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1 Introduction

The term probabilistic constrained programming means the same as chance constrained
programming, i.e., optimization of a function subject to certain conditions where at least
one is formulated so that a condition, involving random variables, should hold with a
prescribed probability. The probability is usually not prescribed exactly but a lower
bound is given instead which is in practice near unity.

The formulation of problem in connection with a stochastic system follows a line where
first we consider the nonstochastic case, formulate the problem which loses its meaning as
soon as certain parameters become random. Then the next step is the formulation of the
right problem optimizing the system. This problem may be of different type depending
on the system and our information. It is not possible to formulate one decision structure
to cover all stochastic situations.

The deterministic problem from which we start is the following

min f(x)
subject to
gi(x) ≥ βi, i = 1, . . . ,m,

a′
ix ≥ bi, i = 1, . . . ,M,

(1.1)

where x is a vector of the n-dimensional space, gi(x), f(x) are certain functions on which
we shall impose some conditions later on when formulating the stochastic case. Suppose
now that in (1.1) β1, . . . , βm are random variables and formulate the decision problem1 of

1The idea of formulating a decision problem by prescribing a lower bound for the probability of the
fulfillment of the constraints was formulated first in [2].
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the stochastic system as follows

min f(x)
subject to
P (gi(x) ≥ βi, i = 1, . . . ,m) ≥ p,

a′
ix ≥ bi, i = 1, . . . ,M.

(1.2)

The nonnegative constraints, if any, are thought to be contained in the system of linear
inequalities in (1.2). We introduce the following assumptions.

A.1. The functions g1(x), . . . , gm(x) are defined in the closure K of an open convex set
K. These functions are concave and have continuous derivatives with respect to all
variables in K.

A.2. The number p is between 0 and 1, 0 < p < 1.

A.3. If x ∈ K and x satisfies the constraints in (1.2), then x is an internal point of K,
i.e., x ∈ K.

A.4. The function f(x) is defined in an open convex set H containing the set of feasible
solutions and we suppose that f(x) is convex and has continuous derivatives with
respect to all variables in every point of H.

A.5. The random variables β1, . . . , βm have a continuous joint distribution which has
continuous first order derivatives with respect to all variables in any point of the
m-dimensional space of the form

(g1(x), . . . , gm(x)), x ∈ K.

We consider only such probabilities p, for which the set of feasible solutions is not
empty. This set will be denoted by D(p) in the sequel. Let F (z1, . . . , zm) denote
the joint probability distribution function of the random variables: β1, . . . , βm, i.e.,

F (z1, . . . , zm) = P(β1 ≤ z1, . . . , βm ≤ zm)

and let further

G(x) = F (g1(x), . . . , gm(x)) = P(g1(x) ≥ β1, . . . , gm(x) ≥ βm).

A.6. For every x satisfying the equality G(x) = p, there corresponds a vector y in the set
of feasible solutions with the property that2

∇G(x)(y − x) > 0. (1.3)

2This condition plays the same role here as the well-known Slater’s condition in convex programming.
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We remark that the gradient of a vector will be considered a row vector while all other
vectors are columns. (The prime means the transpose.) Thus (1.3) has a meaning. As
G(y) ≥ p for all feasible vectors y, it follows that

∇G(x)(y − x) ≥ 0

provided the segment joining x and y is inside the set of feasible solutions. This holds if
the feasible set is convex what we shall prove under certain assumptions. The purpose of
the paper is the discussion of problem (1.2), to reduce it to a convex (or quasi-convex)
programming problem and give an algorithm for finding the optimal solution.

2 Preliminary Lemmas

Let us introduce the notations

I = {1, 2, . . . ,M}
I(x) = {i : i ∈ I, a′

ix = bi},

where x is a feasible solution.

Lemma 1 Suppose that the set of feasible vectors is convex. If x is feasible, G(x) = p
and u ≥ 0, ui ≥ 0, i ∈ I, further

u∇G(x) +
∑

i∈I(x)

uia′
i = 0′, (2.1)

then we have u = 0.

Proof. Let y be the vector satisfying assumption A.6. and multiply (2.1) by y − x.
Then we have

0 = u∇G(x)(y − x) +
∑

i∈I(x)

uia′
i(y − x) ≥ u∇G(x)(y − x) ≥ 0.

Thus
u∇G(x)(y − x) = 0

and by A.6. we have u = 0. �

Lemma 2 Suppose that the set of feasible vectors is convex. Let x be feasible and
G(x) = p. Then Kuhn–Tucker constraint qualification holds at the point x.

Remark 1 If x is such a feasible vector for which G(x) > p, then the fulfillment of
the fact that all other constraints in problem (1.2) are linear.
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Proof of Lemma 2. Let h be a vector with the property that

∇G(x)h ≥ 0,
a′

ih ≥ 0, for i ∈ I(x).
(2.2)

We define the curve

ψ(t) = x + t[h + t(y − x)], t ≥ 0, (2.3)

where y is the feasible vector satisfying A.6. If t > 0, then by (1.3) and the first row of
(2.2) we have

∇G(x)t[h + t(y − x)] > 0.

Thus by continuity, for small positive t values we also have

G(x + t[h + t(y − x)]) − G(x)
= ∇G(x + δt[h + t(y − x)])t[h + t(y − x)] > 0,

where 0 < δ < 1. Thus there exists a T > 0 such that

G(ψ(t)) ≥ p for 0 ≤ t ≤ T.

