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ON PROBABILITY LAWS OF SOLUTIONS TO DIFFERENTIAL
SYSTEMS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
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This article investigates several properties related to densities of solutions
(Xt )t∈[0,1] to differential equations driven by a fractional Brownian motion
with Hurst parameter H > 1/4. We first determine conditions for strict pos-
itivity of the density of Xt . Then we obtain some exponential bounds for
this density when the diffusion coefficient satisfies an elliptic type condi-
tion. Finally, still in the elliptic case, we derive some bounds on the hitting
probabilities of sets by fractional differential systems in terms of Newtonian
capacities.

1. Introduction. Let B = (B1, . . . ,Bd) be a d-dimensional fractional Brow-
nian motion indexed by [0,1], with Hurst parameter H > 1/4, defined on a com-
plete probability space (�,F,P). Recall that this means that the components Bi

are i.i.d. and that each Bi is a centered Gaussian process satisfying

E
[(

Bi
t − Bi

s

)2] = |t − s|2H .(1)

In particular, for any H > 1/4, the path t �→ Bt is almost surely (H − ε)-Hölder
continuous for any ε > 0 and for H = 1/2 the process B = BH coincides with the
usual d-dimensional Brownian motion.

We are concerned here with the following class of equations driven by B:

Xx
t = x +

∫ t

0
V0

(
Xx

s

)
ds +

d∑
i=1

∫ t

0
Vi

(
Xx

s

)
dBi

s, t ∈ [0,1],(2)

where x is a generic initial condition and {Vi;0 ≤ i ≤ d} is a collection of smooth
vector fields of Rn. Owing to the fact that the family {BH ;0 < H < 1} is a very
natural generalization of Brownian motion, this kind of system is increasingly used
in applications and has also been thoroughly analyzed in the last past years at a
theoretical level.
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Among the contributions to the study of (2) which seem most relevant to
our purposes let us first mention the resolution of the equation, with Young
type integration methods for H > 1/2 (cf., [33]) and rough paths techniques for
H ∈ (1/4,1/2) (see, e.g., [20]). Then once equation (2) is solved, a natural ques-
tion to address is to get some information on the law of the random variable Xx

t

when t ∈ (0,1]. To this respect, we have to distinguish several cases:

• When H > 1/2 and under ellipticity assumptions on the vector fields Vi , exis-
tence and smoothness of the density are shown in [23, 30]. The Hörmander’s
case for H > 1/2 is treated in [5].

• When H ∈ (1/4,1/2), the integrability of the Jacobian established in [15] im-
mediately yields smoothness of the density in the elliptic case. The hypoelliptic
case is handled in the series of papers [13, 22, 24], culminating by the refer-
ence [14] which gives a Hömander’s type criterion for a wide class of Gaussian
processes including fBm with H ∈ (1/4,1/2).

• Concentration results and exponential bounds on the density are treated in par-
ticular cases: gradient bounds in the case H > 1/2 are obtained in [8], and an
upper bound for the density in a skew-symmetric situation is addressed in [9].

Let us also mention several attempts of small time asymptotics for the density of
Xx

t , like the expansions contained in [4, 7, 28].
The current article should be seen as another step toward a better understanding

of the law of Xx as a process when the coefficients of equation (2) satisfy different
kind of ellipticity conditions.

The following assumption will prevail until the end of the paper.

HYPOTHESIS 1.1. The vector fields V0, . . . , Vd are C∞
b (Rn) (bounded to-

gether with all their derivatives).

Let us now range our nondegeneracy conditions in increasing order of restric-
tions: the first kind of assumption is a rather mild control-type hypothesis which
can be traced back to [10] and [12].

HYPOTHESIS 1.2. Let H be the Hilbert space related to our fBm B (see the
definition at Section 2.2) and define a map � : H → C(Rn) such that for all h ∈ H,
�(h) is defined by the ordinary differential equation

�(h)t = x +
∫ t

0
V0

(
�(h)s

)
ds +

d∑
i=1

∫ t

0
Vi

(
�(h)s

)
dRhi

s,

which is understood in the (p-var) Young sense and where the isometry R is de-
fined by relation (14). Then for any y ∈ R

n, there exists an element h ∈ H such
that �(h)t = y and �(h) is a submersion.
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Hypothesis 1.2 is a variant of Hörmander’s condition, and it has been shown
in [10], Theorem II.1, that it is equivalent to the strict positivity of the density
function of Xx

t in case of nondegenerate equations driven by Brownian motions.
More precisely, as pointed out in [12], page 28, Hypothesis 1.2 is, for instance,
satisfied if the following condition is met: for every x ∈ R

n and every nonvanish-
ing λ ∈ R

d , the vectors V1(x), . . . , Vd(x) and [V1, Y ](x), . . . , [Vd,Y ](x) span R
n,

where we have set Y = ∑d
i=1 λiVi .

This provides a handy geometric interpretation of this assumption and the usual
diffusion case tends to indicate that Hypothesis 1.2 should be minimal in order to
establish strict positivity of the density for Xx

t .
The second assumption we shall invoke is of elliptic type, and can be stated as

follows.

HYPOTHESIS 1.3. The vector fields V1, . . . , Vd of equation (2) form an elliptic
system, that is,

v∗V (x)V ∗(x)v ≥ λ|v|2 for all v, x ∈ R
n,(3)

where we have set V = (V i
j )i=1,...,n;j=1,...,d and where λ designates a strictly pos-

itive constant.

With this set of hypotheses in hand, we obtain the following results:

(1) We first give some general conditions in order to check that the density pt

of Xx
t is strictly positive on R

n.

THEOREM 1.4. Consider the solution Xx to equation (2) driven by a d-dimen-
sional fBm with Hurst parameter H > 1/4. Assume that Hypotheses 1.1, 1.2 are
satisfied and that the Malliavin matrix of Xx

t , t > 0, is invertible with inverse in
Lp , for every p ≥ 1. Let t ∈ (0,1] and consider the density pt : Rn → R+ of the
random variable Xx

t . Then pt(y) > 0 for all y ∈R
n.

Note that the nondegeneracy condition on the Malliavin matrix assumed in the
above theorem is achieved under Hörmander’s condition (cf., [5, 14]).

(2) Next we derive some Gaussian or sub-Gaussian type upper bounds for the
density pt of the random variable Xx

t .

THEOREM 1.5. Let Xx be the solution to equation (2) driven by a d-
dimensional fBm B with Hurst parameter H > 1/4, assume that V1, . . . , Vd satisfy
the elliptic condition (3) and let t ∈ (0,1]. Then the density pt of Xx

t satisfies the
following inequality:

pt(y) ≤ c1t
−nH exp

(
−|y − x|(2H+1)∧2

c2t2H

)
for all y ∈ R

n,(4)

for two strictly positive constants c1, c2.
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Observe that we have put an emphasis in computing the correct exponents in all
terms of relation (4). Namely, the terms t−nH and t2H (resp., outside and inside the
exponential terms) can be considered as optimal, since they correspond to what one
obtains in the fractional Brownian case, that is, nondegenerate constant coefficients
V1, . . . , Vd and V0 ≡ 0. As far as the exponent of |y − x| within the exponential
is concerned, the quadratic Gaussian term we get in the regular case (namely H >

1/2) is also optimal, while the exponent 2H + 1 of the irregular case (H < 1/2)
is due to some poorer concentration properties of the random variable Xx

t (see
Proposition 2.10 below for more details).

(3) Finally, we complete this paper by studying the relationship between ca-
pacities of sets in R

n and hitting probabilities for equation (2) seen as a system.
Indeed, we are interested in solving a classical problem on potential theory for
stochastic processes which is the following: can we relate the hitting probabilities
of Xx solution to equation (2) with a Newtonian capacity? In other words, we wish
to know if there exists α ∈ R such that for all Borel sets A ⊂R

n

P
(
Xx(R+) ∩ A = ∅

)
> 0 ⇐⇒ Capα(A) > 0.

For the sake of readability, let us briefly recall the definition of Newtonian ca-
pacity: for all Borel sets A ⊂ R

n, we define P(A) to be the set of all probability
measures with compact support in A. For μ ∈ P(A), we let Eα(μ) denote the α-
dimensional energy of μ, that is,

Eα(μ) :=
∫∫

Kα

(|x − y|)μ(dx)μ(dy),(5)

where Kα denotes the α-dimensional Newtonian kernel, that is,

Kα(r) :=
⎧⎨
⎩

r−α, if α > 0,
log(N0/r), if α = 0,
1, if α < 0,

(6)

where N0 > 0 is a constant. For all α ∈ R and Borel sets A ⊂ R
n, we then define

the α-dimensional capacity of A as

Capα(A) :=
[

inf
μ∈P(A)

Eα(μ)
]−1

,(7)

where by convention we set 1/∞ := 0. In particular, it is easily seen from defini-
tions (5)–(7) that for any x ∈ R

n we have Capα({x}) > 0 if and only if α < 0.
Let us now go back to our fBm situation: recall that for a n-dimensional frac-

tional Brownian motion B = (B(t), t ≥ 0) with Hurst parameter H ∈ (0,1), the
following is well known (see, e.g., [32] and the references therein):

B hits points in R
n a.s. if and only if n <

1

H
.(8)
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Moreover, for all 0 < a < b, η > 0, there exist positive constants c3, c4 such that
for any Borel set A ⊂ R

n,

c3 Capn−(1/H)(A) ≤ P
(
B
([a, b]) ∩ A = ∅

) ≤ c4 Capn−(1/H)−η(A).

As in the case of density functions, our aim is to obtain similar bounds for the
solution to equation (2), where B is a fBm with H > 1

4 . We shall get the following.

THEOREM 1.6. Let Xx be the solution to equation (2) driven by a d-dimen-
sional fBm B with Hurst parameter H > 1/4. Fix 0 < a < b ≤ 1, M > 0, and
η > 0 Then whenever V1, . . . , Vd satisfy the elliptic condition (3), there exists two
strictly positive constants c5, c6 depending on a, b,H,M,n,η such that for all
compact sets A ⊆ [−M,M]n,

c5 Capn−(1/H)(A) ≤ P
(
Xx([a, b]) ∩ A =∅

) ≤ c6 Capn−(1/H)−η(A).(9)

REMARK 1.7. We have used the self-similarity property of fractional Brow-
nian motions in order to obtain correct order (in t) in the various bounds for the
density functions of Xx , which is essential to prove the above characterization of
hitting probabilities. At the price of additional work and less precise estimates, we
believe the above result can be extended to more general Gaussian noises. This
will be discussed in a later work.

Moreover, as a corollary of Theorem 1.6, we easily get that if Hypothesis 1.3 is
met, then if n < 1

H
the process Xx hits points in R

n with strictly positive probabil-

ity, while if n > 1
H

the process Xx does not hit points in R
n a.s.

