there exist two vertex-disjoint

paths between u and v in G. An edge e is a bridge if for some u, v ∈ V , every path between u and v passes

through e.

A subgraph B of G is a two-connected component if it is a maximal two-connected induced subgraph

of G. We next define the component graph of a connected graph, which replaces every two-connected

component in G by a single vertex.1

Definition 2.4 (Component Graph) Given a connected graph G = (V, E), we define its component graph

TG = (V ′, E′) as follows. The vertices in V ′ are:

• The two-connected components of G. For a two-connected component W in G, we denote the corre-

sponding vertex in TG by vW .

• The leaves in G.

• The separating vertices in G.

There is an edge in E′ between every separating vertex and every two-connected component containing it,

between a leaf and its neighboring separating vertex, and between two separating vertices connected by a

bridge.

For example, a graph G0 and its component graph are described Figure 1. In G0, there are 2 two-connected

components W0 = {v1, v2, v3} and W1 = {v3, v4, v5}, two separating vertices v3 and v5, and one leaf v6.

Thus, the component graph TG0
of G0 has 5 vertices.

The component graph of G0

v1 v4

v5v2

v3

v6 v5

v3

v6

vW0
vW1

A graph G0

Figure 1: An example of a graph and its component graph.

By Menger’s Theorem, every cycle in a graph G is contained in exactly one two-connected component.

This fact implies the following observation.

1 The component graph we define is similar to the block-cutvertex graph as defined in [6].

5

Observation 2.5 If the graph G is connected, then the graph TG is a tree.

3 Incomplete Networks with One Separating Vertex and No leaves

In this section we characterize the functions that can be computed privately in connected networks that

contain one separating vertex and no leaves. As an intermediate step, we consider a model we call the

eavesdropper model. Using this intermediate model, we characterize the functions that can be privately

computed in connected networks that contain one separating vertex and no leaves. That is, we prove that

a function can be privately computed in connected networks that contain one separating vertex and no

leaves if and only if a related function can be computed in the eavesdropper model. Roughly speaking, the

parties correspond to the two-connected components in the network and the eavesdropper is the separating

vertex. To complete the characterization, we characterize the functions that can be privately computed in

the eavesdropper model. Informally, the eavesdropper model corresponds to computing a function in a star

– a tree with n leaves and one common central vertex – where the central vertex acts as a relay and hears all

the exchanged communication. This informal definition is exactly captured in the next definition, where we

avoid the requirement that the central vertex acts as a relay by replacing it with an eavesdropper that hears

all communication and cannot send messages.

Definition 3.1 (The Eavesdropper Model) Consider a network with n vertices; each vertex has a secret

input taken from some finite domain. In addition there is an eavesdropper Eve. The vertices execute a

protocol to compute a function f(a1, . . . , an). The parties can communicate only via a public broadcast

channel heard by all vertices and by the eavesdropper Eve.

We require that at the end of the protocol Eve computes f(a1, . . . , an); however, Eve should not learn

any information on the inputs that is not implied by the output f(a1, . . . , an). (The vertices in the network

are allowed to learn information from the protocol.) Formally, the privacy requirement is that for every

two vectors of inputs 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 such that f(a1, . . . , an) = f(b1, . . . , bn) the random

variables T{v1,...,vn}(a1, . . . , an) and T{v1,...,vn}(b1, . . . , bn) are equally distributed.

For the impossibility results, we also consider a weaker notion of privacy.

Definition 3.2 (Weak Privacy) We say that a protocol is weakly private if for every two vectors of inputs

〈a1, . . . , an〉 and 〈b1, . . . , bn〉 such that f(a1, . . . , an) = f(b1, . . . , bn) and any transcript h,

Pr[T{v1,...,vn}(a1, . . . , an) = h] > 0 if and only if Pr[T{v1,...,vn}(b1, . . . , bn) = h] > 0.

That is, the requirement is that a transcript is possible given 〈a1, . . . , an〉 if and only if it is possible given

〈b1, . . . , bn〉.

3.1 Reduction to the Eavesdropper Model

We first use the eavesdropper model to characterize the functions that can be privately computed in con-

nected networks with one separating vertex and no leaves. We consider a network Gk1,...,kn
with (

∑n
i=1 ki)+

1 vertices, which is composed of n two-connected components; the ith two-connected component is denoted

by Wi and has ki + 1 vertices. The n two-connected components share exactly one vertex denoted z. By

definition, a two-connected component contains at least 3 vertices, thus, ki ≥ 2 for i = 1, . . . , n.2 Such

2We assume that there are no leaves in the network; networks with one separating vertex that contain leaves are dealt in the

following sections. Especially, networks with one two-connected component and one leaf are considered in Section 5.3.

6

Two-connected component
with k1 + 1 vertices

Two-connected component
with k3 + 1 vertices

W1 W2

z

W3

Two-connected component
with k2 + 1 vertices

Figure 2: A Graph Gk1,k2,k3
with three two-connected components.

a graph with 3 two-connected components is illustrated in Figure 2. Given a ((
∑n

i=1 ki) + 1)-argument

function f : Πn
i=1Π

ki

j=1Ai,j × C → O, define for every c ∈ C, a possible value of the input of the

separating vertex, an n-argument function fc : (Πk1

j=1A1,j) × · · · × (Πkn

j=1An,j) → O, where for every

a1 ∈ Πk1

j=1A1,j , . . . , an ∈ Πkn

j=1An,j (that is, ai consists of the inputs of all non-separating vertices in the

ith component)

fc(a1, . . . , an)
def
= f(a1, . . . , an, c). (1)

That is, fc is obtained from f by fixing the input of the separating vertex to c and grouping all the inputs of

the non-separating vertices in each component to one input of fc. We next prove the reduction lemma.

Lemma 3.3 Let f : Πn
i=1Π

ki

j=1Ai,j × C → O be a function, where ki ≥ 2 for i = 1, . . . , n. The function

f can be privately computed in Gk1,...,kn
if and only if for every c ∈ C the function fc can be privately

computed in the eavesdropper model.

The lemma is proved in the following two claims. The first claim holds for every network with one

separating vertex (possibly, with leaves), while the second requires that the network contains no leaves.

Claim 3.4 Let f : Πn
i=1Π

ki

j=1Ai,j × C → O be a function. If the function f can be privately computed in

Gk1,...,kn
, then for every c ∈ C the function fc can be privately computed in the eavesdropper model.

