
1

On Proactive, Transparent and Verifiable

Ethical Reasoning for Robots
Paul Bremner, Louise A. Dennis, Michael Fisher and Alan F. Winfield

Abstract—Previous work on ethical machine rea-
soning has largely been theoretical, and where such
systems have been implemented it has in general
been only initial proofs of principle. Here we address
the question of desirable attributes for such systems
to improve their real world utility, and how con-
trollers with these attributes might be implemented.
We propose that ethically-critical machine reasoning
should be proactive, transparent and verifiable. We
describe an architecture where the ethical reasoning
is handled by a separate layer, augmenting a typical
layered control architecture, ethically moderating the
robot actions. It makes use of a simulation-based
internal model, and supports proactive, transpar-
ent and verifiable ethical reasoning. To do so the
reasoning component of the ethical layer uses our
Python based Beliefs, Desires, Intentions (BDI) im-
plementation. The declarative logic structure of BDI
facilitates both transparency, through logging of the
reasoning cycle, and formal verification methods. To
prove the principles of our approach we use a case
study implementation to experimentally demonstrate
its operation. Importantly, it is the first such robot
controller where the ethical machine reasoning has
been formally verified.

I. INTRODUCTION

Robots are increasingly autonomous: semi-

autonomous flying robots are commercially avail-

able, and driverless cars are undergoing real-world

tests [1]. This trend is expected to continue [2].

Such systems have expanding abilities for making

unsupervised decisions. This makes it imperative

both that robotic systems are capable of taking

human ethical values1 into account when they make

decisions, and that mechanisms are in place to guar-

antee that the behaviour executed by the robot re-

spects those values. A particularly important value,

and one at the forefront of many people’s minds

when considering robotic systems that will interact

closely with humans, is the question “is it safe?"

– highlighting the importance of mechanisms for

guaranteeing safety [3], [4]. However, many other

ethical considerations, such as human free will,

privacy and dignity also come into play when con-

sidering autonomous robotics, particularly robots

The work described in this paper was funded by the EPSRC
“Verifiable Autonomy” project (EP/L024845/1 (Liverpool) and
EP/L024861/1 (UWE))

1We define human values here as broad preferences con-
cerning appropriate courses of actions or outcomes, and ethical
values as generally agreed right actions which, for instance,
maintain safety and dignity.

that may be operating in domestic or healthcare

situations.

Safe robot behaviour is clearly essential, but

not sufficient. Smart autonomous robots should be

more than safe; they should also be transparent, at

least where ethical reasoning is concerned -– able

to both choose and justify [2] actions that relate

to human values. Following Moor [5] our focus in

this paper is on explicit ethical agents in which

ethics are represented explicitly, and actions chosen

on the basis of those ethics. As the cognitive,

perceptual and motor capabilities of robots expand,

they will be expected to have an improved capacity

for moral judgment2. By transparent we mean that

ethical machine reasoning should be accountable

and accessible, such that human scrutiny of such

decision processes is possible [6]. Making ethical

machine reasoning scrutible in this way enables ex-

position of the reasoning behind actions taken, and

facilitates trust in such systems. It is clear, through

international efforts such as the developing IEEE

P7001 standard on Transparency in Autonomous

Systems, that this view is becoming mainstream.

We are used to the idea of safety-critical systems

and that such systems require high standards of

validation – preferably formal verification. Clearly,

since safety is one of the ethical principles3 rel-

evant to robotic systems these will also require

high standards of validation. More generally, since

ethical principles are fundamental to the way a

society judges both itself and others we would

argue that ethically-critical systems (systems that

have the capacity to impact adversely any ethical

value considered important by the community it is

created for) should in general be held to high stan-

dards of validation, just as safety-critical systems

are. Therefore ethical machine reasoning should be

verifiable [7].

Initial approaches to the implementation of ethi-

cal machine reasoning have focused on the idea of

an ethical layer that can veto actions suggested by

the underlying system [8]. However, as was notably

observed in Asimov’s construction of his three

2Note we are not claiming that a robot must be a full moral
agent – capable of not only reasoning about ethics but also
justifying its ethical choices [5] – only that its reasoning needs
to take ethical considerations into account.

3We regard ethical principles as simply expressions of ethical
values. So the principle ‘do no harm’ expresses the human value
of respect for others’ safety.



2

Laws of Robotics [9], ethical reasoning cannot

simply be reactive (it is insufficient to state simply

that a robot may not harm a human) but must also

be proactive (‘a robot should not, through inaction,

allow a human to come to harm’). We suggest

that in order to make proper ethical judgements

any ethical reasoning component should be capable

of generating and evaluating ethically proactive

actions, not just evaluating those proposed by some

underlying goal-directed system.

We therefore obtain three key desirable prop-

erties for ethical machine reasoning for robotic

systems:

• It should be proactive and able to initiate

action where inaction risks violating ethical

principles.

• It should be transparent in order to allow

direct inspection of its reasoning by stake-

holders, and potentially also allow human-

understandable explanations of its reasoning.

• It should be possible to verify that it re-

spects the values it reasons about, particularly

(though not exclusively) where safety is con-

cerned.

Clearly ethical machine reasoning is possible

without adhering to these properties. However, we

argue that adherence improves the utility for an

ethical machine operating in the real world. More-

over, while transparency and verifiability are of

benefit to most computational systems (including

robot controllers in general), we argue that they

are of particular importance in ethically-critical sys-

tems where the dual importance of both respecting

human ethical values and being seen to do so is

key to acceptance.

To demonstrate the practicality and utility of

our proposed key properties we have devised an

extension of the ethical layer in the architecture

proposed in [10]. The extension we have proposed

consists of two main components. The first is the

addition of a pro-active Planner Module to produce

ethically pro-active plans as required. Second is the

addition of an ‘ethical black box’ recorder module,

that logs the operation of the ethical layer and

allows for post-hoc scrutiny of ethical decisions.

As the ethically-critical component of our proposed

architecture, it is the ethical layer in which our

desirable properties are implemented.

To better illustrate the architecture, we detail

an implementation following the proposed model.

To do so we have developed a Python library for

Beliefs, Desires, Intentions-style agent reasoning

called BDIPython. BDIPython allows us to ex-

plicitly express the ethical layer’s ethical decision

module using logical rules. Doing so facilitates

transparency of the reasoning in the ethical layer.

In this implementation we have used Asimov’s

Laws of Robotics as our code of ethics, chosen not

because they represent a viable code of machine

ethics, but because they are a well-known and

straightforward set of ethical rules that can be used

to illustrate our approach.

To demonstrate that our implementation fulfils

the desired verifiable property, we detail a means of

formal verification of the ethical decision module.

We have linked BDIPython directly to the Agent

JavaPathfinder (AJPF) model-checker by imple-

menting a parser for the BDIPython code into a

Java data structure that is used to generate a model.

We can then verify that the BDIPython ethical

decision module respects some given ethical system

using an established methodology for the formal

verification of autonomous systems supported by

AJPF [11].

Finally we have validated our approach experi-

mentally using a simple case study with real robots.

Through a series of experiments we demonstrate

that our implementation is capable of making

demonstrably correct ethical decisions, and the rea-

soning process is transparent to human scrutiny. We

then verify that this system obeys Asimov’s three

laws of robotics.

II. BACKGROUND

In this section we elaborate upon the background

motivation and design principles of the components

comprising the proposed architecture and imple-

mentation thereof. Each subsection that follows

relates to a particular element of the work presented

in this paper. First, we consider the motivation

behind ethical reasoning in robots; second, the

simulation-based approach to robot anticipation,

and how this can provide a robot with the capability

to reason about ethical consequences; third, we

detail the case for an ‘ethical black box’ (EBB)

recorder; fourth, we describe the Beliefs, Desires,

Intentions (BDI) paradigm, and why it is suitable

for implementation of transparent ethical reasoning;

finally, we discuss formal verification, and how we

can apply such a methodology to our BDI ethical

reasoning.

A. Ethical Robots

As robots are increasingly expected to operate in

environments within which their actions have moral

or ethical implications, especially those with other

agents, they require the capability to reason about

these implications. Indeed, the need for robots

equipped with ethical reasoning capabilities has

been recognised in much recent work (e.g., [5], [8],

[12]–[14]). Studies have shown that people expect

ethical decision making from robots, holding them

to moral standards according to their appearance

[15].

In order for a robot to reason about ethics

it requires inter-alia a set of ethical rules. How



3

these rules should be selected is, in general, an

open problem, and various authors have suggested

multiple approaches (see [16] for a review). Two

paradigms of human ethical reasoning underlie

the main approaches to machine ethics thus far

suggested: consequentialist and deontological [16].

The central premise of consequentialist ethics is

that actions should be evaluated on the basis of

their consequences. Asimov’s laws of robotics [9]

are a well known set of rules for governing ma-

chine ethics. However, their suitability has been

justifiably questioned for a range of reasons, in-

cluding the lack of any mechanism for resolving

ethical dilemmas caused by intra-law conflicts, e.g.,

if two humans are in danger and only one can

be saved [2]. Deontological ethics on the other

hand, is concerned with evaluating the motivation

behind actions, i.e., does the intended purpose of

the selected action abide by a given code of ethics.

However, such an ethical paradigm has difficulties

for artificial morality since it requires the correct

attribution of mind states to artificial agents [16].

Allen et al [16] defined two clear approaches

to implementing machine ethics for either ethical

paradigm: top-down, whereby ethical decisions are

incorporated into a robot’s control architecture;

or bottom-up, where a learning system is used

to emulate ethically acceptable behaviour without

necessarily understanding the underlying ethics ad-

hered to. Here we consider the top-down approach

because of its suitability both for verification and

human scrutability.

B. Anticipation in Robotics (for Proactive Ethics)

In order for a robot to reason about ethics to be

based on consequentialism it is necessary for it to

be able to anticipate the outcomes of its actions.

More generally, for a robot designed to operate in

the highly dynamic environment of the real world,

the ability to ‘anticipate’ future events is a major

advantage. Such predictions can allow a system to

make decisions in a way that combines past, present

and future events, so it is better equipped to react

appropriately to unconstrained environments [17].

We follow Rosen’s definition of an anticipatory

system as “[...] a system containing a predictive

model of itself and/or of its environment, which

allows it to change state at an instant in accord

with the model’s predictions pertaining to a later

instant.” [18].

The conventional use of internal models, in

which a system is mathematically modelled, is

encompassed within Rosen’s definition. However,

even though such approaches have been extended

to cover well-defined uncertainties and non-linear

plant [19], their anticipatory capabilities are lim-

ited. Typcally the external environment is not ex-

plicitly modelled beyond a-priori defined exoge-

nous disturbances to the system model.

A newer and more powerful way in which a

robot can be equipped with the cognitive machinery

to enable anticipation is through an embedded

simulation of the robot, its environment and agents

therein [20]. A robot so equipped, has the potential

to generate and test what-if hypotheses: what if I

carry out action x?; of several possible actions xi
which should I choose? One aim of such hypothesis

testing is to enable assessment of the consequences

of proposed actions without needing to commit

to carrying out those actions [21]. That is to say,

alternative sequences of motor actions are evaluated

to find the sequence that best achieves the goal,

before executing the best sequence. Identification

of the best actions typically requires sufficient

environment simulation to establish action context.

Arguably these simulation-based internal models

of others are a step in the direction of an artificial

theory of mind [22], i.e., the ability to form a

predictive model of others [23]; indeed one of the

several theories of mind is the simulation theory of

mind [24].

Here we utilise simulation-based hypothesis test-

ing as a fundamental component of our architec-

ture. We do so to enable the ethical layer in our

robot controller to assess the ethical consequences

of potential behaviours; thus, it can select the most

ethically appropriate. Central to the simulation we

use are assumptions of how the human being mod-

elled (in the robot’s environment) will act – as a

crude form of theory of mind.

C. Ethical Black-box Recorder (for Transparency)

In line with expectations of ethical decision

making, there is also a requirement that such an

ethical robot’s control processes are transparent and

understandable. There are a number of reasons for

this: it enables trust if stakeholders can understand

a robot’s reasons and validate for themselves that

those reasons align with their ethics; in accident

investigation scenarios, transparency helps in diag-

nosing the causes of error, and in their subsequent

correction [25].

Winfield and Jirotka argue for a robot equivalent

of the flight data recorder or black-box installed in

aircraft to facilitate this [25]. By recording sensor

data, and the control processes that acted on this

data, post-hoc scrutiny of robot behaviour becomes

possible. While some modern vehicles with partial

autonomy have a data recording device, companies

have thus far constrained access to this data to their

own experts. We suggest that to be of real value this

data needs to be open to outside scrutiny, outweigh-

ing any liability fears. To this end we incorporate

a data logging module into our proposed ethical

layer. Following the proposal in [25], it records



4

the information needed for human scrutiny of the

ethical decision process followed.