Let us say a few words about the methodology we have followed in order to
obtain the results above. Our computations lie into the landmark of stochastic anal-
ysis for Gaussian processes, and we try to apply general Malliavin calculus tools
which yield global recipes in order to get strict positivity [2] or upper bounds [29],
Chapter 2, for densities of random variables defined on the Wiener space. We also
invoke the references [16, 17], which establish nice relationships between stochas-
tic analysis and potential theory for processes. This being said, our technical efforts
will mainly be focused on the following points:

• An accurate Karhunen–Loeve expansion of fBm which will enable us to obtain
the strict positivity of the density pt .

• A combination of rough paths estimates and a sharp analysis of some covariance
matrices related to fBm in order to obtain our exponential upper bounds.

• A thorough analysis of bivariate densities for the hitting probabilities of Xx .

All those points will obviously be detailed in the next sections.
Here is how our article is structured: Section 2 gathers some material on fBm

and rough differential equations which prove to be useful in the sequel. Section 3
is devoted to establish criteria for the strict positivity of the density of Xx

t and our
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Gaussian upper bounds for pt are handled in Section 4. Finally, we get the bounds
on hitting probabilities in Section 5, where in particular all the previous tools are
used.

Notation. Throughout this paper, unless otherwise specified, we use | · | for
Euclidean norms and ‖ · ‖Lp for the Lp norm with respect to the underlying prob-
ability measure P.

Consider a finite-dimensional vector space V . The space of V -valued Hölder
continuous functions defined on [0,1], with Hölder continuity exponent γ ∈ (0,1),
will be denoted by Cγ (V ), or just Cγ when this does not yield any ambiguity. For
a function g ∈ Cγ (V ) and 0 ≤ s < t ≤ 1, we shall consider the semi-norms

‖g‖s,t,γ = sup
s≤u<v≤t

|gv − gu|V
|v − u|γ .(10)

The semi-norm ‖g‖0,1,γ will simply be denoted by ‖g‖γ .
Generic universal constants will be denoted by c,C independently of their exact

values.

2. Preliminary material. Recall that a fractional Brownian motion B is a
d-dimensional centered Gaussian process with independent components Bi such
that E[(Bi

t − Bi
s)

2] is given by (1). Let us also point out that B admits a represen-
tation of Volterra type, namely

Bi
t =

∫ t

0
K(t, u) dWi

u, i = 1, . . . , d,(11)

for a d-dimensional Wiener process W and a kernel K (whose exact expression is
given, e.g., in [29]) such that for any t ∈ [0,1] we have K(t, ·) ∈ L2([0,1]). We
denote by R the common covariance of the Bi , defined by

Rst = E
[
Bi

sB
i
t

] =
∫ s

0
K(s,u)K(t, u) du

(12)

= 1

2

(|t |2H + |s|2H − |t − s|2H )
,

for s, t ∈ [0,1]. In the remainder of the paper, we assume that the process B is real-
ized on an abstract Wiener space (�,F,P) with � = C0([0,1];Rd). Namely, � =
C0([0,1]) is the Banach space of continuous functions vanishing at 0 equipped with
the supremum norm, F is the Borel sigma-algebra and P is the unique probability
measure on � such that the canonical process B = {Bt = (B1

t , . . . ,Bd
t ), t ∈ [0,1]}

is a centered Gaussian process with covariance R given by (12).
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2.1. Rough path above B. We consider here B together with its iterated inte-
grals as a rough path, and we refer to [20, 27] for further details on this concept.
Let us just mention here a few basic facts.

Let T N(Rd) = R ⊕ R
d ⊕ (Rd ⊗ R

d) ⊕ · · · ⊕ (Rd)⊗N be the truncated step-
N tensor algebra. For paths in T N(Rd) starting at the fixed point e := 1 + 0 +
· · · + 0, one can define p-variation metrics. We call this metric dp-var, and its
corresponding norm is denoted by ‖ · ‖p-var.

A geometric p-rough path x is a path in T �1/β�(Rd) which can be approximated
by lifts of smooth paths in the dp-var metric. Given a rough path x, the projection
on the first level is an R

d -valued path and will be denoted by π1(x). It can be
seen that rough paths actually take values in the smaller set GN(Rd) ⊂ T N(Rd),
where GN(Rd) denotes the free step-N nilpotent Lie group with d generators. The
Carnot–Caratheodory metric turns (GN(Rd), d) into a metric space.

Let us now turn to the fBm case: according to the considerations above, in or-
der to prove that a lift of a d-dimensional fBm as a geometric rough path exists
it is sufficient to build enough iterated integrals of B by a limiting procedure. To-
ward this aim, a lot of the information concerning B is encoded in the rectangular
increments of the covariance function R [defined by (12)], which are given by

Rst
uv ≡ E

[(
B1

t − B1
s

)(
B1

v − B1
u

)]
.

We then call two-dimensional ρ-variation of R the quantity

Vρ(R)ρ ≡ sup
{(∑

i,j

∣∣Rtj tj+1
si si+1

∣∣ρ)1/ρ

; (si), (tj ) ∈ �

}
,

where � stands again for the set of partitions of [0,1]. The following result is now
well known for fractional Brownian motion (see [20], Chapter 15).

PROPOSITION 2.1. For a fractional Brownian motion with Hurst parame-
ter H , we have Vρ(R) < ∞ for all ρ ≥ 1/(2H). Consequently, for H > 1/4 the
process B admits a lift B as a geometric rough path of order p for any p > 1/H .

2.2. Malliavin calculus tools. Gaussian techniques are obviously essential in
the analysis of densities for solutions to (2), and we proceed here to introduce
some of them. These lines follow the classical analysis for Gaussian rough paths
as explained in [20] and [29]. We refer to those books for further details.

2.2.1. Wiener space associated to fBm. Let E be the space of Rd -valued step
functions on [0,1], and H the closure of E for the scalar product

〈
(1[0,t1], . . . ,1[0,td ]), (1[0,s1], . . . ,1[0,sd ])

〉
H =

d∑
i=1

R(ti, si),
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where R is defined by (12). Then if (e1, . . . , ed) designates the canonical basis of
R

d , one constructs an isometry K∗
H : H → L2([0,1]) such that K∗

H(1[0,t]ei) =
1[0,t] KH(t, ·)ei , where the kernel K = KH has been introduced in (11), and
verifies that E[Bi

sB
i
t ] = ∫ s∧t

0 K(t, r)K(s, r) dr . When H > 1
2 , it can be shown

that L1/H ([0,1]) ⊂ H, and when H < 1
2 one has Cγ ⊂ H ⊂ L2([0,1]) for all

γ > 1
2 −H . We shall also use the following representations of the inner product in

H: for H > 1/2 and φ,ψ ∈ H, we have

〈φ,ψ〉H = H(2H − 1)

∫ 1

0

∫ 1

0
|s − t |2H−2〈φs,ψt 〉Rd ds dt.(13)

In order to deduce that (�,H,P) defines an abstract Wiener space, we remark
that H is continuously and densely embedded in �. To this aim, define first the
space H̄ as

H̄ =
{
� : [0,1] → R

d;�t =
∫ t

0
K(t, u)φu du with φ ∈ L2([0,1])},

where K is defined by 11. It is worth noticing at this point that the space H̄ yields
the accurate notion of Cameron–Martin space in the fBm context (for Brownian
motion one obtains H = L2([0,1]) and H̄ = W 1,2([0,1])). Then one proves that
the operator R := RH : H → H̄ given by

Rψ :=
∫ ·

0
K(·, s)[K∗

Hψ
]
(s) ds(14)

defines a dense and continuous embedding from H into �; this is due to the fact
that RHψ is H -Hölder continuous (for details, see [30], page 399). Let us now
quote from [20], Chapter 15, a result relating the 2-d regularity of R and the regu-
larity of H̄.

PROPOSITION 2.2. Let B be a fBm with Hurst parameter H ∈ (1/4,1/2).
Then one has H̄ ⊂ Cρ-var for ρ > (H + 1/2)−1. Furthermore, the following quan-
titative bound holds:

‖h‖H̄ ≥ ‖h‖ρ-var

(Vρ(R))1/2 .

REMARK 2.3. Proposition 2.2 can be sharpened to H̄ ⊂ Cρ-var for all ρ ≥
(H + 1/2)−1. Moreover, the above embedding inequality holds true for all ρ ≥
(H + 1/2)−1 if the present ρ-variation is replaced by the mixed (1, ρ)-variation.
We refer interested readers to [18] for more details.

Let us close this section by pointing out an implication of Volterra’s repre-
sentation of fBm (11) in terms of filtrations. Indeed, it is readily checked that
Ft ≡ σ({Bs;0 ≤ s ≤ t}) can also be expressed as Ft = σ({Ws;0 ≤ s ≤ t}). This
filtration will be important in the sequel.
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2.2.2. Scale invariant inequalities. The following inequalities, in particular
the lower bounds, shall be used several times throughout the text. They show that
one can replace the H-norm that may be difficult to estimate by simpler quantities
while keeping the correct scaling in time.

PROPOSITION 2.4. Let H be the Hilbert space introduced at Section 2.2.1,
depending on the Hurst parameter H ∈ (0,1). Then:

• Asume H > 1/2. Let γ > H − 1/2. There exist constants c1, c2 > 0 such that
for every continuous f ∈ H, and t ∈ (0,1],

c1t
2H min[0,1] |f |4

‖f ‖2∞ + ‖f ‖2
γ

≤ ‖f 1[0,t]‖2
H ≤ c2t

2H‖f ‖2∞.

• Assume H ≤ 1/2 and let γ > 1/2 − H . There exist constants c1, c2 > 0 such
that for every f ∈ Cγ , and t ∈ (0,1],

c1t
2H min[0,1] |f |2 ≤ ‖f 1[0,t]‖2

H ≤ c2t
2H (‖f ‖2

γ + ‖f ‖2∞
)
.

PROOF. We first assume H > 1/2. The inequality ‖f 1[0,t]‖2
H ≤ c2t

2H‖f ‖2∞
is a straightforward consequence of (13). The inequality

c1
min[0,1] |f |4

‖f ‖2∞ + ‖f ‖2
γ

≤ ‖f ‖2
H

is proved in [5], Lemma 4.4. For t ∈ (0,1], this inequality can be rescaled as fol-
lows:

‖f 1[0,t]‖2
H = H(2H − 1)

∫ t

0

∫ t

0
|u − v|2H−2〈f (u), f (v)

〉
dudv

= H(2H − 1)t2H
∫ 1

0

∫ 1

0
|u − v|2H−2〈f (tu), f (tv)

〉
dudv

≥ c1t
2H min[0,1] |ft |4

‖ft‖2∞ + ‖ft‖2
γ

≥ c1t
2H min[0,1] |f |4

‖f ‖2∞ + ‖f ‖2
γ

,

where ft (u) = f (tu). This proves our claim for H > 1/2.
We now assume H ≤ 1/2. The fact that ‖f ‖2

H ≥ c1‖f ‖2
2 ≥ c1 min[0,1] |f |2 is

well known and the inequality easily rescales as above. The last inequality to prove
is the upper bound. It is pointed in [30] that we have, for any h1, h2 ∈ H,

〈h1, h2〉H =
∫ 1

0
h1 dRh2,

where the right-hand side is understood in the Young sense and R is the isometry
going from H to H̄. Hence, if p−1 + q−1 > 1 and p > H−1, q > (1/2 +H)−1 we
have ∣∣〈h1, h2〉H

∣∣ ≤ C
(‖h1‖p−var + ‖h1‖∞

)‖Rh2‖q-var.
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We now use Proposition 2.2 to get the bound

‖Rh2‖q-var ≤ C‖Rh2‖H̄ = C‖h2‖H.