Proof: Assume that there is a protocol π privately computing f in Gk1,...,kn
. For every c ∈ C, we construct

a private protocol πc for fc in the eavesdropper model. The idea of the protocol for fc is that the vertices

of each two-connected component are simulated by one vertex in the eavesdropping model. Specifically,

Vertex v1, holding a1 ∈ A1,1 × . . . × A1,k1
simulates the k1 + 1 vertices in the two-connected component

W1 including z with input c, and for i = 2, . . . , n, Vertex vi, holding ai ∈ Ai,1 × . . . × Ai,ki
simulates the

ki vertices in two-connected component Wi excluding z. Notice that only v1 simulates the separating vertex

z. For every i, Vertex vi simulates a vertex w in Wi, where w 6= z, as follows:

• In the initialization stage, vi chooses a random input for w.

7

• In each round that w sends messages in π

– Vertex vi knows all previous messages w has gotten in previous rounds,

– it computes the messages that w sends,

– it records, for future use, the messages that w sends to vertices in Wi \ {z}, and

– it broadcasts the message that w sends to z.

Vertex vi simulates the separating vertex z in Wi similarly; the only difference is that v1 broadcasts all

messages that z sends. At the end of the protocol, Vertex v1 sends the output to the other vertices, thus, the

eavesdropper knows the output.

The eavesdropper knows that the input of z is c, as c is fixed, and hears the messages exchanged between

z and the vertices in Wi for i = 1, . . . , n. Thus, the information the eavesdropper learns is at most the

information that z learns in the protocol π computing f , and the privacy of the protocol π implies the

privacy in the eavesdropper model of the protocol πc for fc.

Claim 3.5 Let f : Πn
i=1Π

ki

j=1Ai,j ×C → O be a function, where ki ≥ 2 for i = 1, . . . , n. If for every c ∈ C
the function fc can be privately computed in the eavesdropper model, then the function f can be privately

computed in Gk1,...,kn
.

Proof: Assume that, for every c ∈ C, there is a protocol πc privately computing the function fc in the

eavesdropper model, where the input of vi is ai. By Corollary 3.12 (appearing in Section 3.2), we can

assume that Protocol πc is deterministic. We construct a (randomized) private protocol for f in Gk1,...,kn

using the modular composition paradigm (explained in Section 2.2). The idea of Protocol π is that each

vertex in the eavesdropping model is simulated by the vertices of a two-connected component. Since in

the eavesdropper model there are no privacy requirement on the parties, the simulation needs to ensure that

each non-separating vertex in the two-connected component does not learn the messages exchanged in πc.

This is achieved by using a private protocol for computing each message and masking the output of the

private protocol (i.e., the message) by random bits held by the separating vertex. This ensures that each

non-separating vertex does not learn the message. In contrast, the separating vertex learns the message,

which enables the computation of future messages.

We next describe the protocol π more formally. Without loss of generality, assume that for every value

of c the protocol πc proceeds in rounds, where in Round j Vertex v(j mod n)+1 sends a one bit message to

the other vertices. Furthermore, assume without loss of generality that the protocols πc, for all values of

c, have the same communication complexity. Let πj
c be the jth message sent in the protocol by vi, where

i = (j mod n) + 1. The protocol for f will have a virtual round for each round of the protocol for fc. In

each virtual round, vertex z picks a random bit rj , and the parties in Wi (including z) use a subroutine call to

the function πj
c ⊕ rj . Recall that for every c, in Round j the bit πj

c depends on ai and the previous messages.

Alternatively, we view the bit πj
c (from the various protocols) as a single function of c, ai, and the previous

messages. As the vertices in Wi \ {z} hold ai, and the separating vertex z holds rj and c and knows all

previous messages, the bit πj
c ⊕ rj is indeed a function of inputs held by the parties in Wi. In the protocol

computing f in Gk1,...,kn
, we replace each subroutine call by a private protocol. Such private protocol exists

by Theorem 1.1, since 1 + ki > 2 and each component is two-connected.

We next argue that this protocol is private. By Theorem 2.3, we only need to argue that the protocol using

the ideal subroutine calls is private. For every i ∈ {1, . . . , n}, each vertex in the two-connected component

Wi, except for z, learns only the values πj
c ⊕ rj for every i = (j mod n) + 1, where rj is chosen at random

8

by z, thus, the vertex does not learn any information during the protocol. Vertex z knows the random bits

r1, r2, . . . , rm and its input, thus, it knows the communication exchanged in the protocol for fc. However,

the information it gets is exactly the information the eavesdropper gets in the protocol for fc, thus, z gains

no information.

It should be mentioned that the transformation in the proof of Claim 3.5 can substantially increase the

communication complexity of the resulting protocol π. In Protocol π, the parties in Wi need to compute the

bit πj
c ⊕rj using a private protocol; this private protocol is not necessarily efficient (as, for example, the size

of the circuit computing πj
c can be large).

3.2 The Eavesdropper Model

To characterize the functions that can be privately computed in the eavesdropper model we use ideas similar

to the characterization of the functions that can be computed in the two-party model as characterized by

Kushilevitz [23]. We first introduce some notation similar to [23]. We represent a function f : A1 ×
· · · × An → O by an n-dimensional array Mf whose ith dimension is labeled by the elements of Ai and

Mf (a1, . . . , an) = f(a1, . . . , an).

Definition 3.6 (The Equivalence Relations ≡i) Let M be an n-dimensional array whose ith dimension is

labeled by the elements of Ai for i = 1, . . . , n. The relation ∼i on the elements of Ai is defined as follows:

ai, bi ∈ Ai satisfy ai ∼i bi if there exist two vectors 〈a1, . . . , ai−1, ai+1, . . . , an〉 ∈ A1×. . .×Ai−1×Ai+1×
. . .×An and 〈b1, . . . , bi−1, bi+1, . . . , bn〉 ∈ A1× . . .×Ai−1×Ai+1× . . .×An such that M(a1, . . . , an) =
M(b1, . . . , bn). The equivalence relation ≡i on Ai is defined as the transitive closure of the relation ∼i.

That is, ai ≡i bi for ai, bi ∈ Ai, if there are α1, . . . , αℓ such that ai ∼i α1 ∼i α2 ∼i · · · ∼i αℓ ∼i bi.

Kushilevitz [23] defines similar relations for n = 2. However, the relation there requires that a1 ∼ b1 if

there exists a2 such that M(a1, a2) = M(b1, a2). To motivate the above definition, assume that a1 ∼1 b1,

thus there are 〈a2, . . . , an〉 and 〈b2, . . . , bn〉 such that f(a1, . . . , an) = f(b1, . . . , bn). Assume that v1 sends

the first message in a deterministic protocol computing f . Thus, not to violate the privacy requirement, in

the first round of the protocol, v1 has to send the same message while holding a1 and b1 (otherwise Eve can

distinguish between 〈a1, . . . , an〉 and 〈b1, . . . , bn〉).