The curve (2.3) has the required property and the linear constraints can be treated in the
customary way.

If the set of feasible solutions is convex, then by Lemma 2, the Kuhn–Tucker conditions
are necessary3 that a certain feasible x∗ be optimal. The Kuhn–Tucker conditions in our
case are the following:

−∇f(x∗) + λ∗G(x∗) +
∑
i=1

λ∗
i a

′
i = 0′,

λ∗(G(x∗) − p) +
∑
i=1

λ∗
i (a

′
ix

∗ − bi) = 0, (2.4)

λ∗ ≥ 0, λ∗
i ≥ 0, i = 1, . . . ,M.

The following lemma is an adaptation of the theory of quasi-concave4 programming of
Arrow and Enthoven [1].

Lemma 3 If G(x) is quasi-concave in its domain of definition and the Kuhn–Tucker
conditions (2.4) hold at x∗, then x∗ is an optimal solution to problem (1.2).

3Assumptions 1,3,4 and the fact that D(p) is not empty imply that the set of feasible solutions is closed.
The necessity of the Kuhn–Tucker conditions can be proved by using different analytic assumptions. It is
not difficult to see that our assumptions are enough for a proof.

4A function G(x) defined over a convex set H is quasi-concave if for every pair x1, x2 ∈ H and
λ(0 ≤ λ ≤ 1), we have

G(λx1 + (1 − λ)x2) ≥ min(G(x1), G(x2)).

It is easy to see that the set {x : x ∈ H, G(x) ≥ a} is convex for every real a (for which the set is not
empty) iff G(x) is quasi-concave on H .
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Proof. The set of feasible solutions is now automatically convex. Let x be an arbitrary
feasible vector. Let us multiply the first row of (2.4) by x − x∗. Then we have

0 = −∇f(x∗)[x − x∗] + λ∗∇G(x∗)[x − x∗] +
∑
i=1

λ∗
i a

′
i[x − x∗]

= −∇f(x∗)[x − x∗] + λ∗G(x∗)[x − x∗] +
∑

i∈I(x∗)

λ∗
i a

′
i[x− x∗] (2.5)

≥ −∇f(x∗)[x − x∗] + λ∗∇G(x∗)[x − x∗].

The second term on the right hand side vanishes if G(x∗) > p, because in this case the
second row of (2.4) implies λ∗ = 0. If on the other hand G(x∗) = p, then by the quasi-
concavity of G(x) we have

G(x∗) + λ(x − x∗) ≥ G(x∗) = p for 0 ≤ λ ≤ 1.

Thus we obtain

G(x∗)[x − x∗] ≥ 0. (2.6)

Relations (2.5), (2.6) together imply

∇f(x∗)[x − x∗] ≥ 0,

hence it follows from the concavity of f(x) that for all feasible x the inequality

f(x) − f(x∗) ≥ ∇f(x∗)[x − x∗] ≥ 0 (2.7)

holds. �

Lemma 4 If the function F (z1, . . . , zm) is quasi-concave in a convex set of the m-
dimensional space containing all points of the type

(g1(x), . . . , gm(x)), x ∈ L,

where L is a convex subset of K, then the function

F (g1(x), . . . , gm(x))

is quasi-concave in L.

Proof. Let x1 ∈ L, x2 ∈ L and 0 ≤ λ ≤ 1. Then taking into account the monotonicity
of F with respect to all variables, we have

F (g1(λx1 + (1 − λ)x2), . . . , gm(λx1 + (1 − λ)x2))
≥ F (λg1(x1) + (1 − λ)g1(x2), . . . , λgm(x1) + (1 − λ)gm(x2))
≥ min[F (g1(x1), . . . , gm(x1)), F (g1(x2), . . . , gm(x2))].

This proves the lemma. �
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3 Concavity and Quasi-concavity Theorems for Probability

Distribution Functions

Let F (z1, . . . , zm) be an arbitrary probability distribution function of m variables. Let us
subdivide the variables into two disjoint groups and denote by x and y, respectively the
vectors formed by the variables belonging to these groups. Though x does not necessarily
consists of the variables of z1, . . . , zm, we introduce the notation

F (z1, . . . , zm) = F (x,y).

We say that F (x,y) is concave with respect to x in a convex set E of R
m in the positive

direction if for any pair

z1 =
(
x1

y

)
∈ E, z2 =

(
x2

y

)
∈ E,

where x1 ≤ x2, the function F is convex between z1 and z2.

Theorem 1 Let E be a closed rectangle in R
m, i.e., the Cartesian product of the finite

or infinite closed intervals I1, . . . , Im. Suppose that F (z1, . . . , zm) is concave in E in the
positive direction with respect to any subset of the variables containing m − 1 elements.
Then F (z1, . . . , zm) is quasi-concave in E.

Proof. Let x and y be two disjoint sets of variables of k1 and k2 elements, where

1 ≤ ki ≤ m − 1, i = 1, 2,
k1 + k2 = m.

Let z′1 = (x′
1,y

′
1), z′2 = (x′

2,y
′
2) be two points of E with the property that x1 ≤ x2,

y1 ≥ y2. We shall prove that F is concave between z1 and z2.

In fact, the function F (x,y) is concave in E in the positive direction with respect to
both x and y hence if 0 ≤ λ ≤ 1, we have

F (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)
≥ λF (x1, λy1 + (1 − λ)y2) + (1 − λ)F (x2, λy1 + (1 − λ)y2) (3.1)
≥ λ2F (x1,y1) + λ(1 − λ)F (x1,y2) + λ(1 − λ)F (x2,y1) + (1 − λ)2F (x2,y2).