This proves that

‖f ‖2
H ≤ c2

(‖f ‖2
γ + ‖f ‖2∞

)
.

Again, this inequality easily rescales on the time interval [0, t]. �

2.2.3. Malliavin calculus for B . We refer to [29] for the definition of the
Malliavin derivatives DF of a functional F on �. The Malliavin matrix of a
smooth functional F is defined as

γF = (〈
DF i,DFj 〉

H
)
1≤i,j≤n.(15)

The reader is also sent to [29], Definition 2.1.1, for the definition of nondegenerate
random vector.

It is a classical result that the law of a nondegenerate random vector F =
(F 1, . . . ,F n) admits a smooth density with respect to the Lebesgue measure
on R

n. Furthermore, the following integration by parts formula (borrowed
from [29], Propositions 2.1.4 and 2.1.5) allows to get more quantitative estimates.

PROPOSITION 2.5. Let F = (F 1, . . . ,F n) be a nondegenerate random vector.
Then the density pF (y) of F belongs to the Schwartz space, and for any σ ⊂
{1, . . . , n},
pF (y) = (−1)n−|σ |

E
[
1{F i>yi,i∈σ,F i<yi,i =σ }H(1,...,n)(F,1)

]
for all y ∈ R

n,

where the random variables H(1,...,n)(F,1) satisfy:∥∥H(1,...,n)(F,1)
∥∥

2 ≤ ∥∥γ −1
F

∥∥n
n,2n+2‖DF‖n

n,2n+2 .(16)

2.2.4. Karhunen–Loeve expansions. Karhunen–Loeve expansions are approx-
imations of the Gaussian process B in H̄. We shall design here one of those ex-
pansions, which will be useful for further computations. It relies on the Volterra
type representation (11) for B . More precisely, we shall construct an approximat-
ing sequence Bn, such that the distributions of B and B − Bn are equivalent on
[0,1].

To this aim, consider the Cameron–Martin space H̄W of the usual Brownian
motion, namely H̄W = W 1,2([0,1]), and let (hk)k≥1 be any orthonormal basis of
H̄W . If {Zk;k ≥ 1} is an i.i.d. sequence of standard Gaussian random variables, it
is well known (see, e.g., [31]) that the process

Wt =
+∞∑
k=1

hk(t)Zk

is a Brownian motion on [0,1]. Our Karhunen–Loeve approximation of W will be
given by Wn

t = ∑n
k=1 hk(t)Zk , and we have the following result.
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PROPOSITION 2.6. Let 0 < τ < 1. There exists an orthonormal basis {�k;k ≥
1} of H̄W such that, setting Wn

t = ∑n
k=1 �k(t)Zk , the distribution of the processes

W and W − Wn are equivalent on [0, τ ].
REMARK 2.7. Proposition 2.6 only states an equivalence of measure for the

processes W and W − Wn defined on [0,1). This is due to the fact that, for our
typical examples of orthonormal basis, we shall get (W −Wn)1 = 0 almost surely.

PROOF OF PROPOSITION 2.6. We divide this proof in two steps.

Step 1. We first prove that if the matrix (
∫ 1
τ �′

i (s)�
′
j (s) ds)1≤i,j≤n is invertible,

then the distribution of the processes W and W − Wn are equivalent on [0, τ ].
For this, let us first observe that W −Wn has the same distribution as the Brown-

ian motion W conditioned by the event [
∫ 1

0 �′
k(s) dWs = 0, for 1 ≤ k ≤ n]. Indeed,

for any bounded and measurable functional F on the Wiener space, we have

E

[
F(Wt,0 ≤ t ≤ 1)

∣∣∣ ∫ 1

0
�′
k(s) dWs = 0,1 ≤ k ≤ n

]

= E

[
F

(+∞∑
k=1

�k(t)Zk,0 ≤ t ≤ 1

)∣∣∣ ∫ 1

0
�′
k(s) dWs = 0,1 ≤ k ≤ n

]

= E

[
F

( +∞∑
k=n+1

�k(t)Zk,0 ≤ t ≤ 1

)∣∣∣ ∫ 1

0
�′
k(s) dWs = 0,1 ≤ k ≤ n

]

= E

[
F

( +∞∑
k=n+1

�k(t)Zk,0 ≤ t ≤ 1

)]
,

where we have invoked the independence of the families {∫ 1
0 �′

k(s) dWs;1 ≤ k ≤ n}
and {∫ 1

0 �′
k(s) dWs;k > n}. It is thus readily checked that

E

[
F(Wt,0 ≤ t ≤ 1)

∣∣∣ ∫ 1

0
�′
k(s) dWs = 0,1 ≤ k ≤ n

]
(17)

= E
[
F
(
Wt − Wn

t ,0 ≤ t ≤ 1
)]

.

Let now 0 < τ < 1 and assume that the matrix (
∫ 1
τ �′

i (s)�
′
j (s) ds)1≤i,j≤n is

invertible. This invertibility implies that the conditional density of (
∫ 1

0 �′
k(s)×

dWs)1≤k≤n given σ(Ws, s ≤ τ) with respect to the distribution of (
∫ 1

0 �′
k(s)×

dWs)1≤k≤n exists. Let us denote by ητ (y), y ∈ R
n this density. If F is a bounded

and measurable functional on the Wiener space we then have

E

[
F(Wt,0 ≤ t ≤ τ)

∣∣∣ ∫ 1

0
�′
k(s) dWs = 0,1 ≤ k ≤ n

]
(18)

= E
[
ητ (0)F (Wt,0 ≤ t ≤ τ)

]
.
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Gathering relations (17) and (18), we thus get that the distribution of the processes
W − Wn and W are equivalent on [0, τ ]. Our proposition is thus proved once we
show that there exists an orthonormal basis {�k;k ≥ 1} of H̄W such that for any
τ ∈ [0,1), the matrix (

∫ 1
τ �′

i (s)�
′
j (s) ds)1≤i,j≤n is invertible.

Step 2. Let us now construct an orthonormal basis of H̄W with the desired in-
vertibility property: let (fk)k≥1 be any basis of L2[0,1] and denote by �′

k the
Gram–Schmidt orthonormalisation of (fk)k≥1. By using triangular matrices, we
see that the invertibility of the matrix (

∫ 1
τ �′

i(s)�
′
j (s) ds)1≤i,j≤n is then equiva-

lent to the invertibility of (
∫ 1
τ fi(s)fj (s) ds)1≤i,j≤n. For instance, by choosing

fk(t) = (1 − t)k−1, k ≥ 1, some elementary calculations involving Hilbert ma-
trices yield our claim. �

The previous result on Brownian motion has a direct implication in terms of our
fractional Brownian motion B:

COROLLARY 2.8. Let 0 < τ < 1. There exists an orthonormal basis {hk;k ≥
1} of H̄ such that, setting Bn

t = ∑n
k=1 hk(t)Zk , the distribution of the processes B

and B − Bn are equivalent on [0, τ ].

PROOF. Take the orthonormal basis {�k;k ≥ 1} of H̄W constructed at Propo-
sition 2.6 and set hk(t) = ∫ t

0 K(t, u)�′
k(u) du. �

REMARK 2.9. One can trivially generalize Proposition 2.6, for example, on
the time interval [0,2). This allows to construct an approximating sequence Bn

such that the distributions of B and B − Bn are equivalent on [0,1] instead of
[0,1). Let us also observe that for later purpose, we shall not really need the equiv-
alence of the two distributions but that absolute continuity would be enough.

2.3. Differential equations driven by fractional Brownian motion. Recall that
we consider the following kind of equation:

Xx
t = x +

∫ t

0
V0

(
Xx

s

)
ds +

d∑
i=1

∫ t

0
Vi

(
Xx

s

)
dBi

s,(19)

where the vector fields V0, . . . , Vd are C∞
b -vector fields on R

n and B is our driving
fBm as defined in (11).

2.3.1. Existence, uniqueness and estimates. It is a well-known fact (see,
e.g., [20, 21]) that, whenever the vector fields V satisfy Hypothesis 1.1, equa-
tion (19) driven by a d-dimensional fBm B with Hurst parameter H > 1/4 admits
a unique solution. Our sub-Gaussian bounds for the density will be a consequence
of the following exponential bound.
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PROPOSITION 2.10 (See [19]). Consider equation (19) driven by a d-dimen-
sional fBm B with Hurst parameter H > 1/4, and assume that the vector fields V

satisfy Hypothesis 1.1. Then the following inequality holds true:

P

(
sup

s∈[0,t]
∣∣Xx

s − x
∣∣ ≥ ξ

)
� exp

(
−cH ξ(2H+1)∧2

t2H

)
.(20)

2.3.2. Differentiability. Thanks to [13, 30] and [25], the solution Xx
t is smooth

in the Malliavin sense. We shall express this Malliavin derivative in terms of the
Jacobian J of the equation, which is defined by the relation Jij

t = ∂xj
X

x,i
t . Setting

DVj for the Jacobian of Vj seen as a function from R
n to R

n, let us recall that J
is the unique solution to the linear equation

Jt = Idn +
∫ t

0
DV0

(
Xx

s

)
Js ds +

d∑
j=1

∫ t

0
DVj

(
Xx

s

)
Js dBj

s ,(21)

and that the following results hold true (see [13], [30] and [25] for further details):

PROPOSITION 2.11. Let Xx be the solution to equation (19) and suppose the
Vi’s satisfy Hypothesis 1.1. Then for every i = 1, . . . , n, t > 0, and x ∈ R

n, we
have X

x,i
t ∈D

∞(H) and

Dj
s X

x
t = Js,tVj

(
Xx

s

)
, j = 1, . . . , d,0 ≤ s ≤ t,

where Dj
s X

x,i
t is the j th component of DsX

x,i
t , Jt = ∂xX

x
t and Js,t = JtJ−1

s .

Let us now quote the recent result [15], which gives a useful estimate for mo-
ments of the Jacobian of rough differential equations driven by Gaussian processes.

PROPOSITION 2.12. Consider a fractional Brownian motion B with Hurst
parameter H ∈ (1/4,1/2] and p > 1/H . Then for any η ≥ 1, there exists a finite
constant cη such that the Jacobian J defined at Proposition 2.11 satisfies

E
[‖J‖η

p-var;[0,1]
] = cη.(22)

3. Strict positivity of the density. In this section, we follow the approach
developed by Ben Arous and Léandre [10] and prove the strict positivity of the
density of solutions to equation (19) as stated in Theorem 1.4. We first present, at
Section 3.1, the general criterion characterizing the set of points where the density
is strictly positive for a nondegenerate finite-dimensional random variable F . Then
we show how to apply this criterion in our fractional SDE context at Section 3.2.
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3.1. Strict positivity of the density for nondegenerate random variables. We
borrow the considerations here from [2], for which we refer for further details.
Consider (�,F,P) the canonical probability space associated with our fBm B .