Definition 3.7 (Forbidden Array) An array M is a forbidden array if the following two conditions hold:

• The array is not constant, and

• For every i ∈ {1, . . . , n}, all the elements of Ai are equivalent according to ≡i.

To understand this definition, consider a non-constant array that is not forbidden. Thus, for some i we

can partition Ai into non-empty equivalence classes A1
i , . . . , A

ℓ
i (where ℓ ≥ 2). We now consider the arrays

M1, . . . , Mℓ, where Mj is the restriction of M to A1 × . . . × Ai−1 × Aj
i × Ai+1 × . . . × An. Then, each

value that appears in M appears in exactly one Mj .

We say that an array M labeled by A1 × · · · × An contains a forbidden array if there is a rectangle

A′
1 × · · · × A′

n ⊆ A1 × · · · × An such that the array M restricted to this rectangle is forbidden. Similar

to Kushilevitz [23], we prove that a function f can be privately computed in the eavesdropper model if and

only if the array Mf does not contain a forbidden array.

Lemma 3.8 A function f : A1 × · · · × An → O can be computed privately in the eavesdropper model if

and only if the array Mf does not contain a forbidden array.

9

The lemma is proved in the following two claims.

Claim 3.9 Let f : A1 × · · · × An → O be a function. If the array Mf does not contain a forbidden array,

then f can be privately computed in the eavesdropper model.

A Private Protocol for f

Initialization. Ri ← Ai for i = 1, . . . , n.

Step. Let M be the array Mf restricted to R1 × · · · × Rn. As Mf does not contain a forbidden

array, the array M is not forbidden.

1. If M is constant, that is, there is some o ∈ O such that f(a′1, . . . , a
′
n) = o for every

〈a′1, . . . , a
′
n〉 ∈ R1 × · · · ×Rn, then Eve deduces that this constant o is the output and

the protocol ends.

2. Otherwise, for some i ∈ {1, . . . , n}, not all the elements of M are equivalent accord-

ing to ≡i. Vertex vi broadcasts the equivalence class of ai in Ri, and all vertices set

Ri as this equivalence class.

3. Goto Step.

Figure 3: A private protocol computing f in the eavesdropping model.

Proof: We construct a deterministic private protocol computing f . Let 〈a1, . . . , an〉 be the vector of inputs of

the vertices. In each step of the protocol, the parties maintain an n-dimensional rectangle R1 × · · · ×Rn ⊆
A1 × · · · × An, known also to the eavesdropper Eve, which contains the input, that is, 〈a1, . . . , an〉 ∈
R1×· · ·×Rn. The protocol is described in Figure 3. Notice that the array M becomes smaller in each step,

and the equivalence relations ≡i change accordingly. As Mf does not contain a forbidden array and the sets

A1, . . . , An are finite, the protocol must reach a constant rectangle and terminate. Since, in each stage of

the protocol, 〈a1, . . . , an〉 ∈ R1 × · · · × Rn, this protocol is correct. We next argue that Eve does not learn

information on 〈a1, . . . , an〉 not implied by f(a1, . . . , an), that is, if f(a1, . . . , an) = f(b1, . . . , bn), then

the same communication is exchanged on 〈a1, . . . , an〉 and 〈b1, . . . , bn〉. This follows from the fact that if

f(a1, . . . , an) = f(b1, . . . , bn), then, in each stage of the protocol ai ∼i bi for every i ∈ {1, . . . , n}, and ai

is in the same equivalence class as bi.

Claim 3.10 Let f : A1 × · · · × An → O be a function. If the array Mf contains a forbidden array, then f
cannot be weakly-privately computed in the eavesdropper model.

Proof: Let A′
1 × · · · × A′

n be a forbidden array in Mf . To prove this claim, we will prove that, for every

input in the forbidden array, the same communication transcripts are possible. However, since the array is not

constant, for at least one input Eve errs with positive probability contradicting the correctness requirement.

Fix any transcript h that is possible given some input in A′
1 × · · · × A′

n. Let h = h1◦h2◦ · · · ◦hm,

where hj is the message sent by vertex v(j mod n)+1 in Round j. We prove, using induction, that for every

j, where 1 ≤ j ≤ m, the communication h1◦h2◦ · · · ◦hj is possible given every input in A′
1 × · · · × A′

n.

To simplify the notations, we assume, without loss of generality, that j = 0 mod n, that is, Vertex v1 sends

the message hj in Round j. Given h1◦h2◦ · · · ◦hj−1, the message sent by v1 in Round j does not depend

10

on the inputs of v2, . . . , vn. Thus, we need to prove that for every a ∈ A′
1, the message hj is a possible

message that v1 sends on input a and communication h1◦h2◦ · · · ◦hj−1. Since h is possible given some input

in A′
1 × · · · × A′

n, there exists some a1 ∈ A′
1 such that the message hj is a possible message that v1 sends

on input a1 and communication h1◦h2◦ · · · ◦hj−1. By transitivity and the fact that all elements of A′
1 are

equivalent according to ≡i, it is enough to prove that for every b1 such that a1 ∼i b1, the message hj is a

possible message that v1 sends on input b1 and communication h1◦h2◦ · · · ◦hj−1.

Thus, assume that a1 ∼i b1 and the message hj is a possible message that v1 sends on input a1 and com-

munication h1◦h2◦ · · · ◦hj−1. We will prove that hj is a possible message that v1 sends on input b1 and com-

munication h1◦h2◦ · · · ◦hj−1. Let 〈a2, . . . , an〉 and 〈b2, . . . , bn〉 be such that f(a1, . . . , an) = f(b1, . . . , bn).
By the induction hypothesis and the assumption on a1, the transcript h1◦h2◦ · · · ◦hj−1◦hj is possible given

〈a1, . . . , an〉. By the weak privacy, h1◦ · · · ◦hj is a possible transcript given 〈b1, . . . , bn〉, and in particular,

hj is a possible message that v1 sends on input b1 and communication h1◦h2◦ · · · ◦hj−1.

Lemma 3.8 implies the following simple necessary condition on the functions that can be privately

computed in the eavesdropper model. This condition is not sufficient as shown in Example 3.13.

Corollary 3.11 Let f : A1×· · ·×An → O be a function. If the function f can be privately computed in the

eavesdropper model, then for every output value o ∈ O there is some rectangle Ao
1×· · ·×Ao

n ⊆ A1×· · ·×An

such that f(a1, . . . , an) = o if and only if 〈a1, . . . , an〉 ∈ Ao
1 × · · · × Ao

n.

Proof: For every i, let Ao
i

def
=

{

a ∈ Ai : ∃a1,...,ai−1,ai+1,...,an f(a1, . . . , ai−1, ai, ai+1, . . . , an) = o
}

. Thus,

for every i all elements of Ai are equivalent according to ≡i (and even according to ∼i). Since, f can

be privately computed in the eavesdropper model, the array Mf does not contain a forbidden array, and f
restricted to Ao

1 × · · · × Ao
n must be constant.