Now F (x,y) is a probability distribution function; let ξ and η be random vectors, the
joint distribution of which is F (x,y), i.e.,

P(ξ ≤ x, η ≤ y) = F (x,y).

It is easy to see that

P(x1 ≤ ξ ≤ x2, y2 ≤ η ≤ y1) = F (x2,y1) − F (x1,y1) − F (x2,y2) + F (x1,y2),
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thus

F (x2,y1) + F (x1,y2) ≥ F (x1,y1) + F (x2,y2). (3.2)

Substituting (3.2) into (3.1) we obtain

F (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ≥ λF (x1,y1) + (1 − λ)F (x2,y2). (3.3)

If z1 and z2 are arbitrary points of E, then either z1 ≤ z2 or z2 ≤ z1 or z can be
subdivided into two disjoint groups x, y as in the beginning of the proof. In the first two
cases F (z) is quasi-concave between z1 and z2. This follows from the fact that F is a
probability distribution function which is non-decreasing in any positive direction. In the
third case F (z) is concave between z1 and z2 as it was proved before. A concave function
is also quasi-concave, thus the theorem is proved. �

We now consider the case of the two-variate normal probability distribution. In the
non-degenerate case the probability density is given by

φ(x1, x2; r) = − 1
2(1 − r2)

[
(x1 − m1)2

σ2
1

− 2r
(x1 − m1)(x2 − m2)

σ1σ2
+

(x2 − m2)2

σ2
2

]

=
1

2πσ1σ2

√
1 − r2

e, (3.4)

where |r| < 1. We are considering the case m1 = m2 = 0, σ1 = σ2 = 1, i.e., the case where
the variables have standard normal distribution, r is the correlated coefficient. From now
on φ(x1, x2; r) is therefore defined by

φ(x1, x2; r) = − 1
2(1 − r2)

[x2
1 − 2rx1x2 + x2

2] =
1

2π
√

1 − r2
e. (3.5)

The probability distribution function belonging to the frequency function (3.5) is defined
by

Φ(x1, x2; r) =
∫ x1

−∞

∫ x2

−∞
φ(t1, t2; r) dt2 dt1. (3.6)

We adopt the notation Φ(x1, x2; r) for the joint distribution of ξ1, ξ2 also in the case
when |r| = 1 and ξ1, ξ2 have standard normal distribution.

Theorem 2 If r ≥ 0 then Φ(x1, x2; r) is quasi-concave in the nonnegative orthant
x1 ≥ 0, x2 ≥ 0.

Proof. We apply Theorem 1 in such a way that we prove that Φ(x1, x2; r) is concave
with respect to x1 if x2 is fixed and with respect to x2 if x1 is fixed in the nonnegative
orthant.

For continuous distribution functions F (x1, x2) it is well-known that

∂F (x1, x2)
∂x1

= F (x2 | x1)f1(x1), (3.7)
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where F (x2 | x1) is the conditional probability distribution function of ξ2 given that
ξ1 = x1 and f1(x) is the probability density function of ξ1. Applying this to Φ(x1, x2; r),
we obtain

∂Φ(x1, x2; r)
∂x1

= Φ(x2 | x1)φ(x1), (3.8)

where
φ(x) =

1√
2π

e−
x2

2 .

It is also well-known that the conditional distribution function Φ(x2 | x1) is given by the
following formula

Φ(x2 | x1) = Φ
(

x2 − rx1√
1 − r2

)
, (3.9)

where
Φ(x) =

∫ x

−∞
φ(t) dt.

Thus from (3.8) and (3.9) we obtain

∂Φ(x1, x2; r)
∂x1

= Φ
(

x2 − rx1√
1 − r2

)
φ(x1). (3.10)

Taking the second derivative with respect to x1, we get

∂2Φ(x1, x2; r)
∂x2

1

= φ

(
x2 − rx1√

1 − r2

) −r√
1 − r2

φ(x1) − x1φ(x1)Φ
(

x2 − rx1√
1 − r2

)
. (3.11)

Since r ≥ 0 and x1 ≥ 0, the second derivative with respect to x1 is nonpositive. Similarly

∂2Φ(x1, x2; r)
∂x2

2

≤ 0 if x2 ≥ 0

thus if x1 ≥ 0, x2 ≥ 0, the function Φ(x1, x2; r) is concave in both variables. This completes
the proof. �

Theorem 3 Let −1 < r ≤ 0. Then Φ(x1, x2; r) is concave in xi as a function of one
variable if

xi ≥
√

φ(1)
2Φ(1) + φ(1)

, i = 1, 2, . (3.12)

The lower bound is exact in the sense that the smallest α with the property that for every
r satisfying −1 < r ≤ 0, Φ(x1, x2; r) is concave with respect to x1 for a fixed x2 and with
respect to x2 for a fixed x1, provided x1 ≥ α, x2 ≥ α, is equal to the right hand side of
(3.12).
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Proof. Let us introduce the notation ρ = −r. To prove the first part of the theorem
we consider the right hand side of (3.11) and show that it is non-positive whenever (3.12)
holds. For this it is necessary and sufficient that the inequality

Φ

(
x2 + ρx1√

1 − ρ2

)

φ

(
x2 + ρx1√

1 − ρ2

) x1 ≥ ρ√
1 − ρ2

(3.13)

holds for (3.12). Continuing this, (3.13) is certainly satisfied for x1 ≥ α, x2 ≥ α if we have

Φ

(
α

1 + ρ√
1 − ρ2

)

φ

(
α

1 + ρ√
1 − ρ2

)α ≥ ρ√
1 − ρ2

. (3.14)

Let us introduce the notation √
1 + ρ

1 − ρ
= u.