Let us now introduce, for a given element � = (�1, . . . , �n) ∈ Hn and a vector
z ∈ R

n, the shifted Gaussian process

(
T �

z B
)
(h) = B(h) +

n∑
j=1

zj 〈h, �j 〉H, h ∈ H.

Cameron–Martin’s theorem of change of measures shows that for any integrable
random variable G we have E[G] = E[G(T

�
z B)Jz], where

Jz = exp

(
−

n∑
j=1

zjB(�j ) − 1

2

∥∥∥∥∥
n∑

j=1

zj �j

∥∥∥∥∥
2

H

)
.

With the same � = (�1, . . . , �n) as above, for any multi-index α = (α1, . . . , αk)

lying in {1,2, . . . , n}k , let �α = (�α1, . . . , �αk
) and define

R�α,pF =
∫
{|z|≤1}

〈(
DkF

)(
T �

z B
)
, �α1 ⊗ · · · ⊗ �αk

〉p
H⊗k dz,

for some p > n and multi-index α with |α| = k ≥ 0.
With these notation in mind, our general criterion for positivity of densities can

be read as follows.

THEOREM 3.1. Let F = (F 1, . . . ,F n) be a nondegenerate random variable
and � : H →R

n a C∞ functional. Suppose that the following conditions hold:

a. For any h ∈ H there exists a sequence of measurable transformations T h
N :

� → � such that P ◦ (T h
N)−1 is absolutely continuous with respect to P.

b. Let {D�j(h); j = 1, . . . , n} be the coordinates of D�(h) in R
n, and set

� = (
D�1(h), . . . ,D�n(h)

)
.

Suppose that for every ε > 0:

(1) limN→∞ P{|F ◦ T h
N − �(h)| > ε} = 0;

(2) limN→∞ P{‖(DF) ◦ T h
N − (D�)(h)‖H > ε} = 0; and

(3) limM→∞ supN P{(R�α,pF ) ◦ T h
N > M} = 0 for some p > n and all multi-

index α with |α| = 0,1,2,3.

c. Finally, for a fixed y ∈ R
n assume that there exists an h ∈ H such that

�(h) = y and for the deterministic Malliavin matrix γ�(h) of � at h, one has
detγ�(h) > 0.

Then the density of F at y satisfies p(y) > 0.
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PROOF. The theorem is borrowed from [2], with a slight modification of the
definition of R�α,pF . The legitimacy of making such modification is seen directly
from the proof of Proposition 4.2.2 in [2]. �

3.2. Strict positivity of the density for solutions to fractional SDE’s. This sec-
tion is devoted to the proof of Theorem 1.4. The idea is to apply the general Theo-
rem 3.1 to F = Xx

t for each fixed t > 0, where Xx is the solution to equation (19)
and where we still work under Hypotheses 1.1 and 1.2. We moreover assume that
Xx

t is nondegenerate in the Malliavin sense, that is, its Malliavin is invertible with
inverse in Lp(�) for p ≥ 1. In this context, some natural definitions of the maps
T h

N and of the functional � are as follows:

(i) For any h ∈ H, we simply define T h
N by the identity

T h
N(B) = B − BN +Rh,

where BN has been defined at Proposition 2.6 and Corollary 2.8 and with Rhi

defined by (14).
(ii) The map � is defined as the evaluation of a function at t ∈ (0,1]. Namely,

�(h) is solution to the ordinary differential equation

�(h)t = x +
∫ t

0
V0

(
�(h)s

)
ds +

d∑
i=1

∫ t

0
Vi

(
�(h)s

)
dRhi

s,(23)

understood in the (p-var) Young sense.
In what follows, we need to check the above � and T h

N satisfy conditions in
Theorem 3.1.

Recall that, according to Proposition 2.1, B admits a lift to G�p�(Rd) as a ge-
ometric rough path for any fixed p > 1/H . If BN is the Karhunen–Loeve type
approximation of B discussed above, denote by B̃N the lift of B̃N = B − BN to
G�p�(Rd). We have the following.

PROPOSITION 3.2. There exists a constant η > 0 depending on p,ρ and the
process B such that

sup
N

E
[
exp

(
η
∥∥B̃N

∥∥2
p-var;[0,1]

)]
< ∞.

Moreover, for all q ≥ 1,∥∥B̃N
∥∥
p-var;[0,1] → 0 in Lq(P) as N → ∞.

PROOF. The Gaussian tail of ‖B̃N‖p-var;[0,1] follows from Lemma 15.46 as
well as Proposition 15.22 in [20]. The rest of the statement is the content of Theo-
rem 15.47 in [20]. �
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For an element h ∈ Cq-var([0,1],Rd) such that 1/q + 1/p > 1, we also need to
introduce the translation of x by h [denoted Th(B̃N)]. Namely, Th(B̃N) is the lift
of π1(x) + h to G�p�(Rd). The following theorem is then an easy consequence of
Theorem 9.33 and Corollary 9.35 in [20].

THEOREM 3.3. With the notation introduced above, consider Th(B̃N). There
exists a constant η > 0 depending on p,H,‖h‖H and the process B such that

sup
N

E
[
exp

(
η
∥∥Th

(
B̃N )∥∥2

p-var;[0,1]
)]

< ∞.

Moreover, for all q ≥ 1,

dp-var;[0,1]
(
Th

(
B̃N )

,h
) → 0 in Lq(P) as N → ∞.

In the statement above, h is the lift of h to G�p�(Rd).

We are now ready to prove the main theorem of this section.

PROOF OF THEOREM 1.4. Recall that � is defined by (23), and that the solu-
tion Xx

t to equation (19) can be seen as Xx
t = �(R−1B)t . With the definition of

T h
N and that of the translation map Th in Theorem 3.3, we have

Xx
t ◦ T h

N = �
(
Th

(
B̃N ))

and DkXx
t ◦ T h

N = Dk�
(
Th

(
B̃N ))

for all k ∈ N.

In the above, we consider Th(B̃N) as a geometric rough path that drives the equa-
tion for �. Now it follows from Theorem 3.3 and the continuity of � and D� in
the rough path topology that

Xx
t ◦ T h

N → �(h) and DXx
t ◦ T h

N → D�(h)

in probability. This shows that conditions b-(1) and b-(2) of Theorem 3.1 are sat-
isfied.

For condition b-(3) of Theorem 3.1, recall that � = (D�1(h), . . . ,D�n(h))

and that we have set �α = (�α1, . . . , �αk
) for any multi-index α = (α1, . . . , αk) ∈

{1,2, . . . , n}k . By standard analysis, it suffices to show that for each multi-index α

with |α| = 0,1,2,3,

(
R�α,pXx

t

) ◦ T h
N =

∫
{|z|≤1}

〈(
DkXx

t

)(
T �

z B
) ◦ T h

N, �α1 ⊗ · · · ⊗ �αk

〉p
H⊗k dz

=
∫
{|z|≤1}

〈
Dk�

(
T �

z Th

(
B̃N ))

, �α1 ⊗ · · · ⊗ �αk

〉p
H⊗k dz

converges to some deterministic quantity in probability. Let

ĥ = h +
n∑

j=1

zj (D�j )(h).
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The above is then reduced to show that〈
Dk�

(
T

ĥ
B̃N )

, �α1 ⊗ · · · ⊗ �αk

〉
H⊗k → 〈

Dk�(ĥ), �α1 ⊗ · · · ⊗ �αk

〉
H⊗k

in probability and uniformly in z for |z| ≤ 1, which follows from Theorem 3.3,
continuity of Dk

�α1 ...�αk
�(·) in the rough path topology and the fact that z takes

values in a compact set. The proof is complete. �

4. Upper bounds for the density. The aim of this section is to study upper
bounds for the density of the solution to equation (19), where B is a fractional
Brownian motion with Hurst parameter H > 1

4 . Specifically, we shall prove Theo-
rem 1.5 under our elliptic Hypothesis 1.3.

Our starting point here is the integration by parts type formula given at Propo-
sition 2.5. According to this relation applied to F = Xx

t , we obtain the following
general upper bound for the density pt of Xx

t :

pt(y) ≤ cP
(∣∣Xx

t − x
∣∣ ≥ |y − x|)1/2∥∥γ −1

t

∥∥n
n,2n+2

∥∥DXx
t

∥∥n
n,2n+2

(24)
for all y ∈ R

n,

where γt denotes the Malliavin matrix of Xx
t . We shall bound separately the 3

terms in relation (24): first, a direct application of inequality (20) yields

P
(∣∣Xx

t − x
∣∣ ≥ |y − x|) ≤ exp

(
−|y − x|(2H+1)∧2

ct2H

)
.(25)

Next, we prove that there exist constants c3 and c4 such that for all m ∈ N and
p > 1, ∥∥DXx

t

∥∥
m,p ≤ c3t

H ,(26) ∥∥γ −1
t

∥∥
m,p ≤ c4t

−2H .(27)

Plugging relations (25)-(27) into (24), this will conclude the proof of Theorem 1.5.
We start with the estimate (26). Let us first briefly review a strategy by Inahama

[25], which allows to obtain a suitable characterization of the Hilbert–Schmidt
norm ‖DmXx

t ‖H⊗m . For simplicity, we assume V0 = 0, and only work out the cases
m = 1,2. The general case is treated similarly.

Recall J is the Jacobian process. Let B̂ = (B̂1, . . . , B̂d) be an independent copy
of B and consider the 2d-dimensional fractional Brownian motion (B, B̂). The
expectations with respect to B and B̂ are, respectively, denoted by E and Ê. Set

�1(t) = Jt

∫ t

0
J−1
s V

(
Xx

s

)
dB̂s,

and

�2(t) = Jt

∫ t

0
J−1
s

{
D2V

(
Xx

s

)〈
�1(s),�1(s), dBs

〉 + 2DV
(
Xx

t

)〈
�1(s), dB̂s

〉}
.
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Here for x ∈ R
n and each i = 1, . . . , d , D2Vi(x) is considered as a bilinear form

on R
n × R

n taking values in R
n. Thus, D2V (Xx

s )〈�1(s),�1(s), dBs〉 is under-
stood as the real-valued quantity D2Vi(X

x
s )(�1(s),�1(s)) dBi

s . We refer to [25]
for more details regarding this notation. This construction can be generalized to
higher orders derivatives, but we stick to the case m = 1,2 as mentioned above.
Now we fix a sample path w of B . It is clear that �m(w, ·)t belongs to the inhomo-
geneous Wiener chaos of order m with respect to (B, B̂) for m = 1,2. Moreover,
if we denote by D̂ the derivative with respect to B̂ , we have

D̂h�1(w, B̂)t = DhX
x
t (w) and D̂h,k�2(w, B̂)t = 2D2

h,kX
x
t (w).