D. Beliefs-Desires-Intentions Programming (for

Transparent Ethics)

However, we argue that records of sensor data

and control processes are insufficient by them-

selves. For the key parts of ethical reasoning it

must be possible for a human to understand how

a deduction was generated from sensor data. More

importantly this process of deduction needs to be

explainable in a way that is similar to the way hu-

mans justify their own actions. At present it is often

challenging to extract such explanations from utility

functions in general, and virtually impossible with

opaque control techniques such as artificial neural

networks. We argue therefore that ethical reasoning

should be represented in a declarative fashion as

typified, for example, by the logic programming

paradigm – for this we turn to ideas from the field

of rational agents.

At its most general, an agent is an abstract

concept that represents an autonomous computa-

tional entity that makes its own decisions [26]. A

general agent is thus simply the encapsulation of

some distributed computational component within

a larger system. However, in settings such as ours,

it is increasingly important for the agent to have

explicit reasons (that it could explain, if necessary)

for making one choice over another.

Beliefs, Desires, and Intentions (BDI) agent pro-

gramming languages provide this capability. They

are based on the concept of rational agency [27]–

[30] and draw heavily from the logic programming

paradigm. Crucially BDI agents make decisions

based on intuitive concepts of how an agent’s

beliefs and desires lead to particular choices. These

intuitive concepts were first elaborated by Brat-

man [27] and gave rise to a selection of BDI logics

which were subsequently operationalised as BDI

programming languages. In the BDI programming

paradigm, beliefs represent the agent’s (possibly

incorrect) information about its environment, de-

sires represent the agent’s long-term goals, while

intentions represent the goals that the agent is

actively pursuing.

There are many different agent programming

languages and agent platforms based, at least in

part, on the BDI approach (e.g., AgentSpeak [31],

Jason [32], 3APL [33], Jadex [34], Brahms [35],

GOAL [36], and GWENDOLEN [37]). Agents pro-

grammed in these languages commonly contain a

set of beliefs, a set of goals (representing desires

and usually forming part of intentions), and a set

of rules. Rules determine how an agent acts based

on its beliefs and goals.

In general a rule is selected based on the beliefs

and goals of the agent, and transforms the goal

(desire) into an intention which is some executable

structure that is supposed to achieve the goal. As

a result of executing a rule/intention, the agent

may perform actions and its beliefs and goals may

change, often as a result of the actions. Crucially

the reasoning that is performed over beliefs and

goals is based on logic programming, and is of-

ten explicitly expressed in Prolog. This makes it

possible to understand the choice of rules (and

by extension actions), as deduction in first-order

predicate logic, and to explain such choices in these

terms.

At the core of most BDI programming lan-

guages lies a reasoning cycle. The details vary

from language to language but key aspects are:

polling an external environment for new percep-

tions represented as beliefs; reasoning over beliefs

and goals to select appropriate rules; executing

rules to perform actions or manipulate beliefs and

goals. In general the execution of actions causes

some effect in the external environment. This ex-

ternal environment may be a software artefact,

or software that mediates between the agent and

the real world. The explicit assumption of inter-

action with an external environment makes BDI

programs particularly suitable for embedding as

reasoning components in larger systems. Thus, as

we desire the reasoning executed by our ethical

layer to be human comprehensible, we implement

the reasoning part of the ethical layer using BDI

programming. To facilitate the integration of a BDI

component within the ethical layer as a whole, we

have developed a Python BDI implementation.

E. Verification of Agent-based Autonomous Sys-

tems (for Verifiable Ethics)

In addition to human scrutability, we also desire

that the ethical reasoning be verifiable, i.e., can be

proven to abide by a given code of ethics. A prop-

erty to which a BDI implementation lends itself

well. The approach used for formal verification is

dependent on the control architecture. Hybrid con-

trol architectures such as ours, comprising discrete

and continuous parts are becoming increasingly

popular in the construction of autonomous systems.

A typical hybrid system architecture is shown in

Figure 1. The discrete part is often represented by

a rational agent taking the high-level decisions,

providing explanations of its choices, and invoking

lower-level continuous procedures [38].

Formal verification is essentially the process of

assessing whether a specification given in formal

logic is satisfied on a particular formal description

of the system in question. For a specific logical

property, ϕ, there are many different approaches to

this [39]–[41], ranging from deductive verification

against a logical description of the system ψS (i.e.,

⊢ ψS ⇒ ϕ) to the algorithmic verification of the



5

Figure 1: A Typical Hybrid Agent Architecture.

property against a model of the system, M (i.e.,

M |= ϕ). The latter has been extremely successful

in Computer Science and Artificial Intelligence, pri-

marily through the model checking approach [42].

This takes a model of the system in question,

defining all the model’s possible executions, and

then checks a logical property against this model

(and, hence, against all possible executions).

In a hybrid autonomous system the continu-

ous control and the higher-order decision-making

components can (ideally) be cleanly separated.

The lower-level procedures generally also appear

in non-autonomous systems, and well understood

techniques for their validation exist. One approach,

therefore, is to focus formal verification efforts on

the decisions the rational agent makes, given the

beliefs and goals it has [7], [43]. In any system that

interacts with a highly unpredictable real world, we

cannot show that an agent always does the right

thing, but we can show its actions are taken for

the right reasons.

This approach has been adopted as as method-

ology by a range of work considering applications

in autonomous aircraft, spacecraft and road vehi-

cles [11], [43]–[45], in which a rational agent is

verified using model-checking to assess all its po-

tential decisions. This methodology clearly adapts

well if we can implement the Ethical Decision

Module component of our supervisory ethical layer

as a BDI agent, allowing us to verify that such a

system always chooses options that align with a

given code of ethics based on the information that

it has.

III. A SIMULATION BASED ETHICAL

REASONING LAYER FOR ROBOT CONTROL

ARCHITECTURES

Though robot controller architectures are many

and varied (see [46] for a review), most can be con-

sidered to fit a three-layered model paradigm [46],

given the hierarchical organisation of behaviours

being controlled [47]. The layers in such a hierar-

chy are characterised by the degree of abstraction

and temporal granularity at which they operate.

The highest level control layer generates overall

goals to be achieved (e.g., retrieve the beer from

the fridge). At the next control layer the goals are

broken down into a series of tasks that make up the

goal (e.g., move to fridge, open door). At the lowest

level tasks are broken down into motor actions that

the robot must execute (e.g., move forward, raise

arm)4.

Although this generalization of robot controllers

ignores defining features of individual architec-

tures, it serves as a useful framing mechanism for

the addition of ethical decisions via a specialised

fourth layer. Arkin proposed that the purpose of

an ethical layer is to moderate the outputs of the

other layers by evaluating them against a set of

ethical criteria [8], [48]. Ensuring ethical behaviour

through a separate layer has a number of advan-

tages. One key advantage is that the functionality

can be verified independently of the rest of the

robot controller [45].

However, an ethical layer that acts only as a

moderator can only evaluate behaviours that are

proposed as part of the normal controller’s opera-

tion. As discussed previously, acting ethically might

also involve being proactive, i.e. choosing a new

action specifically to adhere to ethical principles.

An example of such proactive behaviour is acting

to prevent a human from coming to harm even if

it might put the robot in danger (as per Asimov’s

laws).

A previous approach to addressing this issue was

to have the controller suggest all possible tasks as

behavioural alternatives, and not just those relating

to system goals [10]. However, the possibility of

modifying a controller to suggest alternatives in

the whole behaviour space relies on there being

a practicable number of behavioural alternatives.

In [10] this approach was possible due to a highly

constrained experimental setting where the environ-

ment could be discretised into a grid, and each grid

square was considered as a possible behavioural

choice. It seems reasonable to assume that in

most settings this will not be possible (due to

challenges in defining suitable discretisation, and

computational cost of evaluating a large number of

behaviours). Moreover, modifying the core robot

4Where a rational agent is used, as described in section II-E,
then it generally combines the processes of goal selection and
breaking the goal down into tasks.



6

controller in this way eschews the benefit of a

separate layer as an independently testable system.

By having the ethical layer generate behaviours

it can do so in a more constrained manner, given

the ethical principles being utilised. Further, it only

needs to do so when the behaviours suggested by

the other control layers do not satisfy those ethical

principles.

To this end we describe here an ethical layer that

not only evaluates options suggested by the other

control layers, but also generates and evaluates

behavioural alternatives. These behavioural alterna-

tives are generated as a consequence of ethical is-

sues it anticipates will occur if only the behaviours

suggested by the other layers are considered.

Where the ethical layer sits in the layer structure

(and hence what we mean by behavioural alterna-

tives) is dependent on the level of abstraction used

at each layer, and hence whether the outputs from a

given layer can be considered for their adherence to

the adopted code of ethics. Here we suggest that it

sits between the task and action layers as this is the

level of abstraction that best fits our adopted code

of ethics. Thus, tasks proposed by the task layer

need to be tested before they are used to generate

action sequences. The ethical layer takes as input

the tasks the task layer suggests, and outputs the

most ethically appropriate task to the action layer.

The ethical layer detailed here consists of four

modules: a Simulation Module to predict the out-

come of tasks; a Planner Module to generate al-

ternative tasks if those proposed by the task layer

have ethical issues; an Ethical Decision Module to

compare the simulated actions and select the most

ethically appropriate using declarative BDI reason-

ing, and an EBB data logging Module to record the

situations encountered and decisions made. Data

flow and module integration is shown in Figure 2,

and detailed in its caption. This is an extended

version of the architecture proposed in [49], but

with a more sophisticated, and transparently ethical

decision process.

In order to prove the principles of operation for

the control architecture and verification process,

and to provide a clearer system description, we

consider here a simple demonstration use case. In

this case a second robot is used as a proxy human

(H-robot), operating with the ethical robot (E-robot)

in a sparsely featured environment containing a few

objects which can be defined as safe or dangerous

(dependent on experimental settings, see Figure 4).

This demonstration use case will be elaborated

upon in the module descriptions, and in Section V.

In this context if the proxy human is predicted to

move towards a dangerous location, the Planner

Module will suggest points at which the robot can

intercept the human path as potential tasks to be

evaluated.

In the demonstration use case we have treated

Asimov’s laws of robotics [9] as a test code of

ethics, despite their obvious shortcomings, noted

above and in [2], [50]. There is currently no

agreement on the code of ethics a robot should

adhere to, even in simple scenarios [2]. However,

we require ethical rules against which a robot’s

behaviour can be evaluated, and hence demonstrate

our architecture. In the context of the current paper,

therefore, we choose to make use of Asimov’s

laws to demonstrate the efficacy of our approach to

proactive, transparent and verifiably ethical robots

without assigning any particular status to these

laws.

Asimov’s Laws of robotics [9] are the earliest

and best known set of ethical rules proposed for

governing robot behaviour. Despite originating in

a work of fiction, Asimov’s Laws explicitly gov-

ern the behaviour of robots and their interaction

with humans. This contrasts with more traditional

consequentialist ethical frameworks which would

need adapting to this purpose. The laws are simply

described as follows.

1 A robot may not injure a human being or,

through inaction, allow a human being to come

to harm.

2 A robot must obey the orders given it by hu-

man beings, except where such orders would

conflict with the First Law.

3 A robot must protect its existence as long as

such protection does not conflict with the First

or Second Laws.

We have supplemented Asimov’s laws with addi-

tional rules that relate to the likely success of an

intercept plan. These are given a lower priority than

the 3rd law, so will only influence behaviour if no

other law is violated.

4a If the human is far from danger prioritize

waiting time at the intercept point.

4b If the human is close to danger prioritize

shorter robot walking distance.

The rationale behind 4a is that the longer the wait

time for the robot after arriving at the intercept

location before the human arrives, the more ro-

bust the system is to errors in predicted paths

and travel times. The rationale behind 4b is that

walking incurs some risk of falling over. This risk

increases the further the robot walks, so a shorter

walking distance increases the chance of achieving

the robot’s goal.

A. Simulation Module

The Simulation Module predicts the outcomes of

behavioural alternatives. In order to do so it needs

to be equipped with:

1) a model of the robot controller;

2) a domain specific model of the human;



7

Ethical Layer 

Robot Controller 

Goals	

Tasks	

Ac+ons	

Ethical	Decision	

Module	

Simula+on	

Module	

Planner	

Module	

✗
✗
✓

Most	ethical	

alterna+ve	

Performance	

metrics	

Pro-ac+ve	plans	 Ethical	

Black	Box	

Behavioural	

alterna+ves	

Pro-ac+ve	

Plans	needed	

Figure 2: The architecture of our proposed Ethical Layer alongside the Robot Controller. The task layer in

the Robot Controller generates a set of tasks that might fulfil the current goal proposed by the goal layer.