Notice that in the proof of Claim 3.9 we construct a deterministic protocol. Thus,

Corollary 3.12 A function f : A1 × · · · × An → O can be privately computed in the eavesdropper model

if and only if it can be privately computed in the eavesdropper model by a deterministic protocol.

Example 3.13 We next describe two examples of the possibility of private computation in the eavesdropper

model with two parties. We considers the two functions fi : {a0, a1, a2} × {b0, b1, b2} → {0, . . . , 4} for

i ∈ {1, 2} described below.

f1 b0 b1 b2

a0 0 0 3
a1 2 1 1
a2 2 4 3

f2 b0 b1 b2

a0 0 0 3
a1 2 1 1
a2 2 4 4

In both examples, the inputs corresponding to each output value are a rectangle, thus, they satisfy the neces-

sary condition of Corollary 3.11. For example, in both examples the rectangle corresponding to the output

value two is {a1, a2}×{b0}. For f1, however, the array is forbidden and the function f1 cannot be privately

computed . In f2, we changed the bottom-right entry from 3 to 4; now the array does not contain a forbidden

sub-array, and the function f2 can be privately computed . The partition induced by the private protocol is

detailed in the array.

The next lemma, which is implicit in [4] for n = 2, states that the characterization for Boolean functions

is much simpler.

11

Lemma 3.14 A Boolean function f : A1×. . .×An → {0, 1} can be privately computed in the eavesdropper

model iff it depends only on one of its inputs, that is, if there exist an index i and a function f ′ such that

f(a1, . . . , an) = f ′(ai) for all 〈a1, . . . , an〉 ∈ A1 × . . . × An (in particular, f ′ can be constant).

Proof: If a function f (Boolean or non-Boolean) depends only on one of its inputs, then it does not contain

a forbidden array, thus, it can be privately computed in the eavesdropper model.

For the other direction, assume that a Boolean function f can be privately computed in the eavesdropper

model, thus satisfies the necessary condition of Corollary 3.11. That is, the input values corresponding to

each output value form a rectangle, and, as the function is Boolean, there are at most two values in the array

Mf . The only possible way to partition an array to two rectangles is to partition the ith-dimension for some

i ∈ {1, . . . , n}, that is, if f depends only on its ith variable.

Combining Lemma 3.3 and Lemma 3.8, we get a combinatorial characterization of the functions that

can be computed privately in networks with one separating vertex and no leaves.

Theorem 3.15 Let f : Πn
i=1Π

ki

j=1Ai,j ×C → O be a function, where ki ≥ 2 for i = 1, . . . , n. The function

f can be privately computed in Gk1,...,kn
if and only if for every c ∈ C the array Mfc

does not contain a

forbidden array.

4 Networks with Many Separating Vertices

In this section we consider private computation of functions in arbitrary connected networks. As in the

previous section, the characterization of the functions that can be privately computed has two stages. We

first reduce the problem of private computation in the network to private computation of a related function

in the component graph of G, which is a tree. In Section 5, we give some necessary conditions and sufficient

conditions for computing a function privately on trees. However, the conditions are not tight and we do not

give an exact characterization of these functions.

We next reduce private computation in an arbitrary connected network to private computation of a related

function in a tree, namely, the component graph of the network. The reduction is similar to the reduction

in Section 3.1, however, there is an important difference. In the reduction in Section 3.1 we replaced each

two-connected component with a vertex (without any privacy requirement from these vertices), and then

published the input of the separating vertex and replaced it by the eavesdropper. In this section we re-

place each two-connected component with a vertex (without any privacy requirement from these vertices).

However, we cannot publish the inputs of the separating vertices since other separating vertices might learn

information that they should not learn. Thus, in the tree we construct, we keep the separating vertices with

the same input they had in the original network. Furthermore, we have to deal with leaves, and we keep

them in the tree with their original inputs.

Formally, let G be a graph with n vertices and TG be the component graph of G with n′ vertices (as

defined in Definition 2.4). We say that a vertex in G is curious if it is either a separating vertex in G or a

leaf in G. Recall that the vertices in TG are the curious vertices in G and the two-connected components.

Given a function f : A1 × . . . × An → O we define an n′-argument function f ′, to be computed in TG.

In f ′, the input of each curious vertex is the same as the input in G and the input of each vertex vW , for a

two-connected component W in G, is the vector of inputs of the non-separating vertices in W .

Example 4.1 Consider the graph G1 and its component graph TG1
described in Figure 4. In G1, there

are 2 two-connected components W0 = {v2, v3, v5} and W1 = {v5, v6, v7, v8}, four separating vertices

12

vW1

The component graph of G1.

vW0

v6

v7

v2

v3

v4

v1

v5 v9
v8

A graph G1.

v1

v2

v3

v4

v5 v9v8

Figure 4: Another graph and its component graph.

v2, v3, v5, and v8, and three leaves v1, v4, and v9. Thus, the component graph of G1 has 9 vertices. In the

two-connected component W0, all the vertices are separating vertices. We still need to have the vertex vW0

in TG1
, however this vertex has no input. In W1, the non-separating vertices are v6 and v7, thus, the vertex

vW1
in TG1

holds the inputs of v6 and v7. Note that v6 and v7 are separated by {v5, v8}; however this fact

does not cause any difficulties as all the vertices of W1 simulate vW1
.

In the component graph we replaced every two-connected component W in G by one vertex vW in TG

holding the inputs of the non-separating vertices in the two-connected component. The idea of the reduction

is that in G we can compute by a private protocol the messages sent by vW in the tree. Hence, we do not

need any privacy requirements for such vW .

Lemma 4.2 Let S = {v : v is a curious vertex in G}. A function f can be computed privately in G iff f ′

can be S-privately computed in TG.

We prove the lemma in the next two claims.

Claim 4.3 If f can be computed privately in G, then f ′ can be S-privately computed in TG.

Proof: Assume that there is a protocol π privately computing f in G. We construct an S-private protocol

π′ computing f ′ in TG. The protocol π′ simulates the protocol π: (1) Every curious vertex in G, which is

a vertex in TG having the same input, sends and receives the same messages in both protocols. (2) Every

vertex vW simulates all the non-separating vertices in W . (3) Every message sent between two separating

vertices in the same two-connected component W in G, is sent via vW in π′. Thus, every curious vertex

has the same view in π′ as it had in π. Since Protocol π is private and in π′ we require privacy only for the

curious vertices, Protocol π′ is S-private.

Claim 4.4 If f ′ can be S-privately computed in TG, then f can be computed privately in G.