By the fact that all Dk,p-norms (k = 0,1, . . .) are equivalent on fixed inhomoge-
neous Wiener chaos, we obtain∥∥DXt(w)

∥∥
H = Ê

(∥∥D̂�1(w, ·)t
∥∥2
H
)1/2 �

∥∥�1(w, ·)t
∥∥

1,2 �
∥∥�1(w, ·)t

∥∥
2,∥∥D2Xt(w)

∥∥
H⊗H = 2Ê

(∥∥D̂2�2(w, ·)t
∥∥2
H⊗H

)1/2 � 2
∥∥�2(w, ·)t

∥∥
2,2

�
∥∥�2(w, ·)t

∥∥
2.

This way, one conveniently transforms estimate of the Hilbert–Schmidt norm of
DmXx

t into that of the L2 norm of �m(ω, ·). In particular, for m = 1,2 we have∥∥DXx
t

∥∥
H � Ê

(∣∣�1(t)
∣∣2)1/2

,∥∥D2Xx
t

∥∥
H⊗H � Ê

(∣∣�2(t)
∣∣2)1/2

.

LEMMA 4.1. Let H > 1
4 . Denote by Xx

t the solution to equation (19). One has∥∥DXx
t

∥∥
m,p ≤ cm,ptH ,

for some constant cm,p > 0.

PROOF. Keep the notation as above. For m = 1,2 we only need to estimate
�1 and �2 by using rough paths theory. Let

M = (
B, B̂,Xx,J,J−1).(28)

This is a p-rough path, p > 1/H . The integral
∫

J−1
s V (Xx

s ) dB̂s is a rough integral
of the type

∫
f (M)dM, where f has a polynomial growth. We deduce that there

exists a strictly positive r such that∣∣�1(t) − �1(s)
∣∣ ≤ C

(
1 + ‖M‖p-var,[0,1]

)r‖M‖p-var,[s,t].(29)

We now estimate ‖M‖p-var,[s,t]. Denote by D(t) a subdivision of the interval [0, t].
Define

Mα,t,p = sup
D(t)=(ti );‖B‖p

p-var,[ti ,ti+1]≤α

∑
i:ti∈D(t)

‖B‖p
p-var,[ti ,ti+1].
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Then the Jacobian J satisfies the following growth-bound:

‖J‖p-var;[0,t] + ∥∥J−1∥∥
p-var;[0,t] ≤ C‖B‖p-var,[0,t] exp(CMα,t,p).

In addition (cf., Proposition 4.11 in [15]), E[exp(CMα,t,p)] is finite for any C > 0.
Invoking our tail estimate (20) and plugging those bounds into (29), we end up with
a bound for ‖J‖p-var;[0,t] of the form
∣∣�1(t)

∣∣ ≤ C
(
1 + ‖M‖p-var,[0,1]

)r(‖B‖p-var,[0,t] + ‖B̂‖p-var,[0,t]
)

exp(CMα,t,p).

By scaling, we have ‖B‖p-var,[0,t] + ‖B̂‖p-var,[0,t] law= tH (‖B‖p-var,[0,1] +
‖B̂‖p-var,[0,1]). The proof is thus completed for the case m = 1. In the same way,
we estimate �2 as a rough integral of the type

∫
φ(M1) dM1 where φ has polyno-

mial growth and M1 is the rough path

M1 = (
B, B̂,Xx,J,J−1,�1

)
.

Arguing as before and using previous estimates we obtain then a bound of the same
type:∣∣�2(t)

∣∣ ≤ C
(
1 + ‖M‖p-var,[0,1]

)r(‖B‖p-var,[0,t] + ‖B̂‖p-var,[0,t]
)

exp(CMα,t,p).

Higher order Malliavin derivatives are treated similarly. �

4.1. The regular case. In this section, we treat the case where B is a fractional
Brownian motion with Hurst parameter H > 1

2 . In this situation, the stochastic in-
tegral in (19) can be seen as a Young integral instead of the general rough paths
type integral. Moreover, the proof of our upper bound can be summarized as fol-
lows.

PROOF OF THEOREM 1.5 IN THE REGULAR CASE. Recall that under the el-
liptic Hypothesis 1.3 and assuming H > 1/2 we wish to show that

pt(y) ≤ c2t
−nH exp

(
−|y − x|2

c1t2H

)
for all y ∈ R

n.(30)

The proof of (26) is treated in a uniform way for both the regular and irregular
cases in Lemma 4.1. Hence, let us concentrate here on the proof of (27) for 0 <

t ≤ 1. Let

Ct =
∫ t

0

∫ t

0
J−1
u V

(
Xx

u

)
V
(
Xx

u

)∗(J−1
u

)∗|u − v|2H−2 dudv.

Our bound (27) is now reduced to prove that

y∗C−1
t y ≤ Mt−2H |y|2 for y ∈ R

n,(31)
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for a given random variable M admitting moments of any order. To this aim, notice
first that

y∗Cty =
∫ t

0

∫ t

0
〈fu,fv〉Rn |u − v|2H−2 dudv with fu ≡ V

(
Xx

u

)∗(J−1
u

)∗
y.

Furthermore, thanks to the interpolation inequality of Proposition 2.4 applied with
γ > H − 1

2 , we have

∫ 1

0

∫ 1

0
〈fu,fv〉|u − v|2H−2 dudv ≥ ct2H min[0,1] |f |4

‖f ‖2∞ + ‖f ‖2
γ

,(32)

where ‖f ‖γ is the γ -Hölder norm of f on the interval [0,1] as defined at (10).
Furthermore, since the uniform ellipticity condition |V (x)y|2 ≥ λ|y|2 holds true,
it is readily checked that

|fv|2 ≥ λ
∣∣J−1

v y
∣∣2 ≥ λ‖Jv‖−2|y|2 and

(33)
‖f ‖∞ + ‖f ‖γ ≤ c

(
1 + ‖X‖γ

)(
1 + ∥∥J−1∥∥

γ

)|y|.
Plugging these relations into (32), we deduce that, for every y ∈ R

n,

y∗C−1
t y ≤ ct−2H (

1 + ‖X‖γ

)2(1 + ∥∥J−1∥∥
γ

)2(1 + ‖J‖γ

)4|y|2,
from which (31), and thus (27), are easily deduced.

For the bound of Malliavin derivatives of γ −1
t , note that we have

D
(
γ −1
t

)ij = −
d∑

k,l=1

(
γ −1
t

)ik(
γ −1
t

)lj Dγ kl
t .(34)

Therefore,

∥∥D
(
γ −1
t

)ij∥∥
H ≤ ∣∣(γ −1

t

)ik(
γ −1
t

)lj ∣∣(‖DXt‖H + ∥∥D2Xt

∥∥
H⊗2

)2
.

Together with the estimates for ‖DXt‖m,p and ‖γ −1
t ‖p that have been established

above, we have

∥∥γ −1
t

∥∥
1,p ≤ ct−2H .

Similarly, by using equation (34) repeatedly, we conclude that for each m ∈N and
p > 1 there exists a constant cm,p such that

∥∥γ −1
t

∥∥
m,p ≤ cm,pt−2H . �
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4.2. The irregular case. The aim of this section is to extend the results of
the last section to the case where B is a fractional Brownian motion with Hurst
parameter H ∈ (1

4 , 1
2). For this, tools of rough paths theory are required to obtain

the sub-Gaussian bound (4).
From the discussion above it is clear that, in order to conclude the correct

asymptotic behavior (as t ↓ 0) in the upper bound for the density function, we
need to establish (26) and (27) for the irregular case. We have already proved (26)
in both the regular and irregular cases.

The counterpart of (27) in the rough case is the content of the following lemma.

LEMMA 4.2. Let 1
4 < H < 1

2 . Denote by Xx
t the solution to equation (19),

and γt the Malliavin matrix of Xx
t . Under Hypothesis 1.3, there exists a constant

cm,p > 0 such that for all t ∈ (0,1] one has∥∥γ −1
t

∥∥
m,p ≤ cm,pt−2H .

PROOF. We first prove the lemma for m = 0. As before the bound, we want to
prove is reduced to prove that

y∗C−1
t y ≤ Mt−2H |y|2 for y ∈ R

n,(35)

for a given random variable M admitting moments of any order, where, again, C

is the reduced Malliavin matrix defined by

y∗Cty = ‖f ‖2
H with fu ≡ 1[0,t](u)V

(
Xx

u

)∗(J−1
u

)∗
y.

From the inequality of Proposition 2.4 and the uniform ellipticity assumption, we
have thus,

y∗C−1
t y ≤ ct−2H (

1 + ‖J‖γ

)2|y|2.
This yields the claimed result when m = 0.
For m ≥ 1, note that by Lemma 4.1 and what we have just proved, there ex-

ist constants cm,p and cp such that ‖DXx
t ‖m,p ≤ cm,ptH and ‖γ −1

t ‖p ≤ cpt−2H .
Putting this together with relation (34) and along the same lines as in the smooth
case, we can conclude that there exists a constant cm,p such that ‖Dγ −1

t ‖m,p ≤
cm,pt−2H , for all m ∈ N and p > 1. �

We can now prove our sub-Gaussian upper bound for the density pt(·) of Xx
t in

the rough case:

PROOF OF THEOREM 1.5 IN THE IRREGULAR CASE. Owing to inequal-
ity (20), we have

P
(∣∣Xx

t − x
∣∣ ≥ |y − x|)� exp

(
−2|y − x|2H+1

ct2H

)
.

Now the proof follows from (24), and Lemmas 4.1 and 4.2 just as in the smooth
case. �
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REMARK 4.3. In order to prove Theorem 1.5, we could also have used the
new expression for the density of a nondegenerate random vector obtained recently
by Bally and Caramellino in [1]. This expression involves the Poisson kernel, and
only requires the random vector to be twice differentiable in the Malliavin sense, in
comparison with Proposition 16 where higher derivatives are involved. However,
we have not included the details of this strategy here, since it yields some slightly
nonoptimal coefficients in relation (4).

5. Hitting probabilities and capacities. We now turn to the evaluation of
hitting probabilities for our differential system (2), that is the proof of relation (9)
in Theorem 1.6. It should be noticed that the upper and lower bounds in those
relations require a different methodology, and this is why they shall be studied in
two separate sections.

5.1. Lower bounds on hitting probabilities. As established in [16], Theo-
rem 2.1, the lower bound in (9) can be derived from a general result for the hitting
probabilities of a continuous stochastic process in terms of its finite-dimensional
density functions. We shall prove this general relation in our fBm context for the
sake of clarity.

Specifically, suppose that (ut , t ≥ 0) is a continuous stochastic process in R
n,

such that the random vector (ut , us) has a joint probability density function
ps,t (·, ·), for all s, t > 0 such that s = t . As in the previous sections, we will also
denote by pt(·) the density of ut , for all t > 0. We work under the following set of
hypotheses:

(A1) For all 0 < a < b and M > 0, there exists a positive constant C =
C(a, b,M,n) such that for all z ∈ [−M,M]n,∫ b

a
pt (z) dt ≥ C.