Before generating the actions needed for task execution, the set of proposed tasks is sent to the Ethical

Layer, along with sensor data for the current situation and the goal to be achieved. The Simulation Module

simulates each of the tasks (behavioural alternatives), producing a set of evaluation metrics for each, that

are sent to the Ethical Decision Module. The Ethical Decision Module checks its ethical criteria to see if

ethically proactive tasks are required, and triggers the Planner Module if so. When triggered the Planner

Module generates a set of pro-active tasks to send to the Simulation Module, and as with the controller

generated tasks they are simulated. If the Planner Module was triggered the Ethical Decision Module

adds the pro-active task simulation results to its current set. The Ethical Decision Module evaluates the

set of simulated task alternatives to determine the most ethically appropriate, and sends this selection to

the action layer for execution. A solid arrow is a flow of data, a dashed arrow is a control signal. The

Ethical Black Box (EBB) Module logs data from each of the other modules (for clarity these data flows

are not shown).

3) a model of the world; and

4) a set of metrics against which the simulated

plans are measured.

As stated in [49] the models need only be of

sufficient fidelity to handle the domain in which

the robot is to operate. In the demonstration case

presented here, a low fidelity simulation, modelling

the motions of agents as ballistic trajectories, is

adequate to prove the principles of operation.

In order to simulate its own behaviour the eth-

ical robot uses three basic assumptions: (1) the

robot uses a path planning algorithm that navigates

the shortest path to its goal; (2) the robot has

collision avoidance, so it plans a path to avoid

known obstacles, and stops when 0.5m or closer to

the human or a dangerous obstacle, and (3) valid

goal locations are objects in the environment. It is

also important to note that behavioural alternatives

consist of target locations in the arena to be moved

to.

In order to simulate the behaviour of the human

the robot’s model also incorporates four basic as-

sumptions: (1) The human walks in a straight line

to its goal. (2) The human goal is always an object

in the environment. From these two assumptions

the human goal can be inferred by projecting a line

in its direction of travel, and the closest object to

that line is assumed to be the goal. (3) The human

is unaware of which objects are dangerous. And

(4) the human has collision avoidance, so it plans

a path to avoid known obstacles, and stops when

0.5m or closer to the robot.

The world model in this demonstration case

consists only of static objects, designated as safe

or dangerous (see Figure 4).

Using the goal estimated for the human robot,

and the ethical robot’s goal as suggested for a

particular behavioural alternative, paths are simu-



8

lated for both agents. We also simulate the obstacle

avoidance process running on both agents. Hence,

if the paths of the two agents would come within

0.5m of one another they will stop.

The simulated paths are scored on a set of per-

formance metrics which will be used in the Ethical

Decision Module to evaluate the plans. The set of

metrics chosen reflects the characteristics of a given

simulation – some metrics will reflect goal utility

and others ethical implications. These metrics are

not combined into an overall utility function but

passed to the ethical decision module where they

are reasoned about declaratively (see section III-C).

The precise set of metrics chosen is both domain

and ethical criteria specific, but the set used here

demonstrates the basis upon which they should be

selected:

• H-robot distance to danger – danger to the

human can be considered to increase the closer

it gets to a dangerous object;

• E-robot distance to danger – danger to the

robot can be considered to increase the closer

it gets to a dangerous object;

• E-robot distance to objective – here the robot

objective is to get to a designated object in the

environment, the closer it gets to this object

the better its goal can be considered achieved;

• E-robot wait time at intercept point – how

long before the human the robot arrives at the

intercept point (used for law 4a);

• E-robot walking distance – how far the robot

walks (used for law 4b).

While the set described here is relatively simple,

more complex metrics could be calculated if the

context demands it. One caveat being that any

metric added must produce a numerical output

(however it is calculated), such that plans can be

compared using the declarative logic structures of

the Ethical Decision Module, resulting in a defini-

tively best plan.

B. Planner Module

The Planner Module generates additional proac-

tive behavioural alternatives, and does so in such

a way that they are likely to satisfy the ethical

criteria. It is triggered if, after simulation and eval-

uation (by the other modules) of the behavioural

alternatives suggested by the robot controller, the

outcomes are deemed not to satisfy the ethical

criteria by the ethical decision module.

In the current implementation the plans are gen-

erated using a heuristic based on assumptions of the

ethical issues that will be encountered, and features

specific to the use case. That is, plans that are

likely to keep the human and robot from danger and

give a range of values for the other metrics being

evaluated. We have chosen this approach to allow

us to demonstrate the utility of the architecture

as a whole. Clearly it does not generalize well,

requiring the existence of an appropriate heuristic.

In Section VII we suggest future work in which the

Planner Module could utilise probabilistic methods

to intelligently sample the behaviour space.

In the demonstration case presented here, if the

H-robot is predicted to be heading toward danger

(as evaluated by the Ethical Decision module),

proactive tasks are generated and tested. Three task

alternatives are generated as points on the projected

path of the H-robot. They are selected as the earliest

point along the path the E-robot is able to reach

in time to intercept, and then two equally spaced

points further along the path. This simple heuristic

is used as it is likely to produce behaviours in which

the E-robot intercepts the H-robot, preventing it

from reaching danger. We choose a limited number

of alternatives to improve the responsiveness of the

E-robot and prevent the Ethical Decision module

from introducing delays. Further, considering a

small number of alternatives matches with models

of human cognition for similar processes [51], from

which our architecture draws inspiration [49].

C. Ethical Decision Module

In order to select a behavioural alternative, the

Ethical Decision Module utilises the simulation

metrics (reported by the simulation module) to

assess each task against a set of ethical rules. In our

previous work describing a related architecture [49]

simulation metrics were collated using a mathemat-

ical function to give a single numerical value for

each alternative to allow comparison. Although this

has advantages in terms of computational efficiency

and performance tuning (through parameters in the

function), it presents difficulties in terms of both

human understanding and formal verification of the

decision process. This is particularly problematic if

model-checking is the chosen verification method,

since this requires a finite search space and arbitrary

numerical values tend to introduce infinite (or at

least very large) search spaces. To overcome these

two issues, our ethical decision module makes use

of declarative logic based reasoning as typified by

BDI agents.

An obstacle here is that current BDI program-

ming languages are not widely known and represent

a style of programming unfamiliar to those in

robotics. Furthermore the need to use one pro-

gramming language for decision making and a

different one for the underlying control and then

integrate these programs together on a robotic plat-

form increases, rather than decreases the potential

for errors. We have opted therefore to integrate

BDI style reasoning into Python as a library,

BDIPython. (Python is widely used for robotics

coding.) BDIPython has been designed as a generic

module that could be used in many settings and



9

can be considered as simply the tool by which

we enabled verifiable BDI reasoning in our ethical

decision module. However, since it has not been

described elsewhere, we will digress briefly into

an outline of its key features.

In BDIPython a BDI agent is a Python object

and its reasoning cycle can be started and stopped

as the program so desires. This agent object then

interacts with the rest of the Python program which

can be viewed as its environment.

BDIPython maps BDI concepts to Python con-

structs:

• Beliefs. We implemented a data structure for

an agent’s beliefs, referred to as the belief

base in BDI programming, using a Python

dictionary. The belief base represents a set of

ground first order predicates for the purposes

of logical reasoning5 and will be treated as

such in what follows. We briefly outline some

implementation details in the supplementary

materials Section II.

• Goals are also stored in a Python dictionary.

We did not use goals in this case study6 and

so will not discuss them in any further detail.

• Rules consist of of two Python functions one

of which represents a logical guard which

determines whether the rule is applicable

by inspection of the agent’s belief and goal

bases. This guard function may return values,

representing the instantiation of variables in

queries, that can be passed as parameters to

the second function, the rule body. The rule

body is executed if the rule is applicable.

When more than one rule is applicable the sys-

tem simply selects the first in the list of rules

– as is standard in many logic programming

languages.

Rule guards and bodies may contain arbitrary

Python code, but BDIPython supplies several sup-

port functions to assist their construction, in par-

ticular functions for inspecting the belief and goal

dictionaries and composing the results using propo-

sitional logic connectives such as AND and OR. It

also provides functions for adding and removing

beliefs and goals from within rule bodies.

The reasoning cycle for a BDIPython agent first

updates its belief dictionary (in an application

specific fashion) typically as a response to sensor

inputs, then it manages its goals (checking and

removing any that have been achieved), lastly it

selects a rule and executes it. This reasoning cycle

is shown in Figure 3.

BDIPython is best suited for rules whose guards

can be expressed as propositional logic formulae

5Note that the belief base represents actual beliefs, hence it
is ground. Queries over the belief base may contain variables
which are instantiated by logical reasoning.

6since our ethical decision module is not motivated by the
desire to achieve some particular outcome.

Figure 3: The Python BDI Reasoning Cycle

over the agent’s beliefs and goals and thus as func-

tions which simply return true or false. However

limited support is provided for richer reasoning

in guards. In particular it is possible to construct

a rule which selects the best option from among

several beliefs, based upon a comparison function

defined by the programmer, and passes this option

as a parameter to the rule body. If the comparison

function does not define an antisymmetric transitive

relation (for instance, the relation it defines repre-

sents a cyclic graph) so no ‘best’ option can be

identified, then the rule is considered inapplicable

(i.e., its guard is considered to be false) and so

not selected for execution. This requirement for

antisymmetry and transitivity will turn out to be a

key consideration when we discuss the verification.

We use BDIPython to implement two behaviours

within the Ethical Decision Module. Firstly the

agent controls the triggering of the Planner Module.

In the get percepts part of the reasoning cycle

the human distance to danger is checked for a set

of robot controller task alternative simulations. If

it is below a threshold for all of them, a belief

that pro-active tasks are needed is added to the

belief base. This belief in turn is used as a guard

for a rule that when executed signals the Planner

Module. This mechanism is used as the Planner

Module is a separate process, not part of the BDI

agent; importantly it allows logging of said process

through the belief base and rule activation.

Secondly we use the ability to select a best option

to allow our ethical layer to select the most ethical

of the tasks available to it and then transform the

rule body into an intention to add the belief that

this should be the current task. The Action layer

then executes the current task.

At the start of the process for selecting the most

ethical task in accordance with Asimov’s laws, the

agent’s belief base contains a number of beliefs

about the existence of candidate tasks suggested

either by the underlying robot control system or

by the Planner Module. The tasks are labelled,

t1, . . . , tn (one label for each task), and the belief

task(ti) is in the agent’s belief base for each of

these labels.

We implement two comparison functions for

comparing two tasks ti and tj . The underlying



10

BDIPython implementation for selecting a best op-

tion ensures that all matching beliefs are compared

to find the best (by iterating twice over the belief

base), so we can use it to compare all tasks, ti, tj ,

such that task(ti) and task(tj) appear in the belief

base.

These comparison functions used to implement

Asimov’s Laws, are designed to respect the order

of precedence of said Laws. This is accomplished

using a series of if-then-else statements which

explicitly state this order. Two rules, one for each

different comparison function, are used, the first

for when the agent believes the human is close to

danger and the second for when the agent believes

the human is not close to danger (to represent the

distinction between rules 4a and 4b discussed in

Section III). This core set of rules and compari-

son functions form the primary component of the

Ethical Decision Module. As the Ethical Decision

Module implements the ethical rules, it is this

component which needs to be verified.

We show mathematically the algorithm used by

the Ethical Decision Module in Box 1 and discuss

it here. In Box 1 we use the following notation:

• G← RB is our syntax for a BDIPython rule

where G is the guard (evaluated against the

belief and goal bases) and RB is the rule

body which is executed if the guard is true.

We use quantification with this notation – e.g.

∃x.(G(x) ← RB(x)) – to indicate when a

parameter, x, is returned by the guard and

passed to the rule body.7

• B(p) means that p is a predicate in the belief

base of the agent.

• add_belief(p) adds the predicate p to the belief

base of the agent.

The two rules are shown in equations 1 and 2.

These both use BDIPython’s support for picking a

best option. In equation 1 the best task is chosen

according to the comparison relation ⊳wd (where

t1 ⊳wd t2 means t1 is preferable to t2 as t1 has a

lower walking distance) in the situation where the

agent believes danger_close. In equation 2 the best

task is chosen according to the comparison function

⊳wt (the preferable task will have longer wait time

between task completion and human interception)

in the situation where the agent does not believe

danger_close. Both rule bodies add a belief that

the selected task is the ‘current task’ (this belief is

then consulted by the Action Layer when deciding

which task to execute).