Proof: Assume that there is an S-private protocol π′ computing f ′ in TG. We construct a private protocol

π computing f in G. The construction is similar to the construction in the proof of Claim 3.5. Specifically,

Protocol π will have a virtual round for every round of π′. In Protocol π, every curious vertex will effectively

13

have the same information as in π′. Specifically, each curious vertex has the same input, and it will learn only

the messages sent to it in π′. The non-curious vertices will not learn any information during the protocol.

This is achieved by using a private protocol for computing each message sent to a vertex vW and masking

the output of the private protocol (i.e., the message) by random bits held by the all vertices in W . That is,

this message is secret-shared by all vertices in W . In other words, in π all separating and non-separating

vertices of the two-connected component W simulate the vertex vW in π′.

We next describe Protocol π more formally. First, there is some initialization. In π′, every vertex vW has

a random input rW distributed uniformly in some finite set R. In the beginning of Protocol π, each vertex

w ∈ W chooses a random input rW,w distributed uniformly in R, and the parties define rW =
⊕

w∈W rW,w

(a separating vertex chooses an independent random value for every two-connected component containing

it). In addition, each curious vertex w chooses a random string rw as it chooses it in π′.

Protocol π′ has rounds and in each round only one vertex sends messages. Without loss of generality,

assume that every message in π′ is one bit. Protocol π will have a virtual round for every round of π′.

Consider Round j of π′ in which a message m is sent by a vertex in TG to a vertex in TG. Notice that at

least one of these two vertices is curious. The messages sent in the virtual round depend on which of these

vertices is curious.

Both sender and receiver are curious. Denote the sender by u and the receiver by v. Both vertices are

vertices in both TG and G. This is the simple case, where Vertex u sends the message m to v in π.

The sender is curious and the receiver is non-curious. In this case the sender is some separating vertex

u and the receiver is a “component vertex” vW , where W is a two-connected component in G such

that u ∈ W . The virtual round in Protocol π is as follows:

• Each vertex w in W (including the separating vertices) chooses at random, with uniform distri-

bution, a bit rj
w,

• The vertices in W compute the function m ⊕
⊕

w∈W rj
w using a private protocol. By Theo-

rem 1.1 such protocol exists since each two-connected component has size at least 3.

On one hand, the vertices in W collectively know the message m. On the other hand, each vertex

gains no information from this virtual round.

The sender is non-curious and the receiver is curious. In this case the sender is a “component vertex”

vW , where W is a two-connected component in G, and the receiver is some separating vertex v such

that v ∈ W . The message m sent in Round j in π′ is a function of the inputs of the non-separating

vertices in W , the random input rW , and the messages vW got in previous rounds. In Protocol π, the

vertices in W know the inputs of the non-separating vertices in W , and collectively know the random

input rW and the messages vW got in previous rounds. Thus, m is a function of inputs known to

vertices in W . The virtual round in Protocol π is as follows:

• The receiver v chooses a random bit rj
v with uniform distribution, and

• The vertices in W compute the function m ⊕ rj
v using a private protocol.

On one hand, Vertex v learns the message m (since it learns the output m ⊕ rj
v and knows rj

v), but

no additional information. On the other hand, each vertex in W \ {v} gains no information from this

virtual round, since the output is masked by the random bit rj
m.

14

We next argue that this protocol is private using the modular composition paradigm (explained in Sec-

tion 2.2). That is, we can assume that each invocation of a private protocol is replaced by an ideal invocation.

We next prove that every vertex v in G learns no information in Protocol π not implied by its input and the

output of f . There are three cases.

v is a leaf. The view of a leaf v in π is exactly its view in π′. Since π′ is S-private and each leaf is curious,

in π the leaf v gains no information not implied by its input and the output of the function f .

v is non-curious. The view that a non-curious vertex v sees during the execution of Protocol π is its input,

the random inputs it chooses, and the outputs of some calls to the ideal invocations, each one masked

by at least one random input rj
v for a separating vertex v in the two-connected component. Thus, in π

the non-curious vertex v gains no information not implied by its input and the output of the function

f .

v is a separating vertex. The view that a separating vertex v sees during the execution of Protocol π is its

input, the random inputs it chooses, and the outputs of some calls to the ideal invocations. For every

such invocation for a message sent in π′ to v, Vertex v in π learns the same message it learned in π′.

For every such invocation for a message sent in π′ to a different vertex in TG, the output is masked

by at least one random bit of a vertex different than v. Thus, the separating vertex v learns only the

messages it got in π′. Since π′ is S-private and v is curious, in π Vertex v gains no information not

implied by its input and the output of the function f .

5 Private Computation on Trees

By Lemma 4.2, to characterize which functions can be privately computed on G, we need to characterize

which functions can be S-privately computed in TG. We do not have an exact characterization of these

functions. We only give necessary conditions and sufficient conditions for this task. In the sequel, we say

that a vertex v is curious if v ∈ S.

5.1 Sufficient Condition

In this section we give a sufficient condition for computing a function S-privately in a tree. Using Lemma 4.2,

the results of this section give a sufficient condition for computing a function privately in arbitrary networks.

The protocol we construct to prove that this condition is sufficient is deterministic and uses only a broadcast

channel. As the parties we consider are honest-but-curios, if a vertex wants to broadcast a message, then

it sends this message to its neighbors, and this message is propagated to all vertices in the tree. Thus, our

private protocol can be implemented in any tree using the regular communication channels.

The sufficient condition is a simple generalization of the condition of [23]. We next introduce some

notation and definitions generalizing Definitions 3.6 and 3.7. We represent a function f : A1 × . . . An → O
by an n-dimensional array Mf whose ith-dimension is labeled by the elements of Ai, and Mf (a1, . . . , an) =
f(a1, . . . , an).

Definition 5.1 (The Equivalence Relations ≡S
i) Let M be an n-dimensional array whose ith-dimension

is labeled by the elements of Ai, and S be the set of curious vertices. The relation ∼S
i on Ai is defined as

follows: a, b ∈ Ai satisfy a ∼S
i b if there exist some ~a,~b ∈ A1 × · · · ×An such that the following conditions

hold:

15

1. There exists an index j 6= i such that vj ∈ S and aj = bj ,

2. ai = a and bi = b,

3. M(~a) = M(~b).

The equivalence relation ≡S
i on Ai is defined as the transitive closure of the relation ∼S

i .3

Example 5.2 For example, consider the function f : {0, 1}3 → {0, 1}, where f(a1, a2, a3) = a1 ⊕ a2 and

consider the array Mf .

• If S = {v1, v3}, then 0 ∼S
1 1 as we can take ~a = 〈0, 0, 0〉 and ~b = 〈1, 1, 0〉. Notice that f(0, 0, 0) =

f(1, 1, 0) = 0 and a3 = b3.