Then u ≥ 1 and

ρ =
u2 − 1
u2 + 1

,
ρ

1 + ρ
=

u2 − 1
2u2

.

Thus if we multiply both sides of (3.14) by
√

1 − ρ2/(1 + ρ) = 1/u, we obtain

Φ(αu)
φ(αu)

α

u
≥ u2 − 1

2u2
. (3.15)

If α = 0, then (3.15) does not hold for every u ≥ 1. Let α > 0 and introduce the notation
v = αu. Then (3.15) is equivalent to

α2 ≥ v2

2
Φ(v)
φ(v)

v + 1
, (3.16)

in the sense that (3.16) must be satisfied for every v ≥ α. The smallest α satisfying this is

α =

√
φ(1)

2Φ(1) + φ(1)
. (3.17)

In fact the function of the variable v > 0

g(v) =
1
v2

[
2
Φ(v)
φ(v)

v + 1
]

(3.18)
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is strictly decreasing if 0 < v ≤ 1 and is strictly increasing if v ≥ 1, since

g′(v) =
2(v2 − 1)
v2φ(v)

[φ(v) + vΦ(v)], v > 0. (3.19)

Thus 1/g(v) has a maximum at v = 1 if v ≥ 0. If we choose α = 1/g(1), then α < 1 and
(3.16) will be satisfied for v ≥ α. That α cannot be decreased, is obvious. This proves the
first part of the theorem.

As the smallest difference between the left hand side and the right hand side in (3.13)
is attained if x1 = x2 = α and according to our proof this smallest difference is 0 if and
only if α has the value (3.17), the remaining part of the theorem is also true. �

Remark 2 To every ρ (0 ≤ ρ < 1) or in other terms to every u(u ≥ 1) there corre-
sponds a unique smallest α such that Φ(x1, x2; r) is concave in x1 and in x2 if x1 ≥ α,
x2 ≥ α. This α can be obtained from (3.15) if we choose α so that the equality hold or
from (3.16) by substituting α = v/u on the left hand side and choose v so that the equality
hold. It is easy to check that there is one and only one v of this kind. In fact, we seek for
a v satisfying

u2 = 2
Φ(v)
φ(v)

v + 1 (3.20)

and the continuous function on the right hand side is equal to 1 if v = 0, strictly increasing
for v > 0 and tends to infinity if v → ∞. Now with this v we have the corresponding α by

α =
v√

2
Φ(v)
φ(v)

v + 1

. (3.21)

The largest α (i.e., the worst case) belongs to v = 1 in which case (3.21) coincides with
(3.17). Then

r = −ρ = −u2 − 1
u2 + 1

= − Φ(1)
Φ(1) + φ(1)

≈ 0.7766. (3.22)

Remark 3 If ξ1 and ξ2 have standard normal distribution where |r| = 1, i.e., the joint
distribution is degenerated, then the joint distribution

P(ξ1 ≤ x1, ξ2 ≤ x2)

is concave in the nonnegative orthant. In fact, if r = 1, then ξ1 = ξ2 with probability 1,
hence

Φ(x1, x2; 1) = P(ξ1 ≤ x1, ξ2 ≤ x2) = P(ξ1 ≤ min(x1, x2)) = Φ(min(x1, x2)).

If x1 ≥ 0, x2 ≥ 0, then the function min(x1, x2) is concave. Since Φ(z) is an increasing
concave function of the variable z ≥ 0, it follows that

Φ(min(x1, x2))
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is concave in the nonnegative orthant. Let now r = −1. Then ξ2 = −ξ1 with probability
1. Thus we have for x1 ≥ 0, x2 ≥ 0,

Φ(x1, x2;−1) = P(ξ1 ≤ x1, ξ2 ≤ x2)
= P(−x2 ≤ ξ1 ≤ x1) = Φ(x1) − Φ(−x2) = Φ(x1) + Φ(x2) − 1.

Here the right hand side is concave in the nonnegative orthant and the assertion follows.

Theorem 4 If ξ1, ξ2 have an arbitrary joint normal distribution where ξ1 and ξ2 have
expectation 0 and variance 1, then the set of points x1, x2 satisfying the inequality

Φ(x1, x2; r) ≥ p (3.23)

is convex if p is a fixed probability for which p < 1 and the following inequality

p ≥ Φ

(√
φ(1)

2Φ(1) + φ(1)

)
≈ 0.6387. (3.24)

Proof. It follows from (3.23) that

Φ(x1) ≥ Φ(x1, x2; r) ≥ p,

Φ(x2) ≥ Φ(x1, x2; r) ≥ p,

thus by (3.23) we have

x1 ≥
√

φ(1)
2Φ(1) + φ(1)

,

x2 ≥
√

φ(1)
2Φ(1) + φ(1)

.

