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1. SUMMARY AND TWO KNOWN LEMMAS

Recently, C. G. Khatri [5] presented an inequality for probabilities of convex
symmetric regions in multivariate normal distributions; unfortunately, his proof was
incorrect (as it was shown by Sidak [9]), and the general correctness of his inequality
is an open question. In the present paper, starting with stronger assumptions, we are
able to prove a stronger result: namely, if all correlations g;; in the underlying normal
distributions have the product form g;; = b;b; (where —1 < b;, b; < 1), the proba-
bilities in question are, roughly speaking, non-decreasing functions of the absolute
values of the correlations; an immediate consequence is essentially Khatri's ine-
quality for this special case.

After further strengthening the assumptions, namely considering equicorrelated
normal distributions, we show that the probabilities of certain regions (which now
need be neither convex nor symmetric) are again non-decreasing functions of the
correlations.

Finally we note that our method of proofs gives also easily some probability
inequalities for certain special cases of multivariate exponential and Poisson distri-
butions.

We shall need the following two lemmas.

Lemma 1. Let g,(v) and g,(v) be two functions of a real random vector v. If the
respective expectations in subsequent formulas exist, then

Eg,(v) g,(v) = Eg,(v) Eg,(v)

provided for any two points vy and v,, either g,(v\) = g,(v,) and g,(v,) = g,(v,),
or g,(v,) £ g4(v2) and g,(v1) < g,(v,), while

Eg1(v) g2(v) < Eg,(v) Eg,(v)
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provided for any two points v, and v,, either g,(vy) = g,(v,) and g,(v;) < g,(v,),
or gi(vy) £ g4(v2) and g,(v1) Z g,(v,).

This lemma is due to C. G. Khatri [4], p. 1859, Lemma 5. In fact, we shall use this
lemma only for one-dimensional variables v rather than for vectors v, and only the
first part of it. However, if some (but not all) component regions in the theorems and
proofs to follow were replaced by their complements, it would be appropriate to use
the second part of the lemma, and we should obtain analogous results but with re-
versed signs of inequalities; the details of this easy modification are left to the reader.

Lemma 2. If Z=(Z,,...,Z,) is a random vector with density ¢(z) such that
o(z) = ¢(—1z) and the set {z; ¢(z) = c} is convex for every non-negative c, and if €
is a convex set, symmetric about the origin, then P{Z + ab € %} is a non-increasing
Sfunction of the parameter a(0 < a < oo0) for any vector b.

This lemma is due to T. W. Anderson [1]. We shall use it for the case where Z
has a multivariate normal distribution with zero means, and it can be seen that the
assumptions concerning ¢ are satisfied in this case.

2. NORMAL DISTRIBUTIONS WITH SPECIAL CORRELATION STRUCTURE

C. G. Khatri [5], Theorems t and 2, published the following theorem.
Let the random vector X = (X, ..., X,), having a p-variate normal distribution
with zero means and any covariance matrix, be partitioned as X = (Xl‘, X5, .. X))
where X, = (X, 4o capeeitts oo Xppaoooap) k=12, q, with py + ... + p, =
= p, and (as a convention) p; + ... + p, = 0. Let Z,, k = 1,2, ..., q, be a convex
and symmetric region in X, about the origin in p-dimensional space containing

the whole axes — o0 < x; < oo due to all other variates. Then

q q q
(1) P{N 2 =z P{2} P{N 2.} = || P{2} -
k=1 k=2 k=1
Further, if 7, is the complementary region of 2, then

7 2 PZ) PN 2 = [] (7).

1 k=2 k=1

o=

e Py
k

Unfortunately, the proof of these inequalities given in (5) was incorrect (as it was
shown by Sidak [9]). The general correctness of the inequality (1) is an open question,
while (2) is known to be generally false (cf. the counterexample in Sidak [8]).

Let us also remark that Khatri’s expression "a convex and symmetric region in
X,...” is somewhat unclear. On inspecting his proofs in [4], [5] one finds that his
requirements on &, are that they must have the form

D= Ry, X oo X By, X A, X R X ... X R

Pl + 1 ‘Pg
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(with obvious modifications for 2, @q) where 2, is the Euclidean p-dimensional
space, and &7, is some subset of #, which is convex and symmetric about the origin.
Hence Khatri’s assertions in [4], [5] should be modified in this sense, and we have
e. g

P{N @) = P{X, ey, ... X, e}

In order to use a more precise and direct notation, we shall work in the present paper
with the sets 7.