The two comparison functions are very simi-

lar and are defined as relations in definitions 1

and 2 (and implemented as nested if-then-else

7Note that a use of an arrow symbol here is inherited
from logic programming notation (and is commonly used in
this context in BDI languages) but does not imply a logical
relationship between guard and rule body.

statements). These relations represent our modified

version of Asimov’s Laws and use three other

specially designed relations ≺hd, ≺ro, ≺rd which

compare the two tasks with respect to how close

the human is to danger (≺hd), how close the robot

is to its objective (≺ro) and how close the robot

is to danger (≺rd). These are used in order of

precedence – i.e., the two tasks are only compared

with respect to ≺ro if they are indistinguishable in

terms of how close the human is to danger. Lastly

– if there is no difference between the two tasks

in terms of these three orders then ⊳wd compares

them using the valuations of the walking distance

associated with each task vwd(t1) < vwd(t2), and

⊳wt compares them according to the waiting time

associated with each task.

Our three relations pertaining to each individual

Law are implemented in the same way using ≺m

(the relation between two tasks according to metric

m) where m is one of hd, ro or rd and t1 ≺m t2
means t1 is preferable to t2 according to metric

m In order to prevent small changes in sensor

information having too great an effect on robot

behaviour we use a threshold, thm, for each metric

so that if two tasks are both ‘good enough’ –

e.g., in the outcome of neither task the human

ends up particularly close to the danger – then

they are considered comparable, ≈m. Therefore in

the case of a metric to be minimised (e.g., the

closeness of the robot to its goal), t1 is better than

t2 if the value calculated for t1 on that metric,

vm(t1), is below the threshold for the metric, and

vm(t2) is above the threshold; t1 is also better

than t2 if both vm(t1) and vm(t2) exceed the

threshold and vm(t1) < vm(t2). This is formalised

in definitions 3 and 4.

We assume, in what follows, that tasks t1
and t2 have been generated in such a way that

vm(t1) 6= vm(t2) for any metric. This means that

≺m is antisymmetric.

The ethical behaviour of the robot is hence

embedded not only in the BDI agent rules, but also

in the set of thresholds used to govern if, and when,

a law might be violated. For example, a high thresh-

old for robot danger distance could make the robot

more prone to self preservation, only considering

tasks incomparable on this metric if both placed

the robot a long way from the dangerous area. It is

important to note that how these values are labelled

and used makes their impact transparent to human

observation and interpretation.

Clearly this approach to ethical decision making

assumes that the chosen code of ethics used can

be expressed in a similar way, i.e., with scorable

metrics that can be used to compare the desirability

of behavioural alternatives in a declarative fashion.



11

(∃x. B(danger_close) ∧ B(task(x)) ∧ ∀y 6= x. x⊳wd y)← add_belief(current_task(x)) (1)

(∃x. ¬B(danger_close) ∧ B(task(x)) ∧ ∀y 6= x. x⊳wt y)← add_belief(current_task(x)) (2)

Note: In what follows we use the notation vm(t) to indicate the valuation of task, t, according to metric

m. So vhd(t) indicates the distance task t leaves the human from danger and vwd(t) indicates the walking

distance associated with task t.

Definition 1 (⊳wd): Task, t1, is preferable to task t2 if t2 places the human closer to danger (t1 ≺hd t2),

else it is preferable if t1 places the robot closer to its objective (t1 ≺ro t2), else t2 places the robot closer

to danger (t1 ≺rd t2) else t1 has a shorter walking distance t1 <wd t2. Formally t1 ⊳wd t2 iff

1) t1 ≺hd t2 or,

2) t1 ≈hd t2 and t1 ≺ro t2 or,

3) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≺rd t2 or,

4) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≈rd t2 and vwd(t1) < vwd(t2).

Definition 2 (⊳wt): Task, t1, is preferable to task t2 if t2 places the human closer to danger (t1 ≺hd t2),

else it is preferable if t1 places the robot closer to its objective (t1 ≺ro t2), else t2 places the robot closer

to danger (t1 ≺rd t2) else t1 has a shorter waiting distance t1 <wt t2. Formally t1 ⊳wt t2 iff

1) t1 ≺hd t2 or,

2) t1 ≈hd t2 and t1 ≺ro t2 or,

3) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≺rd t2 or,

4) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≈rd t2 and vwt(t1) > vwt(t2).

Definition 3 (≺m): Given a metric, m and a threshold thm then ≺m defines a relation on tasks such

that t1 ≺m t2 iff vm(t1) < thm ∧ thm < vm(t2) or v(t1) < vm(t2) < thm (where the metric is to be

maximised – ≺hd and ≺rd) and t1 ≺m t2 iff thm < vm(t1) ∧ vm(t2) < thm or thm < vm(t2) < vm(t1)
(where the metric is to be minimised – ≺ro).

We use the notation t1 ≈m t2 if t1 and t2 are considered incomparable on ≺m (i.e., both are below the

threshold, thm, introduced in definition 3).

Definition 4 (≈m): t1 ≈m t2 iff t1 6≺m t2 and t2 6≺m t1.

Box 1: Mathematical description of the BDI Code for the Ethical Decision Module

D. Ethical Black-box Module

In line with the suggestion by Winfield and

Jirotka [25] we have a module that logs the outputs

of the other modules. Specifically, it logs:

• location data;

• behavioural alternative parameters;

• metrics for each alternative as scored by the

evaluation module; and

• the reasoning process used in the ethical deci-

sion module: the belief base at each iteration,

rule invocations, task selection decisions and

reasoning, the plan output to the robot con-

troller

Each item of data is logged with a time stamp to

allow recreation and analysis of a given moment.

Further details of the data logged, particularly of

the reasoning process, are given in Section V as

they relate to the BDI implementation explained in

Section III-C.

IV. VERIFICATION OF THE ETHICAL DECISION

MODULE

We adopt the verification methodology from [11]

which describes the formal verification of rational

agent components in autonomous systems. This

uses model checking to demonstrate that the ra-

tional agent always tries to act in line with require-

ments and never deliberately chooses options that

lead to bad states (e.g. ones the agent believes are

unsafe). The agent’s program is assessed to deter-

mine logical predicates that represent information

coming in from the outside world. All possible

combinations of these inputs are then explored via

the model checker, allowing the verification to be

agnostic about how the real world might actually

behave; it simply verifies how the agent behaves no

matter what information it receives.

In this context, model checking can be viewed as

a kind of exhaustive testing. The BDIPython agent

executes its reasoning cycle – at given moments

in this cycle the agent receives some information

from the external program (that certain tasks are

available, for instance, and the human is close to



12

danger and that the walking distance is less for one

task than for another) and then continues execution.

When execution completes, or the agent reaches a

state that has already been examined, the model-

checker backtracks to the last perception of interest

and supplies a different set of information to the

agent until the result of all possible sets have been

explored. During this process, the model checker

checks that certain properties hold (e.g., that the

agent never selects a task that places the human in

danger).

In order to apply model-checking to our Eth-

ical Decision Module we need to translate our

BDIPython program, plus the semantics of the

BDIPython reasoning cycle into the input language

of a model checker.

The approach from [11] is implemented in the

MCAPL framework [52] which provides access

to model checking facilities to programs written

in a wide range of BDI-style agent programming

languages so long as those languages have a Java-

based program interpreter. The MCAPL frame-

work has two main sub-components: the AIL-

toolkit [53] for implementing interpreters for ra-

tional agent programming languages and the Agent

JPF (AJPF) model checker which is an extension

of the Java Pathfinder (JPF) model-checker for Java

programs [54].

AJPF is a customisation of JPF that is opti-

mised for AIL-based language interpreters. Agents

implemented using the AIL-toolkit can thus be

model checked in AJPF. It provides a property

specification language to support reasoning about

temporal properties of BDI programs and also

provides support for implementing models of the

agent’s external environment in Java so that these

models return combinations of the possible inputs

to the agent. The AIL provides data structures

for beliefs, intentions, goals, etc., which are sub-

sequently accessed by the model checker and on

which the modalities of the property specification

language are defined.

Thus, we must first implement an interpreter for

the BDIPython reasoning cycle in the AIL. Second,

a parser must be implemented from BDIPython

programs into suitable Java data structures in or-

der for the program to execute in this interpreter.

Third, we must create an appropriate environment

to model the rest of the Python program, and finally

our properties of interest must be expressed in

the AJPF property specification language. Some of

this work was independent of the specific applica-

tion described here and can be re-used in future

applications – for instance once the parser was

implemented it could be used for any BDIPython

program not just ones expressing ethical deci-

sion making. Nevertheless, as when we introduced

BDIPython, we briefly outline this work here since

it is not described elsewhere.

A. Verification of Python-based Ethical Decision

Module

We use the AIL-toolkit not to create an inter-

preter for a full programming language but to build

a model of a BDIPython agent. Because BDIPython

has an explicit reasoning cycle we can model this

easily within AIL and then AJPF can be used to

simultaneously build and verify a model of the

BDIPython agent. Much of the supporting and

surrounding Python code is then treated as part of

the agent’s environment in a black-box fashion.

The use of the MCAPL framework is not funda-

mental to our approach. We have adopted it because

of its dual convenience as a framework for building

verified models of BDI agents and for its support

for the formal verification of autonomous systems

controlled by rational agents. For full assurance of

Ethical Decision Modules of this kind, we would

recommend the development of a program model-

checker for Python (that is a model-checker that

operates directly on Python code rather than on a

model of some sub-system), or possibly a customi-

sation of AJPF to Jython [55] (the JVM Python

interpreter).

In order to use the MCAPL framework to verify

our Ethical Decision Module we need to use the

AIL to build a Java data structure that represents

the BDIPython agent and then execute this in our

implementation of the BDIPython reasoning cycle

in order to create a model of the engine’s reason-

ing. This is a different challenge to the normal

implementation of a BDI-language in the AIL.

Python lacks the formal operational semantics that

underpin most BDI languages (though semantics

have been reverse engineered for large parts of

the language [56], [57]) which in turns means

BDIPython lacks a formal semantics. Hence, the

system, as a whole, lacks the clear separation be-

tween BDI concepts and the ‘environment’ (which

is how we will need to treat the rest of the Python

program) that is present in many BDI languages.

From the BDIPython code for an agent, we auto-

matically construct a representation of the Python

‘agent’ object using data structures from the AIL-

toolkit and then impose an operational semantics

upon the Ethical Decision Module based on the rea-

soning cycle shown in Figure 3. The AIL provides

a data structure for agents which contain a belief

base, a goal base and a rule base. The belief and

goal bases are sets of ground first order predicates.

We translate the Python dictionaries representing

the Python agent’s belief and goal bases into a set

of such predicates according to semantics outlined

in supplementary material Section II.

AIL rule structures consist of a guard (evaluated

against the agent’s belief and goal base, and poten-



13

tially other structures if relevant) and a sequence of

deeds which represent atomic actions (again repre-

sented as first order predicates) in the environment

or the addition or removal of beliefs and goals. We

impose restrictions on the Python code that may

appear in the functions defining guard and rule

bodies in order to more easily construct these rule

descriptions in Java.

We assume that a rule body contains only

a sequence of atomic Python expressions (i.e.,

no control structures such as ‘if’ statements or

‘for’ loops). Each of these atomic expressions is

treated as an action in the environment unless

it is add_belief or drop_belief from BDIPython,

in which case it is treated as belief addition or

removal. Where this function definition contains

extra parameters these are converted to variables

wherever they occur in the body of the rule. So,

for instance, if param1, is a parameter of the rule

definition and do_something_with(param1) appears

in the rule body then this will be converted into the

predicate do_something_with(X) where X will

be bound to the input variable at run time.

We require rule guards to be expressions built up

from the library functions B (the agent believes),

G (the agent has a goal) and the support provided

for propositional logic: AND, OR, and NOT plus

comparison functions (as used when the rule is

to select the best option). With the exception of

comparison functions these can be converted to an

AIL guard expression with the obvious semantics.

We restrict comparison functions, x ⊳ y, to a

sequence of nested if statements, each if with

condition conditioni (for 1 ≤ i ≤ n) such that the

function returns true (i.e., x ⊳ y) if the condition

is satisfied. Thus x⊳ y if conditioni(x, y) returns

true for some i and x✚⊳y otherwise). Each condi-

tion is a conjunction of (possibly negated) Python

expressions (treated as functions on x and y that

return true or false).

We add an additional phase into the reason-

ing cycle of agents in our AIL-model in which

Python calculations can take place and expect the

verification environment to return the results of

these calculations which the agent then stores in a

special calculation base. This calculation base can

be consulted when evaluating the guards on rules

in the same way that the belief base is consulted8.

The Python expressions that make up the conditions

in our comparison functions are treated as such

Python calculations and stored in the calculation

base.

From the rule expression and the conditions and

Python expressions that make up the comparison

function, it is straightforward, if fiddly, to construct

8The AIL toolkit contains considerable support for this kind
of customised base construction.

a logical expression representing the rule guard.