(3.25)

By Theorems 1, 2, 3 and Remark 3, the function Φ(x1, x2; r) is quasi-concave in the region
(3.25). �

Theorem 5 If ξ1, ξ2 have a joint normal distribution with 0 ≤ r ≤ 1 or r = −1, where
the random variables ξ1, ξ2 are standardized, then the set of points

Φ(x1, x2; r) ≥ p (3.26)

is convex where p is a fixed probability satisfying the inequality

1
2
≤ p < 1.

Proof. Since

Φ(x1) ≥ Φ(x1, x2; r) ≥ p ≥ 1
2
,

Φ(x2) ≥ Φ(x1, x2; r) ≥ p ≥ 1
2
,
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it follows that x1 ≥ 0, x2 ≥ 0. By Theorems 1, 2 and Remark 3, the function Φ(x1, x2; r)
is quasi-concave in the nonnegative orthant, hence the theorem. �

We can give a convexity theorem which is not universal in the correlation coefficient
but depends on it.

Theorem 6 If ξ1, ξ2 have a joint normal distribution, with −1 < r ≤ 0, where ξ1, ξ2

are standardized, then the set of points

Φ(x1, x2; r) ≥ p (3.27)

is convex where p is a fixed probability satisfying the inequality

Φ

⎛
⎜⎜⎜⎜⎝

v√
2
Φ(v)
φ(v)

v + 1

⎞
⎟⎟⎟⎟⎠ ≤ p < 1. (3.28)

Here v is defined by (3.20).

The proof of this theorem is similar to that of Theorem 4.

4 Algorithm for the Solution of Problem (1.2)

Let us introduce the notation

G(x) = P(gi(x) ≥ βi, i = 1, . . . ,m). (4.1)

Problem (1.2) can be formulated with this notation in the following manner

min f(x)
subject to
G(x) ≥ p,

a′
ix ≥ bi, i = 1, . . . ,M.

(4.2)

For the solution of this problem we apply Zoutendijk’s procedure (Procedure P 2 in [7],
p. 74.) Only the formal procedure is the same, the reason why the procedure solves the
problem is different and the convergence proof, uses ideas taken from Zoutendijk’s work.

Let δ be an arbitrary but throughout the procedure fixed positive number. Let x1 be
an arbitrary point of the set of feasible solutions. We assume that we already know one
and shall use such a point as an initial solution. Suppose we already obtained x1, . . . ,xk,
where all of them are feasible vectors. Define the linear programming problem

min y

subject to
G(xk) + ∇G(xk)(x − xk) +δy ≥ p,

a′
ix ≥ bi, i = 1, . . . ,M,

∇f(xk)(x − xk) ≤ y.

(4.3)
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The set defined by these constraints is non-empty because it contains e.g., x = xk, y = 0.
On the other hand the set of x vectors determined by the linear constraints is bounded
by supposition. Thus y is bounded from below hence Problem (4.3) always has a finite
optimum.

If xk, y = 0 is an optimal solution to problem (4.3), then the procedure terminates. If
xk, y = 0 is not optimal and x∗

k is an optimal solution to problem (4.3), then we consider
the halfline

xk + λ(x∗
k − xk), λ ≥ 0 (4.4)

and minimize f(x) on that segment of this halfline which belongs to the set of feasible
solutions. In other words, let μk be the largest λ satisfying

G(xk + λ(x∗
k − xk)) ≥ p,

a′
i(xk + λ(x∗

k − xk)) ≥ bi, i = 1, . . . ,M
(4.5)

and let λk be a λ with the property that

f(xk + λ(x∗
k − xk)) ≥ f(xk + λk(x∗

k − xk)), for 0 ≤ λ ≤ μk. (4.6)

Then we define xk+1 by the following equality

xk+1 = xk + λk(x∗
k − xk). (4.7)

In the first case where we stop at xk, xk will be an optimal solution to problem (1.2).
If, on the other hand, the procedure is infinite, then the sequence f(xk) will converge to
the absolute minimum of f(x) over the set of feasible solutions of problem (1.2). These
will be proved under certain conditions in the next section.

Consider now the case m = 2. The gradient of G(x) can be obtained easily if the
joint distribution of β1 and β2 is normal. In this case we may suppose that β1 and β2 are
standardized because otherwise instead of the event

g1(x) ≥ β1,

g2(x) ≥ β2,

we would consider its equivalent form

g1(x) − E(β1)
D(β2)

≥ β1 − E(β1)
D(β1)

,

g2(x) − E(β2)
D(β2)

≥ β2 − E(β2)
D(β2)

,

where E(βi) is the expectation and D(βi) is the dispersion of the random variable βi. Now
if r is the correlation coefficient of β1 and β2

r =
E(β1β2)

D(β1)D(β2)
(4.8)
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and |r| < 1, then the joint distribution function of β1 and β2 equals

Φ(z1, z2; r) =
∫ z1

−∞

∫ z2

−∞
φ(u1, u2; r) du2 du1, (4.9)

where φ(u1, u2; r) is given by (3.5), and has a continuous gradient in the entire two-
dimensional space. Thus, if at a point x the vectors ∇g1(x), ∇g2(x) exist, then ∇G(x)
also exists and using (3.10), we have for

G(x) = Φ(g1(x), g2(x); r) (4.10)
that

∇G(x) =
(

∂Φ
∂z1

∂g1

∂xi
+

∂Φ
∂z2

∂g2

∂xi
, i = 1, . . . , n

)

=
(

Φ
(

g2(x) − rg1(x)√
1 − r2

)
φ(g1(x))

∂g1(x)
∂xi

(4.11)

+ Φ
(

g1(x) − rg2(x)√
1 − r2

)
φ(g2(x))

∂g2(x)
∂xi

, i = 1, . . . , n

)
.