Theorem 1. Let the random vector X = (X,. ..., X,,) be partitioned as X =
= (X,, X;) where X; = (Xy,..,X,), X, = (X, 11,....X,), and let 1,, I, be the
sets of indices I, = {1, ..., p;}, I, = {p, + 1, ..., p}. Let X have a p-variate normal
distribution with zero means, arbitrary variances and with the correlation matrix
R(3) = |li(A)| depending on a parameter A0 < i < 1) as follows : under the
probability law P;, we have ¢,(2) = 0;/(2) = b;b; whenever i % j and either i, j eI,
or i,jel,, and ¢,{4) = ;{1) = 4 b;b; whenever either iel,,jel, oriel,, jel;
here by, ..., b, are some fixed numbers satisfying —1 < b; £ 1,i=1,..,p. If
o, and s ,, are convex regions symmetric about the origin in the p,-dimensional
space, and (p-p,)-dimensional space, respectively, then

(3) P() = P,{X, e o\ Xy € f5)

is a non-decreasing function of (0 < A < ). If o,, i, are complements of oA,
o 4, respectively, then also

4 P(2) = P{X e d, X, e,
is a non-decreasing function of (0 £ 1 < 1).

Proof. We shall prove the first part of the theorem concerning (3). Evidently, we
may suppose also that the variances of all X;’s are equal to 1. Introduce the following
model :for0 £ A <2+ h <1 et

XF=0 =)y, + (L — 2= h)'"2bW, + 12U + W12y for iel,,
= (1= b)Y + (1 — A — B)'2hW, + A2 U + W2y for iel,,
TXP* = (1= b)Y, + (1~ 4= B2, W, + A2, U + h'2bY, for iel,,
= (1= b2, + (1L — A — W)'"2b,W, + A'2pU + W2V, for iel,,
where all variables Yy, ..., Y,, W, Wy, U, V, ¥}, V, have independent N(0,1) distri-

butions. By an easy calculation it can be then shown that the distribution of the vector
X* (or X**) coincides with that of X under P, , (or P,, respectively).
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In the sequel, we shall use the notation E, for the expectation over the random
variable V(i. e., if f(v) is a function of a real variable v, ¢(v) the density of ¥, then
E,f(v) = [f(v) @(v)dv), and similarly for E,. Further, put

Z;= (1= b)Y, + (1 — 21— w2 bW, for iel, k=12,

Let XTI, X5, X7* X3* Z,,Z,,b,, b, have an analogous meaning of partitioned
vectors as X, X,. Consider now, for arbitrary but fixed u, the probability

(5) P{Z, + 2'Pbu + Wb Ve o, k=12}=
= EP{Z + 2'’bu + h'Pbye o, k=1,2} =

2
= E, [1P{Z, + (A'°u + h'?0) be 4,} .
k=1

Let us now concentrate on the probabilities
(6) P{Z, + (A'u + h'?0)be o}, k=1,2,

occurring in the last line of (5). Both vectors Z; and Z, have multivariate normal
distributions with zero means, and therefore, by Lemma 2, both probabilities (6) as
functions of v are non-decreasing for —o0 < v £ —AY*h~1?y and non-increasing
for —A12h7Y2y < p < 0. Moreover, these probabilities are symmetric functions
of v about the point v = —AY2h~ 12y,

By these last assertions, it can be now immediately seen that the probabilities (6)
satisfy the conditions on the functions ¢, g, in Lemma 1. Therefore, by Lemma 1,

2
(7N E, [1P{Z, + (A'u + h'?v) b e o} =
k=1
2
= [1EP{Z, + (A'Pu + h'P0) b e o4,} =
K=1
2

= [1 P{Z, + 2 bac + 1 Pbye o) =

= P{Z, + 2'"*bu + WbV e o\, k=12}.
Combining now (5) and (7), and applying the expectation E,, we get
(8) PA+h) =P{XTed,XJed,} 2 P{X{*ed,, X;* est,} = P()),

which proves the first part of Theorem 1.
The proof of the second part concerning (4) runs in a completely analogous way.
The only substantial change is that we are now led, in place of (6), to the probabilities

(9) P{Z, + (A'?u + B'P0)be ), k=12,

which are non-increasing for —oo < v £ —AY2h712y and non-decreasing for
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—12p~ 12y < v < o0. However, Lemma 1 is clearly again applicable, and the rest
of the proof is analogous.