Consider a rule of the form shown in equation 3.

∃x. (B(something(x))∧

∀y 6= x.B(something(y)→ x⊳ y)←

rb(x) (3)

The guard of this rule is essentially the expression

on the left hand side of the ← though it is trans-

formed slightly for use in logic programming style

reasoning 9. x⊳y is expanded out to the expression

condition1(x, y) ∨ . . . ∨ conditionn(x, y). Each

expression conditioni(x, y) is expanded out in

turn to a conjunction of (possibly negated) Python

expressions. So, for instance if conditioni(x, y)
were x 6≺hd y ∧ y 6≺hd x ∧ x ≺ro y then each

of x ≺hd y, y ≺hd, and x ≺ro y is treated as a

Python expression and the calculation base will be

consulted for their value. If some x is found that

satisfies the expression then it will be passed to the

rule body as a parameter10.

Therefore our functions from Box 1 for compar-

ing two tasks according to specific metrics ≺hd,

≺ro and ≺rd as well as simple comparisons of

walking distance and time using < and > become

Python calculations under this process.

Once the translation of the Python code into an

AIL agent data structure has been carried out it can

be executed using a reasoning cycle created for it,

using support for this provided by the AIL.

The agent data structure and executable reason-

ing cycle can be combined with an application spe-

cific implementation of an environment (i.e., one

that can return all possible combinations of beliefs

and calculations as required by the methodology we

are using). This enables AJPF to construct a model

of all possible executions of the agent.

Once we have such a model we can formally

verify properties expressed in the AJPF prop-

erty specification language. In general, constructing

such properties is straightforward (the language

has constructs that refer to the agent’s beliefs and

goals etc.). Python calculations, however, represent

a non-standard part of our model and so we treat

these as percepts in the property specification lan-

guage. Percepts are facts that are perceptible to

some observer of the environment but not necessary

believed by the agent.

Note: Beliefs vs. Python Calculations: The de-

cision about what information should be stored as

beliefs and what should be calculated on the fly

by Python is in the hands of the programmer using

BDIPython. Input from sensors should be stored as

beliefs, but other information can often plausibly be

9The details are unimportant here but the mechanism is
entirely standard.

10via a process of unification in the AIL implementation
which uses many concepts from logic programming.



14

treated either way. In the current system, the dis-

tinction makes little difference to the verification.

V. EXPERIMENTAL VALIDATION AND FORMAL

VERIFICATION

We have conducted a series of experiments in

order to validate that our approach results in robot

behaviour that adheres to the ethical rules described

in Section III, and allows the system’s reasoning to

be transparently ethical, verifiable and proactive.

To first establish the system obeys Asimov’s

Laws we reconstructed the experiments previously

carried out in [49], with our supplemental rules

(laws 4a and 4b) disabled. We then duplicated the

experiment that demonstrates human safety with

those supplemental rules enabled to observe how

they change the robot behaviour, while demonstrat-

ing that the robot still adheres to Asimov’s Laws. A

summary of the aims of each experiment is shown

in Table I.

A secondary purpose of our experiments is to

demonstrate the feasibility of an ethical black-

box recorder as proposed in [25]. In particular,

we aim to demonstrate the suitability of our BDI

based approach for producing human scrutable logs

through a highly transparent decision process. At

each update iteration we record the belief base,

the rule executed, and – if a compare rule is ex-

ecuted – the comparison results used for behaviour

selection. Also logged is the data from the tracking

system, the behavioural alternatives evaluated, and

the scores in each evaluation metric. Each item of

data is time-stamped to enable later reconstruction

of all decisions made. This log data is then used to

produce a description of the process that has been

followed

In addition to the validation experiments, we

have also followed the previously described formal

verification procedure for the ethical decision mod-

ule. The BDI rules and comparison functions were

extracted from the Ethical Decision Module and

parsed into data structures in the AIL. Properties

expressing adherence to Asimov’s laws were then

verified using AJPF.

A. Experimental Setup

In these experiments we use two NAO robots as

the H-robot and E-robot, as defined in Section III,

i.e., a robot acting as a proxy for the human, and a

robot controlled using our ethical architecture. All

experiments were carried out in a 3m × 2.5m arena,

with 2 objects designated A and B on the opposite

side of the arena from the start locations of the

robots; the setup is shown in Fig 4. Object A was

designated ‘dangerous’, and B was designated as

‘safe’. The robots are considered to have encoun-

tered danger if they get within 1m of the dangerous

object. To enable the robots to navigate, and the E-

robot’s controller to simulate the environment and

both robots, a 4 camera tracking system was used

that, via reflective markers, tracks positions and

orientations of the robots and objects (though the

objects were static) at 30Hz.

At the start of each trial both H and E robots

move to their designated start locations (see Fig-

ure 4), and when both have arrived the trial itself

begins. Both H and E robots have pre-determined

objective positions (to move to), which are varied

by experiment. Whether the E-robot’s objective is

attributed to its own controller or via an instruction

from the H-robot is determined in the experimental

script and varied by experiment.

Figure 4: The experimental setup, the red NAO is

H-robot and the blue NAO is E-robot.

Both H and E robots use the tracking information

to simulate low-level collision detection that would

cause them to stop if within 0.5m of each other

or an object. The E-robot assumes that the H-robot

does not know if a location is dangerous. The E-

robot controller can re-start its motion if the H-

robot is observed to be stationary – it treats a

stationary human as an obstacle to be avoided.

As the H-robot has no ethical layer it simply

moves to its predetermined objective unless prox-

imity to the E-robot causes it to stop. The ethical

layer in the E-robot operates at about 1Hz11, re-

evaluating a set of plans and selecting the most

ethical course of action, determining the goal of the

E-robot. The E-robot’s control layer suggests A and

B as possible goals for evaluation, supplemented if

required by the Planner Module in its ethical layer.

The walking speed of the H-robot robot is set

to be lower than the speed of the E-robot. The

difference in speed gives the E-robot a larger range

for intercepting the H-robot. The speeds of the H-

robot and E-robot were approximately 0.02ms−1

and 0.04ms−1 respectively. These speeds were not

varied during the experiment.

B. Experiment Settings and Results

All results reported below are obtained with

no changes to the controllers of the H and E-

11empirically determined to provide sufficiently reactive plan-
ning, without overburdening the NAO controller with control
requests.



15

Experiment Law(s) Tested

Self Preservation Law 3

Obedience Law 2 overrides Law 3

Save Human Law 1 overrides Law 3

Save Human and Obey Law 1 overrides Law 2 and 3

Save Human with Supplementary Rules Law 4a

Table I: Summary of experiments

robots. The E-robot danger distance threshold and

H-robot danger distance thresholds are set to 1.5m;

this allows for some errors in E-robot simulations

while still keeping the H-robot safe. The E-robot

objective distance threshold is set to 0.5m, the

distance needed to consider the objective reached.

The different experimental conditions are set by

the goals of the robots, and whether or not the

E-robot goal is commanded by the H-robot. Each

experiment is a single demonstration trial (repre-

sentative of multiple trials conducted with the same

settings) to facilitate clear discussion of the data

logs recorded in the EBB. For each experiment the

decision processes are obtained directly from those

logs.

1) Self Preservation: The aim of this experiment

is to demonstrate adherence to Law 3, i.e., that the

E-robot acts to keep itself safe, if (and only if) this

does not conflict with obedience (Law 2) or human

safety (Law 1). For this experiment the H-robot

remains stationary at its start location, the E-robot

objective is A and it is not H-robot commanded.

There is no inferred goal as the H-robot is sta-

tionary, so the H-robot is believed to be safe. There

is no H-robot command, and of the two behavioural

alternatives, moving to location A or to location

B, A is considered dangerous to the E-robot (i.e.,

danger distance is below the threshold) while B

is not. Hence, the E-robot moves to location B

(Figure 5).

Figure 5: The tested behavioural alternatives for the

initial plan (yellow dots), are the A and B objects.

The E-robot path (blue dots) moves to the non-

dangerous object B and stops 0.5m from it (due to

collision avoidance). The orange circle shows the

E-robot and H-robot danger thresholds.

2) Obedience: The aim of this experiment is

to demonstrate that adherence to Law 2 overrides

Law 3, i.e., the E-robot will walk toward danger if

commanded by the H-robot. This experiment only

differs from the previous one in that the robot’s

objective is now H-robot commanded.

There is no inferred goal as the H-robot is

stationary, so the H-robot is believed to be safe.

There is belief in an H-robot command, so for the

two behavioural alternatives, locations A and B, B

is above the distance to E-robot objective threshold,

while A is below the threshold. The values for robot

distance to danger are not compared due to Law 2

having priority. Hence, we observe that the E-robot

moves to location A even though it is dangerous to

the robot (Figure 6).

Figure 6: The tested behavioural alternatives for

the initial plan (yellow dots), are the A and B

objects. The E-robot path (blue dots) moves to the

dangerous object A and stops 0.5m from it (due to

collision avoidance). The orange circle shows the

E-robot and H-robot danger thresholds. The purple

circle is the robot objective distance threshold.

3) Save Human: The aim of this experiment is

to demonstrate that adherence to Law 1 overrides

Law 3, i.e., the E-robot will act to prevent the H-

robot from coming to harm even if doing so is

dangerous for itself. For this experiment the H-

robot objective is A, the E-robot objective is B and

it is not H-robot commanded.

The inferred goal for the H-robot is A, so the E-

robot believes the H-robot is in imminent danger.

Of the 5 behavioural alternatives the objects A and

B and intercept point i3 (see Figure 7) allow the

H-robot to come closer to danger than the allowed

threshold. Hence, points i1 and i2 are considered

more desirable than any of the others, and though it

puts the E-robot closer to danger than the threshold,

i1 is selected as it puts the robot further from

danger than i2. The robot objective distance is not



16

checked due to there being no belief in any H-

robot command. Hence, we observe the E-robot

moves to intercept the H-robot. Due to inaccuracies

in simulated movement times the intercept occurs

with the E-robot approaching from the side. The

precise target point shifts over time due to replan-

ning compensating for inaccuracies in simulated

potential intercept points and movement times. It

is important to note that despite this reality gap

the intercept still occurs. After interception, the H-

robot is no longer believed to be in danger and the

E-robot moves to its remaining goal B (Figure 7).

Figure 7: The tested behavioural alternatives for

the initial plan (yellow dots), are the A and B

objects, and the intercept points i1-i3. The E-robot

path (blue dots) moves to intercept the H-robot

(path in red dots). The H-robot stops when the E-

robot approaches within 0.5m. The E-robot then

continues to the safe object B, and stops 0.5m from

it (due to collision avoidance). The orange circle

shows the E-robot and H-robot danger thresholds.

4) Save Human and Obey: The aim of this

experiment is to demonstrate that adherence to Law

1 overrides Law 2 and 3, i.e., the E-robot will act

to prevent the H-robot from endangering itself even

if doing so is dangerous for itself and also ignores

a direct command. For this experiment the H-robot

objective is A, and the E-robot objective is also A,

as commanded by the H-robot.

Initial behaviour and beliefs are the same as

in the previous experiment, the notable difference

being that points i0-i2 are seen as being too far

from the human-commanded objective, but this is

overridden in the same way as the perceived danger

to the E-robot. After interception, the H-robot is

no longer believed to be in danger and the E-robot

obeys the human command in the same way as in

the Obedience experiment above (Figure 8).

5) Save Human with Supplementary Rules:

The aim of this experiment is to demonstrate the

effect of one of our context-specific extension to

Asimov’s Laws, Law 4a, and hence the flexibility

of our approach while still maintaining verifiable

and scrutable ethical decisions. This mainly differs

from the Save Human experiment above by the

inclusion of the additional ethical rules. To do so

Figure 8: The tested behavioural alternatives for

the initial plan (yellow dots), are the A and B

objects, and the intercept points i1-i3. The E-robot

path (blue dots) moves to intercept the H-robot

(path in red dots). The H-robot stops when the E-

robot approaches within 0.5m. The E-robot then

continues to object A as it was commanded by the

H-robot, and stops 0.5m from it (due to collision

avoidance). The orange circle shows the E-robot

and H-robot danger thresholds. The purple circle is

the robot objective distance threshold.

we extended the conditional rule set in the BDI

logic to enable selection of the appropriate plan

comparison function. In addition, to allow for the

secondary rules to operate properly with our arena

size, a robot is considered in danger if it is within

0.5m of a dangerous object; this reduces the E-

robot and H-robot danger thresholds to 1m.

We observe that an intercept occurs at a point

much closer to the danger than without the sup-

plementary rules. In the initial plans, the H-robot

is believed to be far from danger, and only points

i1 and i2 do not put the human or robot too close

to danger; i2 is selected as it allows for a longer

wait time than i1. However, it is important to

note that the intercept occurs actually on the H-

robot path, rather than from the side as in previous

experiments; the waiting time allowed for, com-

bined with frequent replanning, compensates for

inaccuracies in simulated travel times, resulting in

better interception (Figure 9).