Thus

∇G(x) = Φ
(

g2(x) − rg1(x)√
1 − r2

)
φ(g1(x))∇g1(x)

(4.12)

+ Φ
(

g1(x) − rg2(x)√
1 − r2

)
φ(g2(x))∇g2(x).

The functions Φ(z), φ(z), Φ(z1, z2; r) are tabulated (see [4], [5]) which helps in the practical
application. Problem (4.3) reads now as

min y

subject to
Φ(g1(xk), g2(xk); r)

= Φ
(

g2(xk) − rg1(xk)√
1 − r2

)
φ(g1(xk))∇g1(xk)(x − xk)

+Φ
(

g1(xk) − rg2(xk)√
1 − r2

)
φ(g2(xk))∇g2(xk)(x − xk) + δy ≥ p,

a′
ix ≥ bi, i = 1, . . . ,M,

∇f(xk)(x − xk) ≤ y.

(4.13)

If the random variables β1, . . . , βm have a joint distribution different from the normal
and we denote it by F (z1, . . . , zm), then the procedure is defined in the same way.

The convergence of the procedure will be proved in the next sections. Here we prove
only a theorem stating the optimality of xk if the procedure terminates with it.

Theorem 7 Under the assumptions of Section 1, the optimum value yopt of problem
(4.3) is 0 if and only if xk is an optimal solution to problem (1.2).
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Proof. Suppose that in problem (4.3) we have yopt = 0. In this case for all vectors x,
y satisfying the constraints of (4.3) the inequality y ≥ 0 holds. Let G(xk) = p. Then

y ≥ 0 (4.14)

is a consequence of the system of homogeneous linear inequalities (of the variables z, y):

∇G(xk)z + δy ≥ 0,
a′

iz ≥ 0, i ∈ I(xk), (4.15)
−∇f(xk)z + y ≥ 0.

Hence by the theorem of Farkas there exist nonnegative numbers u, w, ui, i ∈ I(xk) such
that

u∇G(xk) +
∑

i∈I(xk)

uia′
i − w∇f(xk) = 0′,

uδ + w = 1.
(4.16)

By Lemma 1, w = 0 cannot hold because in this case we would have u = 0 which
contradicts the second row in (4.16). Dividing by w everywhere in the first equality of
(4.16) we obtain the Kuhn–Tucker conditions. Thus by Lemma 3, xk is an optimal solution
to problem (1.2). In the case where G(xk) > p, the proof is quite similar. The difference
is that y ≥ 0 is a consequence of the conditions in the last two rows of (4.15) and u = 0
in both rows in (4.16).

Suppose now that xk is an optimal solution to problem (1.2). Then the Kuhn–Tucker
conditions (2.4) hold. Thus there exist nonnegative numbers u, w, ui, i ∈ I(x) such that
(4.16) is valid. Here u = 0 if G(xk) > p. Thus (4.14) is a consequence of the inequalities
in (4.15) (the first is to be omitted if u = 0). This tells us that yopt ≥ 0 in problem (4.3).
The vector x = xk, y = 0 is, however, feasible in (4.3) hence yopt = 0. �

5 Auxiliary Lemma for the Convergence of the Procedure

In this section we prove two lemmas. The notations used here are independently used
of the other sections. We consider a closed bounded convex set K and a function F (x)
defined in an open set containing K. We suppose that F (x) has a continuous gradient in
its domain of definition.

Lemma 5 Let y1,y2, . . . be a sequence of points of K and t1, t2, . . . be a bounded
sequence of vectors. Let further γ1, γ2, . . . be a sequence of positive numbers and suppose
that

yk + γktk ∈ K, 0 ≤ γ ≤ γk, k = 1, 2, . . . ; (5.1)

there exists an ε > 0 such that

∇F (yk)tk ≥ ε, k = 1, 2, . . . . (5.2)
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Let 0 < ε1 < ε and suppose that γk → 0 if k → ∞. Then except for at most a finite
number of subscripts k we have

∇F (yk + γtk)tk ≥ ε1 if 0 ≤ γ ≤ γk. (5.3)

Proof. Contrary to (5.3) let us suppose that we have for infinitely many subscripts k

∇F (yk + γ′
ktk)tk < ε1 with 0 < γ′

k ≤ γk. (5.4)

Then by (5.2) and (5.4) we have for this infinitely many subscripts[∇F (yk) −∇F (yk + γ′
ktk)

]
tk ≥ ε − ε1 > 0.

This is, however, a contradiction because γ′
k → 0 if k → ∞, the sequence tk is bounded

and ∇F (x) is uniformly bounded in K. �

Lemma 6 Let x1,x2, . . . be a sequence of points of K, s1, s2, . . . a bounded sequence
of vectors and λ1, λ2, . . . a sequence of positive numbers such that

xk+1 = xk + λksk, xk + λsk ∈ K, 0 ≤ λ ≤ λk, k = 1, 2, . . . . (5.5)

Suppose that

F (xk+1) = F (xk + λksk) ≥ F (xk + λsk), 0 ≤ λ ≤ λk, k = 1, 2, . . . . (5.6)

Let y1,y2, . . . ; t1, t2, . . . ; γ1, γ2, . . . be subsequences of the above sequences formed by the
selection of corresponding elements. Suppose that there exists an ε > 0 such that