Corollary 1. Let the random vector X = (X,,...,X,) be partitioned as X =
= (X, Xy, ... X,) where X, = (X, tpmtto-oXpt.om»r k=12,...4,
with p; + ... p, = p, and (as a convention) p, + ... + py = 0. Let X have a p-vari-
ate normal distribution with zero means, arbitrary variances and with the correla-
tions 9;; =bb;, i%j;i,j=1,...,p, where —1 b, <1, i=1,...p If o,
k=1....,q, are convex regions symmetric about the origin in the p,-dimensional
space, respectively, then

(10) P{X,ed, Xyeust,,....X,esd,} =

%
Y%
s
ol
X

Mm
S

> P{X, e} P{X,eod,,.., X, ed,} =

3

If o, k=1,...,q,is the complement of <Z,, then

(11) P{X,ed,, X,ed,,...,X,ed,} =

iV

q
2 P{X, e} P{X, e, .., X e} .z kUlP{X" AN

Proof. It suffices to put A = 1 and 2 = 0 in Theorem 1.

The first assertion concerning (3), and the second assertion concerning (4), of
Theorem 1 generalize Theorem 1 in Sidak [7], and Lemma 2 in Sidak [8], respectively,
while (11) in Corollary 1 generalizes Theorem 2 in Khatri [4]; all of these previous
results concerned the case of one-dimensional «7,’s.

3. EQUICORRELATED NORMAL DISTRIBUTIONS

In previous literature devoted to probability inequalities for multivariate normal
distributions, almost all results concerned the case of convex symmetric sets. However,
if we sufficiently strengthen the requirements on the distributions, namely, if we
consider equicorrelated normal distributions, we are also able to prove a result for
sets of other types, which need be neither convex nor symmetric.

Theorem 2. Let the random vector X = (X], e X,,) have, under the probability
law P,, a p-variate normal distribution with equal mean values, equal variances,
and with all correlations equal to 9 = 0. If & is an arbitrary Borel set on the real
line, then

(12) ( Plo) = Pi{X, €8, X,€6,..,X,€6}

is a non-decreasing function of 0(0 £ ¢ < 1).
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The proofis very similar to that of Theorem 1. Since & is arbitrary, we may clearly
suppose that all mean values are 0 and all variances 1. Then we can introduce the
following model: for0 £ o <o+ h £ 1 let

i

X = —o—h'"2Y, + 0"?U + B2V for i=1,..,p,
Xi* = —0o—h"2Y, 4+ o"2U + h'?v; for i=1,...,p,

where all variables Y, ..., Y,, U, V, V,, ..., V, have independent N((),l) distributions.
Evidently, the distribution of the vector X* (or X**} coincides with that of X under
P,.,(or P, respectively).

For an arbitrary but fixed u consider now the probability

(13) P{(t — o — W'Y, + 0"Pu + h'?Veds, i=1,..,p} =
=EP{(l —o— MY, + 0"+ hWved, i=1,..,p}=

P
=E J]P{(1 —o— 'Y, + o"%u + h'?ve&}.
i=1
All probabilities in the product in the last line of (13) are equal, so that they, as well
as their products, certainly satisfy the conditions on the functions g; in Lemma 1.
Therefore, by induction applying Lemma 1, we get
(14) E

©

P{(1 —o— M"Y, 4+ 0"Pu+ h"ves) =

o Ml fe

i

EP{(1 —o—h"? Y, + 0"u + h'Pves) =

I

i=1
=P{(l —o—0)'"PY, + 0" Pu+h""Vies, i=1..p}.
Putting (13) and (14) together, and applying E,, we get finally
(15) P(o + h)

i

P{Xtes, i=1,...p}=

> P{XHes, i P(o) -

i
=
It

Corollary 2. Under the assumptions of Theorem 2 we have
(16) PiX,eé8, X,e6,..,X,eé} 2 [P{X, e8]
The inequality (16) and some other sharper inequalities for equicorrelated normat
distributions were given in Sidak [IO], Section 3, Case 1.
4. SPECTAL EXPONENTIAL AND POISSON DISTRIBUTIONS
Let us remark in this last section that our method of proofs, based on Lemma 1,