C. Verification of Ethical Reasoning in our Asimov-

based Proactive Ethical Decision Module

While we were able to experimentally validate

the behaviour of the robot in several specific ex-

amples, the link between BDIPython and the AJPF

verification system allows us to provide deeper

analysis of the ethical layer. We consider here the

implemented Ethical Decision Module associated

with task selection when the human has specified

an objective through a direct command. This is the

engine shown in Box 1.

This agent should believe that some task t is the

current task if it conforms to our modified version



17

Figure 9: The tested behavioural alternatives for the

initial plan (yellow dots), are the A and B objects,

and the intercept points i1-i3. The E-robot path

(blue dots) moves to intercept the H-robot (path in

red dots). The H-robot stops when it approaches

within 0.5m of the E-robot. The E-robot then

continues to the safe object B, and stops 0.5m from

it (due to collision avoidance). The orange circle

shows the E-robot and H-robot danger thresholds.

of Asimov’s laws – i.e., it is the best of all the

tasks available as described in Section III. The

Python code for the Ethical Decision Module is

automatically converted to a Java data structure as

described in Section IV-A.

We also construct a verification environment for

this agent. Verification environments are designed

to generate random choices for inputs to the agent

(in this case, beliefs put by the environment in the

belief base and the possible results of Python cal-

culations in comparison functions). The process of

model-checking then explores all possible combi-

nations of these choices. Therefore, our verification

environment may, at random, return danger_close

as a belief. We considered cases where either two

or three tasks are available: task1, task2 and

task3. Therefore the environment always returns

task(task1) and task(task2) as beliefs in the

case of two tasks and task(task1), task(task2)
and task(task3) in the case of all three. Note

that in our experimental set-up the ethical layer

automatically generates three additional tasks for

consideration when it deduces that the tasks sug-

gested by the task layer result in the human moving

too close to danger; hence, the three task case is

sufficient to verify this layer.

At the point where the agent requests the value of

Python calculations then the environment considers

all possible results for the Python expressions ap-

pearing in the comparison functions. For instance,

in the case of ≺hd it returns either

1) task1 ≺hd task2 or

2) task2 ≺hd task1 or

3) neither (indicating that task1 ≈hd task2 ).

It similarly returns a choice for the comparison of

task1 and task3 and for the comparison of task2

and task3. In the case of the movement and waiting

times, we assume that these impose a strict order

on tasks so that there are only two possible results.

Model-checking allows us to consider all possible

combinations of the results of these beliefs and

calculations and so verify that our Ethical Decision

Module makes the correct (most ethical) choice in

each case.

Equations (4), (5) and (6) describe three prop-

erties representing Asimov’s laws in the AJPF

property specification language. The AJPF property

specification language uses standard Linear Tempo-

ral Logic (LTL) operators: � means "it is always

the case that" and ♦ means "it is eventually the

case that". LTL is extended with specific operators

for BDI concepts, so B means that something is in

the agent’s belief base and P means that something

is "perceptible" – in the case of our Python agent

we interpret this as meaning it is in the agent’s

calculation base (a full description of the AJPF

property specification language and its semantics

can be found in [52]).

�((B(current_plan(task1))→

¬P(task1 ≺hd task2) (4)

�((B(current_plan(task1)) ∧

P(task2 ≺ro task1)→

P(task1 ≺hd task2) (5)

�((B(current_plan(task1))∧

P(task2 ≺hd task1)→

P(task1 ≺ro task2) ∨

P(task1 ≺rd task2) (6)

The three properties state that: it is always the

case that if task1 is believed to be the current

task then Python has calculated that task1 either

does not place the human in significant danger

or, if it does, then task2 places the human in

greater danger (property (4) – corresponding to

Asimov’s first law); it is always the case that if

task1 is believed to be the current task and Python

calculates that it places the robot further away

from its (human specified) objective than task2
then Python has calculated that task2 places the

human in more danger than task1 (property (5) –

corresponding to Asimov’s second law); and lastly

that if task1 is believed to be the current task and

Python calculates that it places the robot in more

danger than task2 then either task2 places the

robot much further from its objective than task1
or it results in the human being in much closer to

danger than task1 (property (6) – corresponding

to Asimov’s third law). Similar properties can be

constructed to compare task1 and task3 etc.



18

Table II: Results of Verification in the 2 Plan Case

Time (seconds) States in the Model

(4) 43 1192
(5) 48 1192
(6) 52 1192

The results of verifying the three properties for

the 2 plan case on a 4 core 3.4 GHz iMac with 8 GB

memory running MacOS 10.13.1 are shown in ta-

ble II. We record the time taken for the verification

and the number of states in the resulting model of

Ethical Decision Module execution created by the

system.

We were unable to perform a similar verification

in the three task case because the combinatorial

explosion involved caused the size of the model to

become too large and we terminated the verification

process after one week. We will discuss this further

in Section VII.

As mentioned previously, BDIPython’s support

for picking a best option selects no task in the

case that the comparison function does not rep-

resent an antisymmetric transitive relation and the

corresponding guard expression in our AIL imple-

mentation naturally behaves the same way. Our ver-

ification environment generates many cases where

this is not the case – it does not even guarantee that

the subsidiary relations represented by ≺m are tran-

sitive. This meant that the attempt to prove property

(7) (Eventually either task1, task2 or task3 is

believed to be the current task), for instance, failed

rapidly with a counter-example.

♦B(current_task(task1))∨

B(current_task(task2))∨

B(current_task(task3)) (7)

This is a known issue with so-called unconstrained

environments. While they are agnostic about the

behaviour of the world and system beyond the BDI

agent, and while they capture correct behaviour

for all possible inputs, they usually represent over-

generalisations of reality and flag up many false

negatives. The solution to this is to create a con-

strained abstraction of the environment that em-

bodies certain assumptions about the behaviour of

the real world.

We modified our unconstrained environment

with the following assumptions:

• All the predicates: ≺hd, ≺ro, ≺rd, < and >

represent transitive relations (i.e., if t1 ≺hd t2
and t2 ≺hd t3 then it is automatically the case

that t1 ≺hd t3).

• The overall relations specified by ⊳wd and

⊳wt are antisymmetic and transitive.

This allowed us to verify (7) in approximately 3

days for the three task case (thanks to the reduced

search space) as well as properties (4), (5) and (6).

Table III: Results of Verification in the 3 Plan Case

Time (hours minutes seconds) States in the Model

(4) 64h 10m 23s 1,708,076
(5) 72h 33m 22s 1,708,076
(6) 76h 19m 07s 1,708,076

The times taken for these verifications on a 4 core

3.4 GHz iMac with 8 GB memory running MacOS

10.13.1 are shown in Table III.

We note that there is no guarantee that as-

sumptions made for constrained environments are

correct. It may, however, be possible to validate

them through other means – for instance it is

straightforward to prove that our comparison func-

tions are antisymmetric and transitive given some

basic assumptions about the behaviour of objects

in space; informal proofs are given in section I

of supplementary materials. A methodology has

recently been developed to allow such assumptions

to be checked using runtime verification [58]. In

this methodology a specification of the assumptions

is created as a trace expression [59] which is then

automatically converted into both the environment

used by the AJPF model-checker and a runtime

monitor that operates when the system is deployed

and can react if it detects that the environment is

violating the assumptions used during verification

(and so the system is now operating in an "unveri-

fied" state).

While the time taken to perform verification

may seem slow. It is important to note that the

work we did on the translation of BDIPython

programs into the input for AJPF does not need

to be repeated. Therefore a programmer need only

write a BDIPython program and supply a list of

sensor inputs and Python calculations in order to

automatically verify properties of their programs.

This has advantages over many other verification

techniques which require programs to be trans-

formed by hand into some modelling language, and

may also require manual intervention to guide the

proof process.

VI. RELATED WORK

Here we review three areas of research which

relate to different elements of the work described in

this paper. Firstly, we discuss anticipation in robots,

a core design principle of our architecture. The

ability to model and predict ethical consequences

is, we believe, a differentiating feature of our work.

Secondly, we note the paucity of experimentally

tested ethical robots, and relate our contribution

to previous work. Finally we argue that we have

advanced the field of machine ethics verification

significantly beyond that which was undertaken

previously.



19

A. Anticipation in Robots

Providing robots with the ability to anticipate

the future through the use of simulation-based

internal models integrated into their control archi-

tecture has, in recent years, been demonstrated by

a number of researchers. For example Vaughan

and Zuluaga show that self-simulation of both a

robot and its environment can be used to over-

come incomplete self-knowledge and enable nav-

igation task planning [60]. Similarly, Bongard et

al. describe a 4-legged starfish-like robot that self

simulates in order to learn its own morphology

and how to control it, i.e., compensate for lack

of self-knowledge (although without simulating the

environment) [61].

In addition to self and environment simulation,

the simulation of other agents may also be required.

Zagal et al. use simulation in soccer robots to

facilitate the adaptation of behaviours before they

are deployed on the real robots; i.e., using the

simulation to test how possible behaviours might

actually operate in the environment with other

robots [62].

The common methodology underlying the re-

ported works on simulation based anticipation is

the principle of hypothesis generation and testing.

This has been demonstrated to be a powerful ap-

proach to robot control with a variety of appli-

cations. However, these differ from the work we

have presented here in the purpose of hypothesis

evaluation, i.e., previous work has focussed on task

performance which we supplement with evaluating

ethical consequences. Further, the robot simulates

humans in the environment in addition to itself.

Previous works have not simulated environments

with human actors.

B. Ethical Robots

Machine ethics is a nascent field, consisting of

only a few studies implementing ethics on actual

robots. To the best of our knowledge, the efforts

of Anderson and Anderson on the GENETH sys-

tem [63], Bringsjord’s Akratic Robot [64], and our

previous work [10], [49] are the only instances of

real robots equipped with (limited) moral princi-

ples.

GENETH has been developed over a number of

years [2], [65], and uses an approach based on

evaluating planned actions against a set of ethical

constraints, but as there was no simulator only reac-

tive ethical decisions were possible. GENETH uses

inductive logic programming as a machine learning

process with input from domain ethicists in order

to determine its ethical principle. This principle is

then represented in a fashion which allows transpar-

ent explanations to be provided for decisions (as we

have recommended here). Among other things this

approach demonstrates that bottom-up approaches

to defining an ethical system can be adopted with-

out necessarily sacrificing transparency.

Bringsjord et al’s [64] work builds on a program

of developing a logic, the deontic cognitive event

calculus, DCECCL, in which various ethical theo-

ries can be expressed. The Akratic robot, for which

a simple example has been implemented on a NAO

robot, considers a scenario in which a robot charged

with guarding a prisoner of war must choose be-

tween retaliating with violence to an attack (and

satisfying a self-defence goal) or refraining from

retaliation. It is referred to as Akratic from the

Greek akrasia referring to when a person acts in

contradiction to their better judgement. Bringsjord

et al. argue that the underlying robot architecture,

into which modules for self-defence and detainee

management are embedded, must be capable of eth-

ical reasoning in order to detect when such conflicts

may arise and prevent them occuring (either by

preventing the installation of conflicting modules

or by over-riding goal-based reasoning when it

conflicts with deontologically expressed obligations

and prohibitions). This reflects our insistence that

verification is an important aspect of implementing

ethical reasoning though in the case of the Akratic

robot the approach is to embody ethical verification

as a fundamental part of the robot’s operating

system.

In our previous work we used a similar approach

to that presented here using a simulator to evaluate

what-if hypotheses. In contrast to the work pre-

sented here ethical decisions were made through

evaluation of an ethical desirability function. This

resulted in significant challenges in modelling the

system for verification [66], and decisions were

much less transparent with this approach.

In addition to these few implementations there

have been some additional studies examining ma-

chine ethics from either a theoretical (e.g., [12],

[67]) or simulation standpoint (e.g., [8]). All of

these studies have used a similar approach i.e.,

planned actions are assessed against a set of ethical

constraints, with their ethical implications assumed

from known features of the environment.