∇F (yi)ti ≥ ε, i = 1, 2, . . . . (5.7)

Then we have
∞∑
i=1

γi < ∞. (5.8)

Proof. Consider a fixed k and let i be that subscript for which xk = yi. Then

F (xk+1) − F (x1) =
k∑

j=1

[F (xj+1) − F (xj)]

=
k∑

j=1

[F (xj + λjsj) − F (xj)]

≥
i∑

r=1

[F (yr + γrtr) − F (yr)]

≥
i∑

r=1

[
F (yr + γ′

rtr) − F (yr)
]
,

(5.9)
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where γ′
r is the largest γ with the property that

γ ≤ γr,

∇F (yr + γtr)tr ≥ ε1,
(5.10)

where 0 < ε1 < ε. Continuing (5.9),
i∑

r=1

[
F (y′

r + γ′
rtr) − F (yr)

]
=

i∑
r=1

F (yr + hrγ
′
rtr)γ′

rtr

≥ ε1

i∑
r=1

γ′
r,

(5.11)

where 0 < hr < 1. It follows from this that
∞∑

r=1

γ′
r < ∞. (5.12)

Now we prove that γr = γ′
r except for at most a finite number of subscripts. In fact, if for

an r we have γ′
r < γr, then

∇F (yr + γ′
rtr)tr = ε1

and [∇F (yr) −∇F (yr + γ′
rtr)

]
tr ≥ ε − ε1 > 0.

This cannot hold infinitely many times because it contradicts to the uniform continuity of
∇F (x) in K. Thus the Lemma is proved. �

6 Convergence of the Procedure

We give a proof for the convergence of the procedure for the solution of problem (4.2) where
we may disregard the special meaning of the function G(x). We use only the assumption
that G(x) has continuous gradient in K of Section 1 and that G(x) is quasi-concave in K.
Of course A.6. is also maintained. We consider the sequence x1,x2, . . . generated by the
subsequent solutions of problem (4.3) in the described manner. If this sequence is finite,
i.e., yopt = 0 at the problem (4.3), then by the Theorem 7, xk is an optimal solution to
problem (1.2). If, however, this sequence is infinite, then, as the set of feasible solutions
is bounded, the sequence x1,x2, . . . has a convergent subsequence what we denote by
y1,y2, . . . . Let

y∗ = lim
k→∞

yk (6.1)

and consider the (4.3) type problem belonging to y∗, i.e., the problem

min y

subject to
∇G(y∗) + ∇G(y∗)(x − y∗) +δy ≥ p,

a′
ix ≥ bi, i = 1, . . . ,M,

∇f(y∗)(x − y∗) ≤ y.

(6.2)
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If in (5.2) we have yopt = 0, then y∗ is an optimal solution to problem (4.2). Thus, using
an indirect proof, we suppose that in (5.2) yopt = −δ < 0. In this case there exists5 a
neighborhood N(y∗) of y∗ such that if z ∈ N(y∗), then the corresponding yopt ≤ −δ/2.

Let sk = x∗
k − xk (see equality (4.7)) and let tk and γk be a subsequences of the

sequences sk, λk, respectively, selected in the same way as yk is selected from xk. If k is
large enough then yk ∈ N(y∗) hence by the last row of (6.2),

−∇f(yk)tk ≥ δ

2
. (6.3)

According to Lemma 6,

∞∑
k=1

γk < ∞ (6.4)

which implies
γk → 0, if k → ∞.

Thus by Lemma 5, we have for every δ1, satisfying yk + γtk, γ ≥ 0.

−∇f(yk + γtk)tk ≥ δ1, if 0 ≤ γ ≤ γk, (6.5)

except for at most a finite number of subscripts k. It follows from (6.5) that going ahead
from yk in the direction tk, the function f decreases still at the point yk + γtk, hence the
constraints are those which put a stop to the progress in the direction tk. Consider the
constraints of problem (1.2) along the halfline

yk + γtk, γ ≥ 0,

i.e.,

G(yk + γtk) ≥ p,

a′
i(yk + γtk) ≥ bi, i ∈ I.

(6.6)

The second row allows also γ = 1 by construction of problem (4.3) thus it is the first row
of (6.6) which is violated first, going ahead with λ, except for at most a finite number of
subscripts. The reason for this is the relation (6.4)

Thus we have the following equality:

G(yk + γsk) = p, if k ≥ k0. (6.7)

We also know that

G(yk) ≥ p. (6.8)

5The existence of such a neighborhood N(y∗) can be proved easily under the condition that either
∇G(y∗) is not a zero vector or it is a zero vector but G(y∗) > p. If on the other hand ∇G(y∗) is the zero
vector and G(y∗) = p, then y∗ is an optimal solution to Problem (4.2).
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We write now problem (4.3) corresponding to the vector yk instead of xk. We have

min y

subject to
G(yk) + ∇G(yk)(x − yk) +δy ≥ p,

a′
ix ≥ bi, i ∈ I,

∇f(yk)(x − yk) ≤ y.