can be also applied to give the following simple inequalities for special cases of multi-
variate exponential and Poisson distributions.
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Theorem 3. Let the random vector Z = (Z,, ..., Z,) be given by Z, = min (Y,,V), ...
v Zy = min (Y, V), where Yy, ..., Y;, V are independent exponential variables.
Then, for any numbers ¢y, ..., ¢, we have

k

(17) P{Zl§Cls'~-sZk§ck}§HP{Ziéci}y
i=1
k

(18) p{z, zC.w.,Zkéck}ZI_IIP{Ziéci}-

Proof. To prove (17), we may write

(19) PlZ, ¢y Zy S ¢ =
= E,P{min(Y,,v) £ ¢, ..., min (Y, v) £ ¢} =

k
=E, [] P{min (Y, 0) < ¢;}.
i=1

Since v, < v, implies min (Y}, v;) < min (Y, v,), which in turn implies

\%

(20) P{min (Y, v;) £ ¢} 2 P{min (Y, ;) S ¢}, i=1,...k,

the probabilities in the last line 0f(19), as well as their products, satisfy the conditions
on g; in Lemma 1. Therefore, by induction applying Lemma 1, the probability (19)
is larger or equal to

k k
EEUP{min (Yov) < e = Bl P{Z, < ¢} .

The proof of (18) is similar, but all inequalities in (20) are reversed.

Note that the variables Z,, ..., Z, introduced in Theorem 3 have a special multi-
variate exponential distribution, covering for k = 2 the case of the general bivariate
exponential distribution (cf. Marshall-Olkin [6], Theorem 3.2). Our inequalities (17)
and (18) generalize the corresponding inequalities for k = 2 mentioned on the top
of p. 38 in [6] Some related sharper inequalities for the case where the events
{Z, < ¢;} or {Z; = ¢;} are replaced by {Z, € o7} (with the same general o for all i)
were given by Sidéak [10], Section 3, Case 5.

Theorem 4. Let the random vecior Z = (Z,, ..., Z,) be given by Z, = Y, + V, ...
o Zy =Y, + V,where Yy, ..., Y, V are independent Poisson variables. Then, for
any numbers ¢, ..., ¢, the inequalities (17) and (18) are again true.

The proof is similar to that of Theorem 3 and is left to the reader.

Similarly as before we may note that the variables Z,, ..., Z, in Theorem 4 have
a special multivariate Poisson distribution, covering for k = 2 the case of the general
bivariate Poisson distribution (cf. Haight [2], Section 3.12, or Holgate [3]). Again,
if the events {Z; < ¢;} or {Z; = ¢;} are replaced by {Z, ¢ o/}, some related sharper
inequalities for this case can be found in Sidak [10], Section 3, Case 4.
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Souhrn

O PRAVDEPODOBNOSTECH V JISTYCH
MNOHOROZMERNYCH ROZLOZENICH:
JEJICH ZAVISLOST NA KORELACICH

ZBYNEK SIDAK

Nedavno C. G. Khatri [5] publikoval jistou nerovnost pro pravdépodobnosti
konvexnich symetrickych oblasti v mnohorozmérném normalnim rozloZeni; bohuZzel
viak jeho dikaz je chybny (jak je ukdzéno v [9]) a obecnd platnost jeho nerovnosti
zOstava otevienou otazkou. V naSem ¢lanku dokazujeme pii splnéni silngjsich pred-
poklad® nasledujici siln&jsi tvrzeni: jestlize vSechny korelace norméalniho rozloZeni
maji soulinovy tvar ¢;; = b;b; (kde —1 < b, b; < 1), pak pravd&podobnost oblasti
oy x s, (kde o, of , jsou konvexni symetrické oblasti) je, zhruba Fefeno, neklesa-
jici funkei absolutnich hodnot korelaci; disledkem je pak v podstaté Khatriho ne-
rovnost pro tento specialni pfipad.

Zesilime-li dale pfedpoklady, uvazujeme-li totiz ekvikorelovana normalni rozioZeni,
pak pravdépodobnost oblasti & x & x ... x & (kde & je libovolnd, nemusi byt
konvexni ani symetrickd) je op&t neklesajici funkci korelaci.

Zavérem je nasi dikazové metody uZito pro ziskani jistych nerovnosti pro specialni
pfipady mnohorozmérného exponencialniho a Poissonova rozloZeni.
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