• However, if S = {v1, v2}, then 0 6∼S
1 1 as we must take j = 2 and if a2 = b2 then f(0, a2, a3) 6=

f(1, a2, b3) for every a3, b3.

To gain some intuition on ∼S
i , we mention that if vj ∈ S, aj = bj , and f(~a) = f(~b) (that is, vj has the

same input and output in the two cases), then, informally, vi has to broadcast the same messages on ai and

bi to guarantee that vj does not any information (recall that our protocol uses only a broadcast channel).

Definition 5.3 (S-Forbidden Array) An array M is an S-forbidden array iff (1) the array is not constant,

and (2) for all i, all the elements of Ai are equivalent in M according to ≡S
i .

Lemma 5.4 Let f : An × . . . × An → O be a function. If the array Mf does not contain an S-forbidden

array, then f can be S-privately computed on any tree with n vertices.

Proof: The protocol is a simple generalization of the protocol of [23]. In each step of the protocol, the

parties maintain a rectangle R1 × . . . × Rn ⊆ A1 × . . . × An, such that 〈a1, . . . , an〉 ∈ R1 × . . . × Rn.
The protocol is described in Figure 3. Since, in each stage of the protocol, 〈a1, . . . , an〉 ∈ R1 × . . . × Rn,

this protocol is correct. As Mf does not contain a forbidden array and the sets A1, . . . , An are finite, the

protocol must reach a constant rectangle and terminate.

We next argue that this protocol is S-private, that is, each curious vertex vj does not learn information

on 〈a1, . . . , an〉 that is not implied by aj and f(a1, . . . , an). This follows from the fact that if vj is curious

and f(~a) = f(~b) where aj = bj , then in each stage of the protocol ai ≡
S
i bi in M for every i, and the same

communication transcript is exchanged on ~a and~b, thus, vj does not gain extra information.

In the protocol described in the proof of Lemma 5.4, each message is broadcasted to all the vertices in

the tree. This was possible since the sufficient condition has strong requirements, and this explains why the

sufficient condition is not necessary. For example, consider a path v1, v2, v3, where the input of v1 is a bit

a1, the input of v2 is a bit a2, and the v3 has no input. The vertices want to compute the function a1⊕a2 (that

is, the function considered in Example 5.2), where the curious vertices are S = {v1, v2, v3}. This function

can be privately computed on the path since v1 can send its input to v2 and v2 sends the output to v1 and v3.

However, this function does not satisfy the sufficient condition as its array is S-forbidden.

3The equivalence relation ≡i as defined in Definition 3.6 can be viewed as a special case of ≡S
i where S is the eavesdropper

which has some fixed input.

16

A Private Protocol for f

Initialization. Ri ← Ai for i ∈ {1, . . . , n}.

Step. Let M be the array Mf restricted to R1× . . .×Rn. As Mf does not contain an S-forbidden

array, the array M is not S-forbidden.

1. If M is constant, then all the vertices know that this constant is the output, and the

protocol ends.

2. Otherwise, for some i ∈ {1, . . . , n}, not all the elements of Ai are equivalent in M
according to ≡S

i . Vertex vi broadcasts the equivalence class of ai in M . Thereafter,

all parties set Ri as this equivalence class.

3. Goto Step.

Figure 5: A private protocol computing f in TG.

5.2 Necessary Conditions

In a tree, every vertex that is not a leaf is a separating vertex. Informally, this means that such vertex can

learn all the information sent from one side of a tree to the other side. Formulating this intuition is simple:

Let v be a vertex of degree d in the tree. We claim that if a function can be computed in a tree, then a related

function can be computed in the eavesdropper model in a network with d vertices; the input of each vertex

in the eavesdropper model is the vectors of inputs of one side of the tree, and Eve is the separating vertex.

This is formulated in the next lemma, whose proof is similar to the proof of Claim 3.4.

Lemma 5.5 Let T = (V,E) be a tree and S be a set of curious parties. Let vn be a curious vertex in

T of degree d ≥ 2 (that is, v is not a leaf). Let V1, . . . , Vd be the connected components in T \ {vn},

where Vj =
{

vij−1+1, . . . , vij

}

for some indices 0 = i0 < i1 < · · · < id = n − 1. Furthermore, let

f : A1 × · · · × An → O be a function. For every c ∈ Ai, define the d-argument function fc as

fc(〈a1, . . . , ai1〉, 〈ai1+1, . . . , ai2〉, . . . , 〈aid−1+1, . . . , an−1〉) = f(a1, . . . , an−1, c).

If f can be S-privately computed in T , then, for every c ∈ An, the function fc can be privately computed in

the eavesdropper model.

Using Corollary 3.11, we deduce in Lemma 5.8 a simpler (and weaker) necessary condition. Roughly

speaking, the condition is that the inputs corresponding to each output value are a union of certain n-

dimensional rectangles. For the lemma and its proof we need the following notation: Let f : A1×· · ·×An →
O be a function, I ⊆ {1, . . . , n} be a set, and ~c = 〈ci〉i∈I be a vector where ci ∈ Ai for every i ∈ I . Denote

fI,~c : Πi/∈IAi → O, the restriction of f to {1, . . . , n} \ I , as the following function

fI,~c(〈ai〉i/∈I) = f(〈b〉i∈{1,...,n}) where bi =

{

ci if i ∈ I
ai otherwise.

Every curious vertex does not have an input of fI,~c. We first claim that, without loss of generality, we

can assume that every leaf in T is non-curious. This observation is important since we will use an inductive

proof in which we remove vertices from the tree and a curious vertex can become a leaf.

17

Claim 5.6 Let T be a tree with a leaf v that does not have an input. If a function g can be S-privately

computed in T , then the function g can be (S \ {v})-privately computed in T \ {v}.

Proof: Let w be the neighbor of v in T , and let π be a protocol S-privately computing g in T . First,

consider an execution of the protocol π on T . At the end of the execution, w chooses a random string rv

with uniform distribution from all the random strings that are consistent with the messages that v received

and sent. Second, consider an execution of the protocol π on T ′ def
= T \ {v}, where in the beginning of the

execution w chooses a random string rv with uniform distribution from all the possible random strings, and

simulates v with this random string. Since w is the only neighbor of v, the views of all vertices in T ′ are

equally distributed in the two scenarios. Thus, the protocol (S \ {v})-privately computes g in T ′.

Furthermore, if there are two non-curious neighbors in T , we can replace them by a new vertex holding

the inputs of the two neighbors.

Observation 5.7 We can assume, without loss of generality, that (u, v) /∈ E for every two non-curious

vertices u, v.