C. Verification of Ethical Machine Reasoning

Previous work on the verification of ethical ma-

chine reasoning has focused on the use of the

AJPF system that we have used here. Work in [66]

attempts to verify the system proposed in [10] upon

which the work reported here is also based. In

this verification a new version of the system was

produced in the AIL using two bespoke languages,

one for the ethical consequence engine and another

to represent action selection in the robot. The

behaviour of the system was verified in an environ-

ment consisting of a simple 5×5 grid. A number of



20

discrepancies became apparent during this verifica-

tion – for instance the verification on the 5×5 grid

was converted into a model for the Prism model-

checker [68] and gave very different probabilistic

results to those derived by experiments. One lesson

learned from this experience was that it is difficult

to accurately extract models of Ethical Decision

Modules written in Python (and by assumption

in other common procedural languages used for

robotics) which are tightly embedded in larger

programs in the same programming language. One

of our key aims here was to strengthen the link

between the code produced by the programmer of

the Ethical Decision Module and the model that

was used in verification. This is achieved via the

two-fold approach of supplying a BDI library for

Python, encouraging a cleaner separation of the

ethical reasoning from the rest of the system, and

providing an automatic mechanism to extract code

written using that library into a model in AJPF.

Work in [45] also uses AJPF to verify an ethical

module operating as part of a larger system. It

assumes that ethical reasoning is only invoked in

special cases – i.e., that normal operation of the

system is ethical by default. However, when some

unexpected event occurs, AI techniques such as

planning or learning are used to generate a new

course of action. Transparent ethical reasoning can

be used to choose between the options produced

by the AI system based on a number of ethical

principles and a context-dependent priority among

those principles. The general approach is similar to

that described here. However an entirely hypotheti-

cal system written in a bespoke language is verified.

We have verified an Ethical Decision Module for an

existing system written in a widely used language.

Work in [45] does consider a context-dependent

way for an Ethical Decision Module to resolve

conflicts among competing ethical principles, as

opposed to the strict universal ordering we have

considered here.

VII. FURTHER WORK

Here we have demonstrated that plans, selected

according to a set of ethical rules, can be verified.

Pro-active plans are generated by a heuristic de-

signed for the simple case study presented here.

However, the utility of plans generated in this

way are reliant on the design of the heuristic, and

even in our simple demonstration case are unlikely

to represent the best possible solutions. Indeed,

it is relatively easy to imagine scenarios where

heuristics of this form are non-trivial to design.

Hence, we suggest that a better, more generalisable

method for pro-active plan generation would make

the system applicable in a wider range of contexts.

One possible method to overcome this in future

work is to use a machine learning technique such

as Baysian optimisation of Gaussian processes [69]

to better sample the plan space, balancing different

ethical criteria metrics, hence generating plans that

are likely to be ethically desirable. One immedi-

ately apparent challenge for such an approach is

defining how to combine metrics into an overall

score (needed for the optimisation process) reflec-

tive of how the Ethical Decision Module does its

reasoning.

In order to facilitate clear demonstration of the

principles of operation of our ethical layer archi-

tecture (as well as the verifiable and scrutable rea-

soning of the BDI based Ethical Decision Module)

our case study only required a simple simulation,

with limited models of the world and the proxy

human. It is easy to envisage scenarios, closer to

real world usage of an ethical robot, where a more

complex simulation module would be required. One

avenue of future work in this direction is to examine

better modelling of the human decision process. A

key part of such modelling would be some artificial

theory of mind, reducing the dependency on overly

simple assumptions of likely human actions.

JPF, which underpins AJPF, is specifically cre-

ated to provide what is known as program model-

checking capabilities for Java-bytecodes. In pro-

gram model-checking the actual executable code

of a system is verified as opposed to a model of

the system. Program model-checking is, in gen-

eral, more resource intensive than normal model-

checking and can not handle large search spaces.

By using AJPF to check BDIPython models, there-

fore, we are suffering from its inability to ex-

amine a large search space (hence our inability

to prove the system obeys Asimov’s laws in an

unconstrained environment with even three plans)

without gaining the advantage of verifying the

actual executable code of the system. There are a

number of approaches to improving this situation

including implementing a custom model-checker

for Python, or executing BDIPython in Jython [55],

a Java-bytecode based interpreter for Python.

Further development of BDIPython itself is

also useful, in particular to increase support

for predicate logic-like representations in guards

which can pass instantiations of variables/param-

eters from guards to rule bodies (as in the case

of add_pick_best_rule). We anticipate a need for

both a selection of specialised functions (like

add_pick_best_rule), and a more general mecha-

nism to allow arbitrary predicate logic expressions

to instantiate parameters for execution.

VIII. CONCLUSION

We have considered the question of how ethi-

cal reasoning should be implemented in a robot,

assuming the popular architecture (seen in, for

instance [10], [45], [48], [63]) with a dedicated



21

ethical reasoner. In particular we have argued that

such an ethical control layer should aim to be

• proactive,

• transparent,

• and verifiable.

In order to achieve an ethical control layer with

these properties we have devised an architecture

in which behavioural alternatives proposed by the

underlying control system are evaluated using ex-

plicit declarative reasoning, in the form of a rational

agent. If all options are deemed unsatisfactory, the

ethical control layer has the ability to proactively

generate new options and submit these to ethical

reasoning.

The use of a rational agent to reason about the

ethics of options allows the system’s decisions to

be explainable and transparent, by recording the

agent’s beliefs, calculations and rule selections in

an EBB data logger. The logical nature of the ra-

tional agent rules then allows a deductive argument

to be reconstructed.

At the same time the rational agent can be

extracted into a model and we can formally verify

that its choices respect a specified code of ethics by

exhaustive search over the choices it makes given

particular beliefs and calculations.

We have implemented this technology in an

experimental case study and shown that its ethical

reasoning can be verified using a translation from

the Python code into the AJPF model-checking sys-

tem. Thus we have developed and demonstrated12

what is believed to be the first formally verified

ethical robot.

APPENDIX A

OPEN DATA STATEMENT

The program code and experimental data dis-

cussed in this paper are available as follows:

• The source code for BDIPython is available

at https://github.com/VerifiableAutonomy/

BDIPython where it is currently under active

development. The version discussed here is

archived at http://dx.doi.org/10.17638/datacat.

liverpool.ac.uk/667.

• The source code for AJPF is available

from http://mcapl.sourceforge.net where the

work in this paper can be found in the

ethical_engine branch of the git repos-

itory. The version discussed here is archived

at http://dx.doi.org/10.17638/datacat.liverpool.

ac.uk/667.

• The Python code for the Ethical

NAO Robot is available at https:

//github.com/VerifiableAutonomy/EthicalNao

where the work in this paper can be found

in the ethical_engine branch of the

12In a simple laboratory test scenario.

git repository. The version discussed here is

archived at http://dx.doi.org/10.17638/datacat.

liverpool.ac.uk/667.

• Experimental data generated by the case study

is available from the UWE research repository

http://researchdata.uwe.ac.uk/375.

ACKNOWLEDGEMENTS

The work of this paper is funded by EPSRC

grants reference EP/L024845/1 and EP/L024861/1

within the project ‘Verifiable Autonomy’. The au-

thors are very grateful to the anonymous reviewers

for their insightful comments – and the many

improvements that have followed.

REFERENCES

[1] M. M. Waldrop et al., “No drivers required,” Nature, vol.
518, no. 7537, pp. 20–20, 2015.

[2] M. Anderson and S. Anderson, “Machine Ethics: Creating
an Ethical Intelligent Agent,” AI Magazine, vol. 28, no. 4,
pp. 15–26, 2007.

[3] L. Royakkers and R. van Est, “A Literature Review on
New Robotics: Automation from Love to War,” Interna-

tional Journal of Social Robotics, vol. 7, no. 5, pp. 549–
570, 2015.

[4] A. Winfield, Robotics: A very short introduction. OUP
Oxford, 2012.

[5] J. H. Moor, “The Nature, Importance, and Difficulty
of Machine Ethics,” IEEE Intelligent Systems, vol. 21,
no. 4, pp. 18–21, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1109/MIS.2006.80

[6] T. Arnold and M. Scheutz, “Against the Moral Turing
test: Accountable Design and the Moral Reasoning of Au-
tonomous Systems,” Ethics and Information Technology,
vol. 18, no. 2, pp. 103–115, Jun 2016.

[7] M. Fisher, L. A. Dennis, and M. Webster, “Verifying
Autonomous Systems,” ACM Communications, vol. 56,
no. 9, pp. 84–93, 2013.

[8] R. Arkin, P. Ulam, and A. Wagner, “Moral Decision
Making in Autonomous Systems: Enforcement, Moral
Emotions, Dignity, Trust, and Deception,” Proceedings of

the IEEE, vol. 100, no. 3, pp. 571–589, 2012.

[9] I. Asimov, “Runaround,” in Astounding Science Fiction.
Street & Smith, March 1942.

[10] A. F. T. Winfield, C. Blum, and W. Liu, “Towards an
Ethical Robot: Internal Models, Consequences and Ethical
Action Selection,” in Advances in Autonomous Robotics

Systems, ser. Lecture Notes in Computer Science, M. Mis-
try, A. Leonardis, M. Witkowski, and C. Melhuish, Eds.,
vol. 8717. Springer, 2014, pp. 85–96.

[11] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and
S. M. Veres, “Practical verification of decision-making
in agent-based autonomous systems,” Automated Software

Engineering, vol. 23, no. 3, pp. 305–359, 2016. [Online].
Available: http://dx.doi.org/10.1007/s10515-014-0168-9

[12] W. Wallach and C. Allen, Moral machines: Teaching

robots right from wrong. Oxford University Press, 2008.

[13] R. W. Picard and R. Picard, Affective computing. MIT
press Cambridge, 1997, vol. 252.

[14] B. Deng, “The robot’s dilemma,” Nature, vol. 523, no.
7558, p. 24, 2015.

[15] B. F. Malle, M. Scheutz, T. Arnold, J. Voiklis, and
C. Cusimano, “Sacrifice one for the good of many?:
People apply different moral norms to human and robot
agents,” in Proceedings of the Tenth Annual ACM/IEEE

International Conference on Human-Robot Interaction,
ser. HRI ’15. ACM, 2015, pp. 117–124. [Online].
Available: http://doi.acm.org/10.1145/2696454.2696458

[16] C. Allen, W. Wallach, and I. Smit, “Why machine ethics?”
IEEE Intelligent Systems, vol. 21, no. 4, pp. 12–17, 2006.

https://github.com/VerifiableAutonomy/BDIPython
https://github.com/VerifiableAutonomy/BDIPython
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://mcapl.sourceforge.net
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
https://github.com/VerifiableAutonomy/EthicalNao
https://github.com/VerifiableAutonomy/EthicalNao
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://researchdata.uwe.ac.uk/375
http://dx.doi.org/10.1109/MIS.2006.80
http://dx.doi.org/10.1007/s10515-014-0168-9
http://doi.acm.org/10.1145/2696454.2696458


22

[17] A. F. Winfield and V. V. Hafner, “Anticipation in robotics,”
in Handbook of Anticipation: Theoretical and Applied

Aspects of the Use of Future in Decision Making, R. Poli,
Ed. Cham: Springer International Publishing, 2018.

[18] R. Rosen, Anticipatory systems: philosophical,

mathematical, and methodological foundations, ser.
IFSR international series on systems science and
engineering. Pergamon Press, 1985. [Online]. Available:
https://books.google.co.uk/books?id=73VQAAAAMAAJ

[19] A. Isidori, D. L. Marconi, and D. A. Serrani, “Funda-
mentals of internal-model-based control theory,” in Robust

Autonomous Guidance. Springer, 2003, pp. 1–58.

[20] O. Holland, Machine consciousness. Imprint Academic,
2003.

[21] J. H. Holland, “Complex adaptive systems,” Daedalus, pp.
17–30, 1992.

[22] A. F. Winfield, “Experiments in artificial theory of mind:
From safety to story-telling,” Front. Robot. AI, vol. 5,
no. 75, 2018.

[23] P. Carruthers and P. K. Smith, Theories of theories of mind.
Cambridge University Press, 1996.

[24] V. Gallese and A. Goldman, “Mirror neurons and the
simulation theory of mind-reading,” Trends in cognitive

sciences, vol. 2, no. 12, pp. 493–501, 1998.

[25] A. Winfield and M. Jirotka, “The case for an ethical black
box,” in Towards Autonomous Robotic Systems. Springer,
2017.

[26] M. Wooldridge, An introduction to MultiAgent Systems.
John Wiley and Sons, LTD, 2002.

[27] M. E. Bratman, Intentions, Plans, and Practical Reason.
Harvard University Press, 1987.

[28] A. S. Rao and M. P. Georgeff, “Modeling Agents within
a BDI-Architecture,” in Proceedings 2nd International

Conference Principles of Knowledge Representation and

Reasoning (KR&R). Morgan Kaufmann, 1991, pp. 473–
484.

[29] ——, “An Abstract Architecture for Rational Agents,” in
Proceedings International Conference Knowledge Repre-

sentation and Reasoning (KR&R). Morgan Kaufmann,
1992, pp. 439–449.

[30] ——, “BDI Agents: From Theory to Practice,” in Proceed-

ings 1st International Conference Multi-Agent Systems

(ICMAS), San Francisco, USA, 1995, pp. 312–319.