(6.9)

As the sequence yk converges and G(x) is continuous in the set of feasible solutions, it
follows that G(yk) converges too. In view of (6.7) we have limk→∞ G(yk) = p. Inserting
the optimal solution in the place of x in (6.9) and taking into account that

−yopt ≥ δ

2
,

p − G(yk) ≥ −ε for large k,

where ε is an arbitrary positive number, it follows that

∇G(yk)tk ≥ δ
δ

2
− ε = ε1. (6.10)

We may choose ε so small that the ε1 on the right hand side in (6.10) is positive. Since
γk → 0 if k → ∞, by Lemma 5 it follows that for any 0 < ε2 < ε1,

∇G(yk + γtk)tk ≥ ε2, 0 ≤ γ ≤ γk. (6.11)

This contradicts to (6.7) and (6.8) because they imply that at some point between yk and
yk + γktk, the left hand side of (6.11) is equal to 0.

Thus we have proved that

lim
k→∞

f(xk) = min
x∈D(p)

f(x). (6.12)

Remark 4 The present theory applies also to cases where instead of the problem

min f(x)
subject to
G(x) ≥ p,

a′
ix ≥ bi, i ∈ I,

(6.13)

we have to solve the following
min f(x)
subject to
Gi(x) ≥ pi, i = 1, . . . , N,

a′
ix ≥ bi, i = 1, . . . ,M,

(6.14)

where the functions G1(x), . . . , GN (x) are quasi-concave. The condition concerning the
domain of definition of the functions G1(x), . . . , GN (x) and the more general formulation
of condition A.6. is immediate. Similarly, the lemmas of Section 2 and the proof of the
convergence of the method applied to problem (6.14) does not present any difficulty.
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Remark 5 If G(x) has the special meaning (4.1) and m = 2, then the theorems of
Section 3 can be used to ensure the required property of G(x). Only Assumption 6 in
the first section cannot be ruled this way but it depends on the special structure of the
functions gi(x).

7 Generalization to an Arbitrary Number of Joint Con-
straints

In principle one can solve also problems of type (1.2) with m > 2. Without a proof we
mention that any multivariate normal probability distribution function of standardized
variables and nonsingular correlation matrix

Φ(z1, . . . , zm;R) (7.1)

is quasi-concave in the closed convex set zi ≥ d, i = 1, . . . ,m if d is large enough. Let
this d be the minimum of the numbers having that property and let p0 be defined by the
equality

Φ(d) = p0. (7.2)

Let p ≥ p0, then

{z : Φ(z1, . . . , zm;R) ≥ p} ⊂ {z : zi ≥ d, i = 1, . . . ,m}, (7.3)

moreover, if p > p0, then every point of the set on the left hand side is an internal point
of the set on the right hand side. This follows from the inequality

Φ(zi) ≥ Φ(z1, . . . , zm;R) ≥ p, i = 1, . . . ,m. (7.4)

We consider the problem

min f(x)
subject to
P(d′

ix ≥ βi, i = 1, . . . ,m) ≥ p,

a′
ix ≥ bi, i ∈ I.

(7.5)

Let

μi = E(βi), σ2
i = E[(βi − μi)2]. (7.6)

Then (7.5) can be written as

min f(x)
subject to

Φ
(

1
σ1

(d′
1x− μ1), . . . ,

1
σm

(d′
mx − μm);R

)
≥ p,

a′
ix ≥ bi, i ∈ I,

(7.7)
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where R is the correlation matrix of the random variables β1, . . . , βm. The solution of
problem (7.7) is similar to that of the case m = 2. First we mention that (see, e.g. [8])

∂Φ(z1, . . . , zm;R)
∂zi

= Φ(z1, . . . , zi−1, zi+1, . . . , zm | zi)φ(zi)

= Φ

⎛
⎝z1 − r1izi√

1 − r2
1i

, . . . ,
zm − rmizi√

1 − r2
mi

;Ri

⎞
⎠φ(zi),

(7.8)

where in the last row the first factor is an m− 1-dimensional normal distribution function
with the correlation matrix Ri, having entries

rjk − r1jr1k√
1 − r2

1j

√
1 − r2

1k

, j, k = 1, . . . , i − 1, i + 1, . . . ,m. (7.9)

If
d′

i = (di1, . . . , din), i = 1, . . . ,m, (7.10)

then the gradient of the function

G(x) = Φ
(

1
σi

(d′
ix − μi), i = 1, . . . ,m;R

)
(7.11)

is equal to

G(x) =

(
m∑

i=1

∂Φ(z1, . . . , zm;R)
∂zi

dij

σi
, j = 1, . . . , n

)
, (7.12)

where

zi =
1
σi

(d′
ix− μi), i = 1, . . . ,m. (7.13)

The linear functions (7.13) can be replaced by concave functions.

8 Application to the Nutrition Problem

Problem (7.5) with the cost function

f(x) = c′x (8.1)

has a direct application to the nutrition problem. In fact, suppose that the number of
nutrients is m + M and the necessary nutrient levels of the first m of them are random
variables, i.e., vary from unit to unit in the population for which we want to obtain an
optimal nutrition program. These levels are denoted by β1, . . . , βm. The remaining levels
are constant, i.e., they are the same for each unit of the population. Thus each unit of
the population has its own minimum nutrient levels

β1, . . . , βm, b1, . . . , bM , (8.2)
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where β1, . . . , βm take a certain realization at each unit. The first condition in (7.5) means
that at least 100% of the population should get his minimum amounts β1, . . . , βm from
the first m nutrients while everybody should get the constant minimum levels b1, . . . , bM

from the remaining nutrients. Unfortunately, in lack of the necessary data, we are unable
to present the solution of a realistic problem on this field. The marginal distributions of
β1, . . . , βm are already investigated but there is no trace in the literature of the correlations
between these random variables.
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