(A2) There exist β > 0, H ∈ (0,1) and p > β such that for all 0 < a < b,
M > 0, one can find a constant c = c(a, b,β,H,M,n,p) > 0 such that for all
s, t ∈ [a, b] with s = t , and for every z1, z2 ∈ [−M,M]n,

ps,t (z1, z2) ≤ c

|t − s|Hβ

( |t − s|H
|x − y| ∧ 1

)p

.

With these assumptions in hand, our general result on hitting probabilities is the
following.

THEOREM 5.1. Suppose (A1) and (A2) are met, and fix 0 < a < b and M > 0.
Then there exists a strictly positive constant c = c(a, b,β,H,M,n) such that for
all compact sets A ⊆ [−M,M]n,

P
(
u
([a, b]) ∩ A = ∅

) ≥ c Capα(A),(36)

where α = β − 1
H

.
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PROOF. We start by proving a technical lemma that gives the relationship be-
tween the upper bound in (A2) and the Newtonian kernel Kα defined by (6).

LEMMA 5.2. Let N > 0, β > 0, p > β , 0 ≤ a < b, and H ∈ (0,1) be fixed.
Then there exists a positive constant C = C(a, b,β,N,H,p) such that for all
r ∈ [0,N] ∫ b

a

∫ b

a

1

|t − s|Hβ

( |t − s|H
r

∧ 1
)p

ds dt ≤ CKα(r),(37)

where α = β − 1
H

.

PROOF. Fix r ∈ [0,N] and use the change of variables u = t − s, to see that∫ b

a

∫ b

a

1

|t − s|Hβ

( |t − s|H
r

∧ 1
)p

ds dt ≤ 2(b − a)

∫ b−a

0
u−Hβ

(
uH

r
∧ 1

)p

du.

Next, the change of variables v = uH

r
implies that the right-hand side equals

Cr−αF (m) where F(m) :=
∫ m

0
v−β−1+(1/H)(v ∧ 1)p dv,

with the notation m := (b−a)H

r
. Observe that m ≥ m1 := (b−a)H

N
> 0. Hence, we

can split F(m) into F(m) = F(m1) + [F(m) − F(m1)]. Now clearly we have
F(m1) ≤ c, and if β = 1

H
, then

F(m) − F(m1) ≤ m1/H−β − m
1/H−β
1

1/H − β
.

Hence, if β > 1
H

, we get F(m) − F(m1) ≤ c; if β < 1
H

, then F(m) − F(m1) ≤
Crβ−(1/H); and if β = 1

H
, some similar elementary computations show that

F(m) − F(m1) ≤ C log(m) = c + c′ log
(

1

r

)
.

Therefore, putting together these considerations we conclude the proof of rela-
tion (37), provided that the constant N0 in (6) is sufficiently large. �

Let us now go back to the proof of Theorem 5.1: fix a compact set A ⊆
[−M,M]n and observe that whenever Capα(A) = 0, inequality (36) is trivially
satisfied. In the remainder of the proof, we thus assume Capα(A) > 0. In particu-
lar, this implies that A = ∅. We now consider three different cases:

Case 1. β < 1
H

. Then α < 0, and thus Capα(A) = 1. Therefore, it suffices to
prove that there exists a positive constant c = c(a, b,M,H,β,n) such that

P
(
u
([a, b]) ∩ A = ∅

) ≥ c.(38)
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Toward this aim, for all ε ∈ (0,1) and z ∈R
n, consider the random variable

Jε(z) = 1

(2ε)n

∫ b

a
1
B̃(z,ε)

(ut ) dt,

where B̃(z, ε) = {y ∈ R
n : |z − y| < ε} and |z| = max1≤i≤n |zi |. Assume now that

z ∈ A. Our first aim is to prove that P(Jε(z) > 0) ≥ C, for a strictly positive con-
stant C independent of ε. Indeed, hypothesis (A1) implies that there exists a posi-
tive constant C(a, b,M,H,n) such that for all ε ∈ (0,1),

E
[
Jε(z)

] = 1

(2ε)n

∫ b

a

∫
B̃(z,ε)

pt (v) dv dt ≥ C.

On the other hand, hypothesis (A2) and Lemma 5.2 imply that there exists a posi-
tive constant C(a, b,M,H,β,n) such that for all ε ∈ (0,1),

E
[
J 2

ε (z)
] = 1

(2ε)2n

∫ b

a

∫ b

a

∫
B̃(z,ε)

∫
B̃(z,ε)

ps,t (z1, z2) dz1 dz2 ds dt

≤ c

(2ε)2n

∫
B̃(z,ε)

∫
B̃(z,ε)

Kα(z2 − z1) dz1 dz2 ≤ c,

where the last inequality is due to the fact that Kα ≡ 1 whenever α < 0. Therefore,
from the Paley–Zygmund inequality [cf., [16], inequality (2.26)], we conclude that

P
(
Jε(z) > 0

) ≥ E[Jε(z)]2

E[J 2
ε (z)] ≥ C,(39)

where C is independent of ε. Moreover, the left-hand side of (39) is bounded above
by P(u([a, b]) ∩ Aε = ∅), where Aε denotes the closed ε-enlargement of A. Then
we let ε ↓ 0 and use the continuity of the trajectories of u to conclude that (38)
holds true.

Case 2. β > 1
H

. For all ε ∈ (0,1) and μ ∈ P(A), consider the random variable

Jε(μ) = 1

(2ε)n

∫
Rn

∫ b

a
1
B̃(z,ε)

(ut ) dtμ(dz).

Then (A1) implies the existence of a positive constant C(a, b,M,H,n) such that

E
[
Jε(μ)

] ≥ C.

In order to estimate the second moment of Jε(μ), we consider the function

gε(z) = (2ε)−n1
B̃(0,ε)

(z),

so that we can write

Jε(μ) =
∫ b

a
[gε ∗ μ](ut ) dt.
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It is readily checked that

E
[
J 2

ε (μ)
] =

∫
Rn×Rn

[gε ∗ μ](z1)[gε ∗ μ](z2)

(∫
[a,b]2

ps,t (z1, z2) ds dt

)
dz1 dz2,

and thus, owing to hypothesis (A2) and Lemma 5.2 we obtain that there exists a
positive constant c = c(a, b,M,H,β,n) such that

E
[
J 2

ε (μ)
] ≤ cEα(gε ∗ μ),

where we recall that the energy functional Eα has been defined by relation (5). We
now choose μ ∈ P(A) such that Eα(μ) ≤ 2

Capα(A)
. We also recall that, thanks to the

general result [16], Theorem B.1, we have Eα(gε ∗ μ) ≤ Eα(μ) for all ε ∈ (0,1).
We thus obtain that

E
[
J 2

ε (μ)
] ≤ 2c

Capα(A)
.

Therefore, from the Cauchy–Schwarz inequality, we conclude that

P
[
Jε(μ) > 0

] ≥ E[Jε(μ)]2

E[J 2
ε (μ)] ≥ c

Capα(A)
,(40)

where the positive constant c is independent of μ. As for the first case, the left-
hand side of (40) is upper bounded by P(u([a, b]) ∩ Aε = ∅), where Aε denotes
the closed ε-enlargement of A. Then we let ε ↓ 0 and use the continuity of the
trajectories of u to assert that (36) holds true in our case 2.

Case 3. β = 1
H

. This case follows exactly along the same lines as Case 2, ex-
cept for the fact that we appeal to [16], Theorem B.2, instead of [16], Theorem B.1.

�

From the definition of capacity and as a consequence of Theorem 5.1, we have
the following result on hitting points for the process u.

COROLLARY 5.3. Under the hypotheses of Theorem 5.10, if β < 1
H

, the pro-
cess u hits points in R

n with strictly positive probability, that is,

P(∃t > 0 : ut = x) > 0 for all x ∈ R
n.

PROOF. Observe that we have α < 0 whenever β < 1
H

. Thus, in this
case, Capα({x}) = 1 for any x ∈ R

n. On the other hand, we write (0,∞) =⋃
m∈N[ 1

m
,m]. Then by Theorem 5.1, for all m ≥ 1, there is c > 0 depending on m

such that

P

(
∃t ∈

[
1

m
,m

]
: ut = x

)
≥ c Capα

({x}) = c > 0.

Since this holds for all m, the desired result holds. �
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5.2. Bivariate density bound. We will now apply the general result of Theo-
rem 5.1 to the n-dimensional process solution to equation (19). In order to achieve
this goal, the main remaining technical difficulty consists in proving the upper
bound for the bivariate density stated at condition (A2). In this case, our strategy
hinges on conditional integration by parts in the Malliavin calculus sense, which
turns out to be much easier to express in terms of the underlying Wiener process
W induced by the Volterra representation (11). This idea is also present in [11],
and it forces us to introduce some additional notation.

We shall manipulate Malliavin derivatives with respect to both B and W . In
order to distinguish them, the Malliavin derivatives with respect to W will be de-
noted by D and the Sobolev spaces by Dk,p . The relationship between the two
kinds of derivatives are recalled in the following.

PROPOSITION 5.4. Let D1,2 be the Malliavin–Sobolev space corresponding
to the Wiener process W . Then D

1,2 = (K∗)−1D1,2 and for any F ∈ D1,2 we have
DF = K∗DF whenever both members of the relation are well defined.

In particular, we can compute the Malliavin derivative of (Xx
t )t≥0 with respect

to W as follows.

PROPOSITION 5.5. Let Xx be the solution to equation (19) and suppose the
Vi’s satisfy Hypothesis 1.1. Then for every i = 1, . . . , n, t > 0, and x ∈ R

n, we
have X

x,i
t ∈ D∞ and

Dj
s Xx

t = JtQ
j
st , j = 1, . . . , d,0 ≤ s ≤ t,

where D
j
s X

x,i
t is the j th component of DsX

x,i
t , Jt = ∂xX

x
t is defined at Proposi-

tion 2.11, and

Q
j
st =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t

s
∂uK(u, s)J−1

u Vj (Xu)du, H > 1/2,

K(t, s)J−1
s Vj (Xs) + ∫ t

s

(
J−1
r Vj (Xr) − J−1

s Vj (Xs)
)
∂rK(r, s) dr,

H ≤ 1/2.

(41)

Recall that we have chosen to express our conditional integration by parts for-
mula in terms of the underlying Wiener process W , because projections on sub-
spaces are easier to describe in an L2 type setting. We now state this conditional
integration by parts formula: for a random variable F and t ∈ [0,1], let ‖F‖m,p,t

and �F,t be the quantities defined (for m ≥ 0, p > 0) by

‖F‖m,p,t =
(
Et

[
Fp] +

m∑
j=1

Et

[∥∥DjF
∥∥p

(L2
t )

⊗j

])1/p

and

(42)
�F,t = (〈

DFi,DFj 〉
L2

t

)
1≤i,j≤n,
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where we have set L2
t ≡ L2([t,1]) and Et = E(·|Ft ). With this notation in hand,

the following formula is borrowed from [29], Proposition 2.1.4.