Lemma 5.8 Let T = (V,E) be a tree and S be a set of curious parties such that there are no adjacent

non-curious vertices. Denote I
def
= {i : vi ∈ S}. Assume that a function f : A1 × · · · × An → O can be

S-privately computed in T . Then, for every ~c ∈ Πi∈IAi and every output value o ∈ O, there exist sets

〈Ri〉i/∈I such that Ri ⊆ Ai and

fI,~c(~a) = o if and only if ai ∈ Ri for every i /∈ I.

Proof: Define n′ def
= n − |I|. Fix some output value o ∈ O. The proof is by induction on n′, i.e., on the

number of variables of fI,~c. If n′ = 0, that is, there are 0 non-curious vertices in the network, then fI,~c is

constant, and the claim is trivial.

For the induction step assume that there are n′ non-curious vertices in the tree T . By Claim 5.6 and by

Observation 5.7, we can assume that every leaf in T is non curious and the neighbor of each leaf is curious.

Furthermore, by renumbering the vertices, we can assume that vn is a non-curious leaf of T and vn−1 is its

curious neighbor.

By Lemma 5.5 and Corollary 3.11, there exist sets Rn ⊆ An and R ⊆ A1 × · · ·An−2 such that the

inputs of fI,~c corresponding to o are R×Rn. Fix any cn ∈ Rn and consider the function fI∪{n},~c,cn
. By the

construction, the inputs of fI∪{n},~c,cn
corresponding to o are R. On the other hand, the function fI∪{n},~c,cn

can be computed on a tree obtained from T by removing vn. Thus, by the induction hypothesis applied

to fI∪{n},~c,cn
, there are sets 〈Ri〉{i:i/∈I,i6=n} such that fI∪{n},~c,cn

(~a) = o if and only if ai ∈ Ri for every

i /∈ I, i 6= n. Thus, the inputs of fI,~c corresponding to o are
(

Π{i:i/∈I,i6=n}Ri

)

× Rn, as required.

5.3 An Example: A Network with One Two-Connected Component and One Leaf

We next consider a simple example of a network G with one two-connected component and one leaf, and

the tree TG which is a path of length three. This might seem to be a simpler network than the networks

considered in Section 3, however, it turns out that the characterization is more complicated in this case.

This example demonstrates the difficulties in characterizing the functions that can be privately computed in

arbitrary networks.

The tree TG constructed in the proof of Lemma 4.2 for G is a path of length 3, that is, the vertices in TG

are {v1, v2, v3} and the edges in TG are (v1, v2) and (v2, v3). The adversarial structure is S = {v2, v3}, that

18

v3 – leaf

v2v1

The graph G. The tree TG.

v2 – separating vertex

Vertices

c0b0a0

Inputs

2-connected component

v3

Figure 6: The graph G and the tree TG.

is, the curious vertices are v2 (the separating vertex in G) and v3 (the leaf in G). See Figure 6. We want to

S-privately compute a function f : A × B × C → O. In [4], it is proved that every Boolean function that

depends on its three variables cannot be S-privately computed in TG. Our characterization shows that the

structure of the non-Boolean functions that can be S-privately computed in TG is much richer.

To gain some intuition, consider a deterministic protocol S-privately computing f in TG. Let a0, b0, and

c0 be the inputs of v1, v2, and v3 respectively. As v1 is not curious, we can assume that v2 sends its input

b0 to v1 and thereafter v2 acts as a relay. In each stage of the protocol, the vertices will maintain two sets,

R1,2 ⊆ A1 × A2 and R3 ⊆ A3 such that 〈a0, b0〉 ∈ R1,2 and c0 ∈ R3.

Let up first consider the messages v3 sends to v1 via v2. Vertex v3 knows c0 and that 〈a0, b0〉 ∈ R1,2,

and it wants to send a message that does not leak information to v2 not implied by the input of v2 and

the output of f . This motivates the following notation, similar to the notation of Section 3.2. We say that

c ∼3 c′, for c, c′ ∈ R3, if there are a, a′, and b such that 〈a, b〉, 〈a′, b〉 ∈ R1,2 and f(a, b, c) = f(a′, b, c′).
The equivalence relations ≡3 is defined as the transitive closure of ∼3. Vertex v3 can send a message to v1

maintaining privacy iff not all elements of R3 are equivalent according to ≡3 (with the current R1,2).

The messages that v1 can send to v3 via v2 without violating the privacy are more complicated, as

explained below. First, Vertex v3 should not gain information from the message. Furthermore, the message

v1 sends to v3 via v2 should not leak information to v2. We say that 〈a, b〉 ∼1,2 〈a′, b′〉 for 〈a, b〉, 〈a′, b′〉 ∈
R1,2 if at least one of the following conditions hold:

• There exists c ∈ R3 such that f(a, b, c) = f(a′, b′, c).

• b = b′ and there exists c, c′ ∈ R3 such that f(a, b, c) = f(a′, b, c′).

If 〈a, b〉 ∼1,2 〈a′, b′〉, then v1 must send the same message to v3 on 〈a, b〉 and on 〈a′, b′〉. The equivalence

relations ≡1,2 on R1,2 is defined as the transitive closure of ∼1,2. By transitivity, if 〈a, b〉 ≡1,2 〈a′, b′〉,
then v1 must send the same message to v3 on 〈a, b〉 and on 〈a′, b′〉. Given a function f , consider a two-

dimensional array Mf whose first dimension is labeled by elements of A × B, the second dimension is

labeled by elements of C, and Mf (〈a, b〉, c) = f(a, b, c). As in previous sections, a sub-array of Mf

is forbidden if it is not constant, all its rows are equivalent with respect to ≡1,2, and all its columns are

equivalent with respect to ≡3. We next give a characterization of the function that can be S-privately

computed in TG; the proof of the characterization is similar to the proof of Lemma 3.8.

Claim 5.9 A function f can be computed S-privately in TG iff the array Mf does not contain a forbidden

array with respect to ≡1,2 and ≡3. Furthermore, if a function f can be computed S-privately in TG, then f
can be computed S-privately in TG by a deterministic protocol.

19

6 Conclusions and Open Problems

In this paper we address the question of characterizing the functions that can be privately computed in

incomplete networks. This question was addressed previously in [4, 21, 5]; however, it was addressed only

for Boolean functions and very simple networks (networks with one separating vertex and 2 two-connected

components). Our first result is an exact characterization of the functions that can be privately computed in

networks with one separating vertex, arbitrary number of two-connected components, and without leaves.

Our characterization implies that the class of non-Boolean functions that can be privately computed is much

richer than the class of Boolean functions. For example, if a Boolean function can be privately computed in a

network with one two-connected component and one leaf, then it cannot depend on inputs of non-separating

vertices in the two-connected component and on the input of the leaf [4]; this is not true for non-Boolean

functions as shown in Section 5.3.