[31] A. Rao, “AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language,” in Agents Breaking Away:

Proceedings 7th European Workshop on Modelling Au-

tonomous Agents in a Multi-Agent World, ser. LNCS, vol.
1038. Springer, 1996, pp. 42–55.

[32] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Program-

ming Multi-agent Systems in AgentSpeak Using Jason.
Wiley, 2007.

[33] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-
J. Meyer, “Agent Programming in 3APL,” Autonomous

Agents and Multi-Agent Systems, vol. 2, no. 4, pp. 357–
401, 1999.

[34] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: A
BDI Reasoning Engine,” R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, Eds. Springer, 2005, pp.
149–174.

[35] M. Sierhuis, “Modeling and Simulating Work Pratice.
BRAHMS: a Multiagent Modeling and Simluation Lan-
guage for Work System Analysis and Design,” Ph.D. dis-
sertation, Social Science and Informatics (SW), University
of Amsterdam, 2001.

[36] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J.
Meyer, “Agent Programming with Declarative Goals,” in
Intelligent Agents VII (Proceedings 6th Workshop on Agent

Theories, Architectures, and Languages), ser. LNAI, vol.
1986. Springer, 2001, pp. 228–243.

[37] L. A. Dennis, “Gwendolen semantics: 2017,” University of
Liverpool, Department of Computer Science, Tech. Rep.
ULCS-17-001, 2017.

[38] N. Lincoln, S. M. Veres, L. A. Dennis, M. Fisher, and
A. Lisitsa, “An Agent Based Framework for Adaptive
Control and Decision Making of Autonomous Vehicles,”
in Proceedings of IFAC Workshop on Adaptation and

Learning in Control and Signal Processing, 2010.

[39] J. H. Fetzer, “Program Verification: The Very Idea,” ACM

Communications, vol. 31, no. 9, pp. 1048–1063, 1988.

[40] R. A. DeMillo, R. J. Lipton, and A. J. Perlis, “Social
Processes and Proofs of Theorems of Programs,” ACM

Communications, vol. 22, no. 5, pp. 271–280, 1979.

[41] R. S. Boyer and J. S. Moore, Eds., The Correctness

Problem in Computer Science. London: Academic Press,
1981.

[42] E. M. Clarke, O. Grumberg, and D. Peled, Model Check-

ing. MIT Press, 1999.

[43] M. Webster, M. Fisher, N. Cameron, and M. Jump,
“Formal Methods and the Certification of Autonomous
Unmanned Aircraft Systems,” in Proceedings of the 30th

International Conference on Computer Safety, Reliability

and Security, ser. Lecture Notes in Computer Science, vol.
6894. Springer, 2011, pp. 228–242.

[44] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and
S. M. Veres, “Formal verification of autonomous vehicle
platooning,” Science of Computer Programming, pp. –,
2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642317301168

[45] L. Dennis, M. Fisher, M. Slavkovik, and M. Webster,
“Formal verification of ethical choices in autonomous
systems,” Robotics and Autonomous Systems, pp. –,
2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921889015003000

[46] D. Kortenkamp and R. Simmons, “Robotic systems ar-
chitectures and programming,” in Springer Handbook of

Robotics. Springer, 2008, pp. 187–206.

[47] M. M. Botvinick, “Hierarchical models of behavior and
prefrontal function,” Trends in cognitive sciences, vol. 12,
no. 5, pp. 201–208, 2008.

[48] R. C. Arkin, “Governing lethal behavior: embedding ethics
in a hybrid deliberative/reactive robot architecture,” in Pro-

ceedings of the 3rd ACM/IEEE international conference on

Human robot interaction. ACM, 2008, pp. 121–128.

[49] D. Vanderelst and A. Winfield, “An architecture for
ethical robots inspired by the simulation theory of
cognition,” Cognitive Systems Research, vol. 48, pp. 56–
66, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389041716302005

[50] R. Murphy and D. D. Woods, “Beyond asimov: the three
laws of responsible robotics,” IEEE Intelligent Systems,
vol. 24, no. 4, 2009.

[51] M. Donoso, A. G. Collins, and E. Koechlin, “Foundations
of human reasoning in the prefrontal cortex,” Science, vol.
344, no. 6191, pp. 1481–1486, 2014.

[52] L. A. Dennis, M. Fisher, M. Webster, and R. H. Bordini,
“Model Checking Agent Programming Languages,” Au-

tomated Software Engineering, vol. 19, no. 1, pp. 5–63,
2012.

[53] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and
M. Wooldridge, “A Common Semantic Basis for BDI
Languages,” in Proceedings 7th International Workshop on

Programming Multiagent Systems (ProMAS), ser. LNAI.
Springer, 2008, vol. 4908, pp. 124–139.

[54] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda,
“Model Checking Programs,” Automated Software Engi-

neering, vol. 10, no. 2, pp. 203–232, 2003.

[55] J. Juneau, J. Baker, V. Ng, L. Soto, and F. Wierzbicki, The

Definitive Guide to Jython: Python for the Java Platform.
Springer, 2010.

[56] J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patter-
son, J. Li, A. Chitipothu, and S. Krishnamurthi, “Python:
The full monty: A tested semantics for the python pro-
gramming language,” 2013.

[57] G. J. Smeding, “An executable operational semantics for
python.” Master’s thesis, 2009.

[58] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, and
V. Mascardi, “Recognising assumption violations in au-
tonomous systems verification,” 2017, under Review.

[59] D. Ancona, A. Ferrando, and V. Mascardi, Theory and

Practice of Formal Methods: Essays Dedicated to Frank

de Boer on the Occasion of His 60th Birthday. Cham:
Springer International Publishing, 2016, ch. Comparing
Trace Expressions and Linear Temporal Logic for

https://books.google.co.uk/books?id=73VQAAAAMAAJ
http://www.sciencedirect.com/science/article/pii/S0167642317301168
http://www.sciencedirect.com/science/article/pii/S0167642317301168
http://www.sciencedirect.com/science/article/pii/S0921889015003000
http://www.sciencedirect.com/science/article/pii/S0921889015003000
http://www.sciencedirect.com/science/article/pii/S1389041716302005
http://www.sciencedirect.com/science/article/pii/S1389041716302005


23

Runtime Verification, pp. 47–64. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-30734-3_6

[60] R. Vaughan and M. Zuluaga, “Use your illusion: Sensori-
motor self-simulation allows complex agents to plan with
incomplete self-knowledge,” in International Conference

on Simulation of Adaptive Behavior. Springer, 2006, pp.
298–309.

[61] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines
through continuous self-modeling,” Science, vol. 314, no.
5802, pp. 1118–1121, 2006.

[62] J. C. Zagal, J. Delpiano, and J. Ruiz-del Solar, “Self-
modeling in humanoid soccer robots,” Robotics and Au-

tonomous Systems, vol. 57, no. 8, pp. 819–827, 2009.
[63] M. Anderson and S. Anderson, “Robot be good,” Scientific

American Magazine, vol. 303, no. 4, pp. 72–77, 2010.
[64] S. Bringsjord, N. S. G., D. Thero, and M. Si,

“Akratic robots and the computational logic thereof,” in
Proceedings of the IEEE 2014 International Symposium

on Ethics in Engineering, Science, and Technology, ser.
ETHICS ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 7:1–7:8. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2960587.2960596

[65] M. Anderson and S. L. Anderson, “Geneth: A
general ethical dilemma analyzer,” in Proceedings

of the Twenty-Eighth AAAI Conference on Artificial

Intelligence, ser. AAAI’14. AAAI Press, 2014, pp.
253–261. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2893873.2893915

[66] L. A. Dennis, M. Fisher, and A. F. T. Winfield, “Towards
Verifiably Ethical Robot Behaviour,” in AAAI Workshop

on AI and Ethics (1st International Conference on AI and

Ethics), Austin, TX, January 2015.
[67] A. Mackworth, “Architectures and ethics for robots,” in

Machine ethics, M. Anderson and S. L. Anderson, Eds.
Cambridge University Press, 2011, pp. 204–221.

[68] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
Probabilistic Symbolic Model Checker,” in Proceedings

12th International Conference Modelling Techniques and

Tools for Computer Performance Evaluation (TOOLS), ser.
LNCS, vol. 2324. Springer, 2002.

[69] C. E. Rasmussen and C. K. Williams, Gaussian processes

for machine learning. MIT press Cambridge, 2006, vol. 1.

Paul Bremner received a BSc in
Robotic and Electronic Systems En-
gineering from the University of Sal-
ford in 2003. He received an MSc in
Advanced Technologies in Electronics
and a PhD in Human-Robot interac-
tion from the University of the West
of England in 2005 and 2010 respec-
tively.

Since 2010 he has worked at the
University of the West of England on

a number of projects, first as a research associate then as a
research fellow, where he is currently employed on the Verifiable
Autonomy project. His research interests include human-robot
interaction, multi-modal communication, tele-presence, artificial
intelligence and robot ethics.

Louise A. Dennis received a B.A. in
mathematics and philosophy from the
University of Oxford in 1992, and an
MSc in knowledge-based systems and
a PhD in artificial intelligence from the
University of Edinburgh in 1994 and
2001 respectively.

She has worked as a research asso-
ciate at the Universities of Glasgow
and Edinburgh and a lecturer at the
University of Nottingham. Since 2006

she has been a research associate at the University of Liverpool
where she is currently employed on the Verifiable Autonomy
project. Her research interests are autonomous systems, formal
verification, BDI agent programming languages, automated rea-
soning and ethical machine reasoning.

Dr. Dennis is a member of the Embedding Values into
Autonomous Intelligent Systems committee of the IEEE Global
Initiative for Ethical Considerations in Artificial Intelligence and
Autonomous Systems and a member of the working group for
IEEE-P7001 Transparency of Autonomous Systems.

Michael Fisher is Professor of
Computer Science and Director of
the multi-disciplinary Centre for Au-
tonomous Systems Technology at the
University of Liverpool. He is a mem-
ber of the British Standards Institution
AMT/10 committee on “Robotics”,
authored An Introduction to Practical
Formal Methods using Temporal Logic
(Wiley) in 2011, is on the editorial
boards of both Applied Logic and An-

nals of Mathematics and Artificial Intelligence journals and
is a corner editor for the Journal of Logic and Computation.
His research interests mainly involve formal verification for
the certification, safety, ethics, and reliability of autonomous
systems, and he leads the UK Network on the Verification and

Validation of Autonomous Systems (vavas.org).
Prof. Fisher is a member of the Embedding Values into

Autonomous Intelligent Systems committee of the IEEE Global
Initiative for Ethical Considerations in Artificial Intelligence and
Autonomous Systems and a member of the working group for
IEEE-P7009 on Failsafe Mechanisms for Autonomous Systems.

Alan Winfield is Professor of Robot
Ethics at the University of the West
of England (UWE), Bristol, UK, and
Visiting Professor at the University of
York. He received his PhD in Digital
Communications from the University
of Hull in 1984, then co-founded and
led APD Communications Ltd until
taking-up appointment at UWE, Bris-
tol in 1992. Winfield co-founded the
Bristol Robotics Laboratory where his

research is focussed on cognitive robotics.
Winfield is an advocate for robot ethics; he was a member

of the British Standards Institute working group that drafted
BS 8611: Guide to the Ethical Design of Robots and Robotic
Systems, and he is a member of the executive committee of the
IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems.

http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=2960587.2960596
http://dl.acm.org/citation.cfm?id=2960587.2960596
http://dl.acm.org/citation.cfm?id=2893873.2893915
http://dl.acm.org/citation.cfm?id=2893873.2893915

	Introduction
	Background
	Ethical Robots
	Anticipation in Robotics (for Proactive Ethics)
	Ethical Black-box Recorder (for Transparency)
	Beliefs-Desires-Intentions Programming (for Transparent Ethics)
	Verification of Agent-based Autonomous Systems (for Verifiable Ethics)

	A Simulation Based Ethical Reasoning Layer for Robot Control Architectures
	Simulation Module
	Planner Module
	Ethical Decision Module
	Ethical Black-box Module

	Verification of the Ethical Decision Module
	Verification of Python-based Ethical Decision Module

	Experimental Validation and Formal Verification
	Experimental Setup
	Experiment Settings and Results
	Self Preservation
	Obedience
	Save Human
	Save Human and Obey
	Save Human with Supplementary Rules

	Verification of Ethical Reasoning in our Asimov-based Proactive Ethical Decision Module

	Related Work
	Anticipation in Robots
	Ethical Robots
	Verification of Ethical Machine Reasoning

	Further Work
	Conclusion
	Appendix A: Open Data Statement
	References
	Biographies
	Paul Bremner
	Louise A. Dennis
	Michael Fisher
	Alan Winfield