PROPOSITION 5.6. Fix k ≥ 1. Let F,Zs,G ∈ (D∞)n be three random vectors
where Zs ∈ Fs-measurable and (det�F+Zs

)−1 has finite moments of all orders. Let
g ∈ C∞

p (Rd). Then, for any multi-index α = (α1, . . . , αk) ∈ {1, . . . , n}k , there exists
a r.v. Hs

α(F,G) ∈ ⋂
p≥1

⋂
m≥0 Dm,p such that

Es

[
(∂αg)(F + Zs)G

] = Es

[
g(F + Zs)H

s
α(F,G)

]
,(43)

where Hs
α(F,G) is recursively defined by

Hs
(i)(F,G) =

n∑
j=1

δs

(
G
(
�−1

F,s

)
ijDF j ),

H s
α(F,G) = Hs

(αk)

(
F,Hs

(α1,...,αk−1)
(F,G)

)
.

Here, δs denotes the Skorohod integral with respect to the Wiener process W on
the interval [s,1]. Furthermore, the following norm estimates hold true:

∥∥Hs
α(F,G)

∥∥
p,s ≤ cp,q

∥∥�−1
F,sDF

∥∥k
k,2k−1r,s‖G‖k

k,q,s,(44)

where 1
p

= 1
q

+ 1
r
.

In order to get our bivariate density bound, we shall also need to work on
weighted norms on the interval [s, t]. For instance, when H > 1/2, we have the
following uniform scale invariant inequalities.

LEMMA 5.7. Assume H > 1/2. Let 0 < ε < 1 and γ > H − 1
2 . There exist

two constants C1,C2 > 0 such that for any continuous f : [0,1] → R
n, and ε ≤

s < t ≤ 1, we have

C1(t − s)2H min[0,1] |f |4
‖f ‖2∞ + ‖f ‖2

γ

≤
∫ t

s

∣∣∣∣
∫ t

u
∂vK(v,u)f (v) dv

∣∣∣∣2 du(45)

PROOF. For the sake of notation, we prove our lemma for real valued functions
only, leaving the obvious extension to f : [0,1] → R

n to the patient reader. We
now proceed in several steps.

Step 1. We first prove that

α

∫ t

s

(∫ t

u
(v − u)H−3/2f (v) dv

)2

du ≤
∫ t

s

(∫ t

u
∂vK(v,u)f (v) dv

)2

du.(46)
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Using the change of variable u = s + sx and v = s + sy, and the scaling property
of the kernel K , we just need to prove that for t ≤ T ,

α

∫ t

0

(∫ t

u
(v − u)H−3/2f (v) dv

)2

du

≤
∫ t

0

(∫ t

u
∂vK(v + 1, u + 1)f (v) dv

)2

du.

Up to a constant, the norm
∫ t

0 (
∫ t
u(v − u)H−3/2f (v) dv)2 du is the norm of the

reproducing Hilbert space of the Gaussian process

Yt = dH

∫ t

0
(t − s)H−1/2 dWs,(47)

where dH (H − 1/2) = cH and the norm
∫ t

0 (
∫ t
u ∂vK(v + 1, u + 1)f (v) dv)2 du is

the norm of the reproducing Hilbert space of the Gaussian process

Zt =
∫ t

0
K(t + 1, s + 1) dWs.

So, to prove (46), according to Lemma 2 in [6], we just need to prove that
(Yt )0≤t≤T and (Zt )0≤t≤T are equivalent in distribution. From Theorem 7 in [6],
we have to prove that there exists a square integrable kernel L such that

K(t + 1, s + 1) = dH (t − s)H−1/2 + dH

∫ t

s
(t − r)H−1/2L(r, s) dr.

Since H > 1/2, we can differentiate both members of the above equation with
respect to t and we obtain

(s + 1)1/2−H (t − s)H−3/2(t + 1)H−1/2 − (t − s)H−3/2

=
∫ t

s
(t − r)H−3/2L(r, s) dr.

Hence, it suffices to take

L(t, s) = 1

�(H − (1/2))
D

H−1/2
s+

[
(· − s)H−3/2

(( · + 1

s + 1

)H−1/2

− 1
)]

(t),

which is easily seen to be square integrable.
Step 2. Thanks to the previous step, our result boils down to show (45) when

∂vK(v,u) is replaced by (v − u)H−3/2. Toward this aim, notice first that by using
the same arguments as in [5], Lemma 4.4, we obtain the interpolation inequality

∫ 1

0

(∫ 1

u
(v − u)H−3/2f (v) dv

)2

du ≥ C
min[0,1] f 4

‖f ‖2∞ + ‖f ‖2
γ

,
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which is easy to rescale:∫ t

s

(∫ t

u
(v − u)H−3/2f (v) dv

)2

du

= (t − s)2H
∫ 1

0

(∫ 1

u
(v − u)H−3/2f

(
s + (t − s)v

)
dv

)2

du

≥ C(t − s)2H min[0,1] f 4
st

‖fst‖2∞ + ‖fst‖2
γ

≥ C(t − s)2H min[0,1] f 4

‖f ‖2∞ + ‖f ‖2
γ

,

where we have set fst (u) = f (s + (t − s)u). �

In the case H ≤ 1/2, the scale invariant inequalities we have are the following.

LEMMA 5.8. Assume H ≤ 1/2. Let 0 < ε < 1. There exists constants c1,
c2 > 0 such that for any f ∈ Cγ ([0,1];Rn), with γ > 1/2 −H and ε ≤ s < t ≤ 1,
we have

c1(t − s)2H min[0,1] |f |2 ≤
∫ t

s

∣∣∣∣K(t, u)f (u) +
∫ t

u

(
f (r) − f (u)

)
∂rK(r, u) dr

∣∣∣∣2 du.

PROOF. Some elements of the proof are pretty similar to the proof of
Lemma 5.7, so we only sketch the main arguments. We also focus here on the
case of real valued functions for sake of readability.

Step 1. Set L̂(t, s) = (t − s)H−1/2. Along the same line as for Lemma 5.7, it is
readily checked that

C

∫ t

s

(
L̂(t, u)f (u) +

∫ t

u

(
f (r) − f (u)

)
∂rL̂(r, u) dr

)2

du

≤
∫ t

s

(
K(t, u)f (u) +

∫ t

u

(
f (r) − f (u)

)
∂rK(r, u) dr

)2

du,

by using a scaling argument and the equivalence in distribution of the two pro-
cesses

∫ t
0 K(t + 1, s + 1) dWs and dH

∫ t
0 (t − s)H−1/2 dWs .

Step 2. Some fractional calculus arguments show that the following lower
bound holds true:∫ 1

0

(
L̂(1, u)f (u) +

∫ 1

u

(
f (r) − f (u)

)
∂rL̂(r, u) dr

)2

du ≥ C

∫ 1

0
f (u)2 du

≥ C min[0,1] f
2,

which can be rescaled to get the lower bound of our claim. �



PROBABILITY LAWS OF FRACTIONAL RDES 2583

As a last preliminary step before the proof of our bivariate density bound, let us
mention that we shall express some of our Malliavin derivatives bounds in terms
of Hölder norms on the interval [s, t]. However, it will be more convenient to work
with Besov norms rather than Hölder’s because Besov norms are smooth in the
Malliavin calculus sense. This is why we introduce the following quantities: if Y

is a process which is γ -Hölder, 1/2 < γ < H , set

N s,t
γ,p(Y ) =

∫ t

s

∫ t

s

|Yv − Yu|2p

|v − u|2γp+2 dudv,

where γ < H and p > 0. Then from the Besov–Hölder embedding, we have

‖Y‖s,t,γ ≤ C
(
N s,t

γ,p(Y )
)1/2p

, 0 ≤ s ≤ t ≤ 1.

From the Garsia–Rodemich–Rumsey inequality in Carnot groups (see [20]) or
Theorem 7.34 in [3], this embedding extends to the rough paths case. More pre-
cisely, if Y is a γ -rough path with lift Y, then

‖Y‖s,t,γ ≤ C
(
N s,t

γ,p(Y)
)1/2p

, 0 ≤ s ≤ t ≤ 1,

where now,

N s,t
γ,p(Y) =

∫ t

s

∫ t

s

|�u,v|2p

|v − u|2γp+2 dudv,

with

�s,t =
[1/γ ]∑
k=1

∥∥∥∥
∫
�k[s,t]

dY⊗k

∥∥∥∥
1/k

.

With this notation in mind, using the interpolation inequalities we just proved and
arguing as in Section 4 we obtain then the following estimates.

PROPOSITION 5.9. Let ε ∈ (0,1), and consider H ∈ (1/4,1). Recall that the
Malliavin matrix �F of a random variable F with derivatives taken with respect
to the Wiener process W are defined by (42). Then there exist constants C, r > 0
such that for ε ≤ s ≤ t ≤ 1 the following bounds hold true for γ < H :

∥∥�−1
Xx

t −Xx
s ,s

∥∥n
n,2n+2,s ≤ C

(t − s)2nH
E

n/2n+2

s

[(
1 +N 0,1

γ,p(M)
)r ]

,

∥∥D(
Xx

t − Xx
s

)∥∥n
n,2n+2,s ≤ C(t − s)nH

E
n/2n+2

s

[(
1 +N 0,1

γ,p(M)
)r ]

,

where

M = (
B, Ŷ ,Xx,J,J−1),

with Ŷt = ∫ t
0 (t − s)H−1/2 dŴs where Ŵ is a Brownian motion independent

from W .
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PROOF. Taking into account the interpolation inequalities of Lemmas 5.7
and 5.8, the bound

∥∥�−1
Xx

t −Xx
s ,s

∥∥n
n,2n+2,s ≤ C

(t − s)2nH
E

n/2n+2

s

[(
1 +N 0,1

γ,p(M)
)r ]

follows along the same lines as in Section 4. We now turn to the upper bound for
the Malliavin derivative. Again, we use the method by Inahama [25]. Set

�1(t) = Jt

∫ t

s
K∗

t

(
J−1V (X)

)
(u) dŴ (u),

where

K∗
t

(
J−1V (X)

)
(v)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ t

v
∂uK(u, s)J−1

u Vj (Xu)du, H > 1/2,

K(t, v)J−1
v Vj (Xv) +

∫ t

v

(
J−1
r Vj (Xr) − J−1

s Vj (Xs)
)
∂rK(r, s) dr,

H ≤ 1/2.

As in Inahama [25], we have∥∥D(
Xx

t − Xx
s

)∥∥
L2

s
≤ CÊ

(∣∣�1(t)
∣∣2)1/2

.

From the previous lemmas, we can estimate

Ê
(∣∣�1(t)

∣∣2)1/2 ≤ CÊ
(∣∣�̃1(t)

∣∣2)1/2
,

where

�̃1(t) = Jt

∫ t

s
L̂∗

t

(
JV (X)

)
(u) dŴ (u),

with, as before, L̂(t, s) = (t − s)H−1/2. We can now write �̃ as a rough paths
integral,

�̃1(t) = Jt

∫ t

s
J−1
u V (Xu)dẐ(u),

where

Ẑ(u) =
∫ u

s
(s − v)H−1/2 dŴ(v).