For general networks, we take a major step towards the characterization of the functions that can be

privately computed in them. We first reduce the question to private computation on trees, and then give

necessary conditions and sufficient conditions for private computation on trees. The exact characterization

is still open. As an example for the difficulty of the characterization, we characterize the functions that can

be privately computed in a simple network with one two-connected component and one leaf, and show that

the characterization is already more complicated.

Some discussion on the privacy requirements is due. All the protocols we construct in this paper have

perfect privacy (that is, the distribution of VIEW has to be exactly the same). In contrast, in the necessary

conditions (e.g., Claim 3.10 and Lemma 5.8) we only require weak privacy (that is, the distribution of VIEW

has to have the same support, possibly with different probabilities). Another notion of privacy is statistical

privacy (that is, the distribution of VIEW has to statistically close). We do not know how to characterize

the function that can be computed with statistical privacy. We note that the characterization of [23] of the

functions that can be computed privately in the two party model is proven only for protocols with perfect

privacy (or protocols with very small statistical distance).

In this work we focus on 1-privacy. The obvious generalization is to characterize the functions that

can be computed t-privately in incomplete networks. Our results in Section 3 generalize to networks with

one separating set of size t − 1 and an arbitrary number of t-connected components where the size of each

t-connected component is greater than 2t. However, our results for arbitrary networks do not generalize to

t-privacy as the component structure of such networks can be complicated. As we mentioned in the intro-

duction, even the characterization of the functions that can be computed t-privately in a complete network

with at most 2t vertices is still open.

Another related question is what functions can be computed securely in incomplete networks where the

“bad” parties are malicious. If a network is (2t + 1)-connected and contains more than 3t vertices, then

every function can be computed securely in the presence of t malicious vertices. The open question is to

characterize what function can be computed in the presence of t malicious vertices in a network that is not

(2t + 1)-connected.

Acknowledgment. I would like to thank Enav Weinreb and the anonymous referees for valuable com-

ments that greatly improved this write-up. I would also like to thank Matt Franklin for his hospitality and

support while I was on sabbatical at the University of California, Davis.

20

References

[1] A. Beimel and M. Franklin. Reliable communication over partially authenticated networks. Theoretical

Computer Science, 220:185–210, 1999.

[2] A. Beimel and L. Malka. Efficient reliable communication over partially authenticated networks.

Distributed Computing, 18(1):1 – 19, 2005.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-

tolerant distributed computations. In Proc. of the 20th ACM Symp. on the Theory of Computing, pages

1–10, 1988.

[4] M. Bläser, A. Jakoby, M. Liśkiewicz, and B. Manthey. Private computation – k-connected versus

1-connected networks. In Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes

in Computer Science, pages 194–209. Springer-Verlag, 2002. Journal version: in J. of Cryptology,

19(3):341–357, 2006.

[5] M. Bläser, A. Jakoby, M. Liśkiewicz, and B. Manthey. Privacy in non-private environments. In

Advances in Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science,

pages 137 – 151. Springer-Verlag, 2004.

[6] B. Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics. Springer-Verlag,

1998.

[7] R. Canetti. Security and composition of multiparty cryptographic protocols. J. of Cryptology,

13(1):143–202, 2000.

[8] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In Proc. of the

20th ACM Symp. on the Theory of Computing, pages 11–19, 1988.

[9] B. Chor and E. Kushilevitz. A zero-one law for Boolean privacy. SIAM J. on Discrete Mathematics,

4(1):36–47, 1991.

[10] Y. Desmedt and Y. Wang. Secure communication in multicast channels: The answer to Franklin and

Wright’s question. J. of Cryptology, 14(2):121–135, 2001.

[11] Y. G. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In L. Knudsen, editor,

Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,

pages 502–517. Springer-Verlag, 2002.

[12] D. Dolev. The Byzantine generals strike again. J. of Algorithms, 3:14–30, 1982.

[13] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. J. of the ACM,

40(1):17–47, 1993.

[14] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of bounded degree. SIAM

J. on Computing, 17(5):975–988, 1988.

[15] S. Even. Graph Algorithms. Computer Science press, 1979.

21

[16] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus prob-

lems. Distributed Computing, 1(1):26–39, 1986.

[17] M. Franklin and R. N. Wright. Secure communication in minimal connectivity models. J. of Cryptol-

ogy, 13(1):9–30, 2000.

[18] M. Franklin and M. Yung. Secure hypergraphs: Privacy from partial broadcast. In Proc. of the 27th

ACM Symp. on the Theory of Computing, pages 36–44, 1995.

[19] O. Goldreich, S. Goldwasser, and N. Linial. Fault-tolerant computation in the full information model.

In Proc. of the 32nd IEEE Symp. on Foundations of Computer Science, pages 447–457, 1991.

[20] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multiparty com-

putation. J. of Cryptology, 13(1):31–60, 2000.

[21] A. Jakoby, M. Liśkiewicz, and R. Reischuk. Private computations in networks: Topology versus ran-

domness. In Proc. of the 20th International Symposium on Theoretical Aspects of Computer Science,

volume 2607 of LNCS, pages 121–132. Springer-Verlag, 2003.

[22] M. V. N. A. Kumar, P. R. Goundan, K. Srinathan, and C. Pandu Rangan. On perfectly secure com-

munication over arbitrary networks. In Proc. of the 21st ACM Symp. on Principles of Distributed

Computing, pages 193–202, 2002.

[23] E. Kushilevitz. Privacy and communication complexity. SIAM J. on Discrete Mathematics, 5(2):273–

284, 1992.

[24] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, 1997.

[25] K. Menger. Allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.

[26] S. Micali and P. Rogaway. Secure computation. In J. Feigenbaum, editor, Advances in Cryptology

– CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer-Verlag,

1992. An updated version presented at the workshop on multi-party computation, Weizmann Inst.,

1998.

[27] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In

Proc. of the 21st ACM Symp. on the Theory of Computing, pages 73–85, 1989.

[28] H. M. Sayeed and H. Abu-Amara. Efficient perfectly secure message transmission in synchronous

networks. Information and Computation, 126:53–61, 1996.

[29] K. Srinathan, V. Vinod, and C. Pandu Rangan. Efficient perfectly secure communication over syn-

chronous networks. In Proc. of the 22nd ACM Symp. on Principles of Distributed Computing, pages

252–252, 2003.

[30] K. Srinathan, V. Vinod, and C. Pandu Rangan. Optimal perfectly secure message transmission. In

M. Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Com-

puter Science, pages 545 – 561, 2004.

[31] E. Upfal. Tolerating a linear number of faults in networks of bounded degree. Information and Com-

putation, 115(2):312–320, 1994.

22