The advantage of working with the kernel (s − v)H−1/2 is that it is translation
invariant, so it is easily seen that we have in distribution with respect to P̂ (i.e., W

is fixed),

�̃1(t) = (t − s)H Jt

∫ 1

0
J−1
s+(t−s)uV (Xs+(t−s)u) dŶ (u),
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where Ŷ is an independent copy of the process Y defined by (47). Using rough
paths theory, as in Section 4, we get an upper bound of the form (1 + N 0,1

γ,p(M))r

for the integral
∫ 1

0 J−1
s+(t−s)uV (Xs+(t−s)u) dŶ (u). Thus, we get

Es

(∥∥D(
Xx

t − Xx
s

)∥∥n
L2

s

)1/n ≤ C(t − s)HEs

(
Ê
((

1 +N 0,1
γ,p(M)

)2r)n/2)1/n

≤ C(t − s)HEs

((
1 +N 0,1

γ,p(M)
)rn)1/n

.

Higher order derivatives are treated similarly. �

We are finally ready for the proof of condition (A2).

PROOF THAT CONDITION (A2) HOLDS WITH β = n. In all the proof the range
of the parameters s, t will be ε < s ≤ t ≤ 1 where 0 < ε < 1. Also C will denote a
deterministic constant that varies from line to line but which is independent from
s, t (however it may depend on other parameters like n,p,Vi, ε).

Consider the joint probability density function of the 2n-dimensional random
vector (Xx

t , Xx
s ) with s < t denoted ps,t (z1, z2) (the fact that it exists as a smooth

function is a consequence of Proposition 5.9). We then write

ps,t (z1, z2) = p̂s,t−s(z1, z2 − z1) for z1, z2 ∈ R
n,

where p̂s,t−s(·, ·) denotes the density of the random vector (Xx
s ,Xx

t − Xx
s ). We

now bound the function p̂s,t−s , which shall be expressed as

p̂s,t−s(ξ1, ξ2) = E
[
δξ1

(
Xx

s

)
δξ2

(
Xx

t − Xx
s

)]
for ξ1, ξ2 ∈ R

n,

= E
[
δξ1

(
Xx

s

)
Es

[
δξ2

(
Xx

t − Xx
s

)]]
.

The idea is now to bound Mst = Es[δξ2(X
x
t − Xx

s )] by using first the conditional
integration by parts formula in Proposition 5.6 and then the Cauchy–Schwarz in-
equality. We obtain

|Ms,t | ≤ C
∥∥�−1

Xx
t −Xx

s ,s

∥∥n
n,2n+2,s

∥∥D(
Xx

t − Xx
s

)∥∥n
n,2n+2,sE

1/2
s [1(Xx

t −Xx
s >ξ2)].(48)

Thus, owing to Proposition 5.9 we obtain

p̂s,t−s(ξ1, ξ2)
(49)

≤ C

(t − s)nH
E
[
δξ1

(
Xx

s

)
E

n/2n+1

s

[(
1 +N 0,1

γ,p(M)
)r ]

E
1/2
s [1(Xx

t −Xx
s >ξ2)]

]
.

Furthermore, it is readily checked that∣∣Xx
t − Xx

s

∣∣ ≤ C|t − s|γN 1/2p
γ,2p (M),

and thus, for q arbitrarily large, we have

Es[1(Xx
t −Xx

s >ξ2)] ≤ C

(
1 ∧ |t − s|γ q

ξ
q
2

Es

[
N q

γ,2p(M)
])

.
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Plugging this inequality into (49), we end up with

p̂s,t−s(ξ1, ξ2) ≤ C

(t − s)nH
E

[
δξ1

(
Xx

s

)
�1

(
1 ∧ |t − s|γ q

ξ
q
2

�2

)]
,(50)

where �1 and �2 are two random variables which are smooth in the Malliavin
calculus sense. We can now integrate (50) safely by parts in order to regularize the
term δξ1(X

x
s ), which finishes the proof. �

5.3. Lower bound on hitting probabilities. We now apply Theorem 5.1, which
yields the lower bound of Theorem 1.6.

THEOREM 5.10. Let Xx
t denote the solution to equation (19) where B is a

fractional Brownian motion with Hurst parameter H > 1
4 and where the vector

fields V1, . . . , Vd satisfy Hypothesis 1.3. Fix 0 < a < b ≤ 1 and M > 0. Then there
exists a positive constant c = c(a, b,H,M,n) such that for all compact sets A ⊆
[−M,M]n,

P
(
Xx

t

([a, b]) ∩ A = ∅
) ≥ c Capn−(1/H)(A).

PROOF. Since we have already proved that hypothesis (A2) holds with β = n,
it suffices to verify hypotheses (A1) of Theorem 5.1. First of all, observe that,
owing to Theorem 1.4, the density of our process pt(y) is strictly positive and
continuous in y. Moreover, our nondegeneracy conditions on V yield the uniform
continuity of the density on [a, b] × [−M,M]n for any strictly positive M (see,
e.g., [14]). Therefore, it holds that for all z ∈ [−M,M]n∫ b

a
pt (z) dt ≥ inf|z|≤M

∫ b

a
pt (z) dt = C(a, b,M) > 0,

which proves that (A1) holds true. �

As a consequence of Theorem 5.10 and Corollary 5.3, we have the following
result on hitting points for the process Xx

t .

COROLLARY 5.11. Under the hypotheses of Theorem 5.10, if n < 1
H

, the pro-
cess Xx

t hits points in R
n with positive probability.

5.4. Upper bounds on hitting probabilities. As in the last subsection, we pro-
vide a general result that gives sufficient conditions on a continuous stochastic
process in order to obtain an upper bound for the hitting probabilities of the pro-
cess in terms of the Hausdorff measure. The proof follows along the same lines as
in [16], Theorem 3.1, but for the sake of completeness we sketch the main steps.
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Given α ≥ 0, the α-dimensional Hausdorff measure of a set A in R
n is defined

as

Hα(A) = lim
ε→0+ inf

{ ∞∑
i=1

(2ri)
α : A ⊆

∞⋃
i=1

B(xi, ri), sup
i≥1

ri ≤ ε

}
,(51)

where B(x, r) denotes the open (Euclidean) ball of radius r > 0 centered at x ∈ R
n.

When α < 0, we define Hα(A) to be infinite.
Let us now consider a continuous stochastic process (ut , t ≥ 0) in R

n, and
for all positive integers N and H ∈ (0,1), set t

N,H
k := k2−N/H , and I

N,H
k =

[tN,H
k , t

N,H
k+1 ].

THEOREM 5.12. Fix 0 < a < b, β > 0, and M > 0. Suppose that there exists
H ∈ (0,1) and cH > 0 such that for all z ∈ [−M,M]n, ε > 0, large N and I

N,H
k ⊆

[a, b],
P
(
u
(
I

N,H
k

) ∩ B(z, ε) = ∅
) ≤ cH εβ.(52)

Then there exists a positive constant C = C(a, b,β,M,H,n) such that for all
Borel sets A ⊂ [−M,M]n,

P
(
u
([a, b]) ∩ A = ∅

) ≤ CHβ−(1/H)(A).

REMARK 5.13. Because of the inequalities between capacity and Haus-
dorff measure, the right-hand side of Theorem 5.12 can be replaced by
C Capβ−(1/H)−ε(A) (cf. [26], page 133).

PROOF. When β < 1
H

, there is nothing to prove, so we assume that β− 1
H

> 0.
Fix ε ∈ (0,1) and N ∈ N such that 2−N−1 < ε ≤ 2−N , and write

P
(
u
([a, b]) ∩ B(z, ε) = ∅

) ≤ ∑
k:IN,H

k ∩[a,b]=∅

P
(
u
(
I

N,H
k

) ∩ B(z, ε) = ∅
)
,

where the number of k’s involved in the sum is at most 2N/H . Then hypothesis
(52) implies that for all large N and z ∈ A,

P
(
u
([a, b]) ∩ B(z, ε) = ∅

) ≤ C̃2−N(β−(1/H)) ≤ Cεβ−(1/H).

Finally, a covering argument completes the desired proof. �

By the definition of Hausdorff measure and as a consequence of Theorem 5.12,
we have the following result on hitting points for the process u.

COROLLARY 5.14. Under the hypotheses of Theorem 5.12, if β > 1
H

, the
process u does not hit points in R

n a.s., that is,

P(∃t > 0 : ut = x) = 0 for all x ∈R
n.
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PROOF. If β > 1
H

, then Hβ−(1/H)({x}) = 0 by the definition of Hausdorff
measure, and the result follows from Theorem 5.12. �

The next result provides sufficient conditions that imply hypothesis (52) of The-
orem 5.12. These conditions are easier to verify for nonlinear equations than hy-
pothesis (52). The proof follows exactly as the proof of [16], Theorem 3.3, and
is therefore omitted. It suffices to replace the parabolic metric �((t, x); (s, y)) =
|t − s|1/2 + |x − y| therein by our fractional metric |t − s|2H .

THEOREM 5.15. Fix 0 < a < b and M > 0. Assume that the R
n-valued

stochastic process u satisfies the following two conditions:

(i) For any t > 0, the random vector ut has a density pt(z) which is uniformly
bounded over z ∈ [−M,M]n and t ∈ [a, b].

(ii) For some H ∈ (0,1) and for all p > 1, there exists a constant C =
C(p,H,a, b) such that for any s, t ∈ [a, b],

E
[|ut − us |p] ≤ C|t − s|Hp.

Then for any β ∈]0, n[, condition (52) in Theorem 5.12 is satisfied for such β .

Let us now apply this general theory to the n-dimensional process solution to
equation (19).

THEOREM 5.16. Let Xx
t denote the solution to equation (19) where B is a

fractional Brownian motion with Hurst parameter H > 1
4 and the vector fields sat-

isfy Hypothesis 1.3. Fix 0 < a < b ≤ 1, M > 0 and η > 0. Then there exists a posi-
tive constant C = C(a, b,H,M,n,η) such that for all Borel sets A ⊆ [−M,M]n,

P
(
Xx

t

([a, b]) ∩ A =∅
) ≤ CHn−(1/H)−η(A).

REMARK 5.17. Because of the inequalities between capacity and Haus-
dorff measure, the right-hand side of Theorem 5.12 can be replaced by
C Capn−(1/H)−η′(A) (cf., [26], page 133).

As a consequence of Theorem 5.16 and Corollary 5.14, we have the following
result on hitting points for the process Xx

t .

COROLLARY 5.18. Under the hypotheses of Theorem 5.16, if n > 1
H

, the pro-
cess Xx

t does not hit points in R
n a.s.

PROOF OF THEOREM 5.16. It suffices to check that conditions (i) and (ii)
of Theorem 5.15 hold true for the solution to our equation (19). Condition (i)
follows straightforwardly from our results in Section 4. Condition (ii) follows from
standard estimates of rough paths theory (see, e.g., [20], Corollary 10.39). �
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