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Abstract. Despite their widespread usage in block cipher security, linear and dif-
ferential cryptanalysis still lack a robust treatment of their success probability, and the
success chances of these attacks have commonly been estimated in a rather ad hoc
fashion. In this paper, we present an analytical calculation of the success probability of
linear and differential cryptanalytic attacks. The results apply to an extended sense of
the term “success” where the correct key is found not necessarily as the highest-ranking
candidate but within a set of high-ranking candidates. Experimental results show that
the analysis provides accurate results in most cases, especially in linear cryptanalysis.
In cases where the results are less accurate, as in certain cases of differential cryptanaly-
sis, the results are useful to provide approximate estimates of the success probability
and the necessary plaintext requirement. The analysis also reveals that the attacked key
length in differential cryptanalysis is one of the factors that affect the success probabil-
ity directly besides the signal-to-noise ratio and the available plaintext amount.

Key words. Block ciphers, Linear cryptanalysis, Differential cryptanalysis, Success
probability, Order statistics.

1. Introduction

Differential cryptanalysis (DC) [1] and linear cryptanalysis (LC) [11,12] are two of the
most important techniques in block cipher cryptanalysis today. Virtually every mod-
ern block cipher has its security checked against these attacks and a number of them
have actually been broken. Despite this widespread utilization, evaluation of the suc-
cess probability of these attacks is usually done in a rather ad hoc fashion: Success
chances of differential attacks are typically evaluated according to the empirical ob-
servations based on the “signal-to-noise ratio” [1]. In the case of linear cryptanalysis,
arbitrary ciphers are analyzed using Matsui’s results for his DES attacks [11,12], which
were in fact carefully calculated for and were specific to those particular attacks.

In this paper, we present an analytical, generally applicable calculation of the success
probability of linear and differential attacks. Throughout the analysis, a generalized
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definition of the term “success” is dealt with: If an attack on an m-bit key gets the
correct value ranked among the top r out of 2m possible candidates, we say the attack
obtained an (m− lg r)-bit advantage over exhaustive search. The traditional, more strict
definition of success, where the attack discovers the right key as the first candidate,
corresponds to obtaining an m-bit advantage over an m-bit key.

The analysis presented provides formulas for direct calculation of the success prob-
ability of linear and differential attacks. The amount of data required for an attack to
achieve a certain success probability can also be calculated through these formulas.
Furthermore, the analysis shows that the aimed advantage level—that is, in more tra-
ditional terms, the number of key bits attacked—is one of the factors that affect the
success probability in differential cryptanalysis directly besides the already established
factors of the signal-to-noise ratio and the expected number of right pairs.

The notations in the paper common to all sections include φ and � for the probabil-
ity density and the cumulative distribution functions of the standard normal distribution.
Besides, B, N , and P are used for denoting the binomial, normal, and Poisson distrib-
utions, respectively.

2. Success Probability in Linear Cryptanalysis

Linear cryptanalysis, developed by Matsui [11], is a known-plaintext attack that exploits
the statistical correlation among the plaintext, ciphertext, and key bits of a block cipher
to discover the encryption key. The first step in a linear attack is to find a linear ap-
proximation for the cipher. A linear approximation is a binary equation of the bits of the
plaintext, ciphertext, and the key, which holds with a probability p �= 1/2. The quantity
|p−1/2|, known as the bias, is a measure of correlation among the plaintext, ciphertext,
and key bits, and it can be used to distinguish the actual key from random key values.
In an attack, the attacker collects a large number of plaintext-ciphertext blocks, and for
each possible key value he counts the number of plaintext-ciphertext blocks that satisfy
the approximation. Assuming that the bias of the approximation with the right key will
be significantly higher than the bias with a random key, the key value that maximizes
the bias over the given plaintext sample is taken as the right key.

In general, it may be sufficient to have the right key ranked reasonably high among
the candidates rather than having it as the absolute highest. For example, in Matsui’s
attack on DES, a 26-bit portion of the key was attacked where the right key was ranked
among the top 213. In this kind of ranking attacks, all candidates ranked higher than
the right key must be tried before the right key can be reached. Each candidate must
be checked with all combinations of the remaining, unattacked bits to see if it is the
right value. In such an attack, where an m-bit key is attacked and the right key is ranked
r th among all 2m candidates, the attack provides a complexity reduction by a factor of
2m−lg r over the exhaustive search. In our analysis, we refer to m− lg r as the advantage
provided by the attack.

2.1. Problem Statement

Consider the problem where an attacker is interested in getting the right key ranked
within the r top candidates among a total of 2m keys, where an m-bit key is attacked,
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with an approximation of probability p, using N plaintext blocks. Let k0 denote the
right key and ki,1 ≤ i ≤ 2m − 1, be the wrong key values, and let n denote 2m − 1. Let
Xi = Ti/N − 1/2 and Yi = |Xi |, where Ti is the counter for the plaintexts satisfying the
approximation with key ki . Let Wi,1 ≤ i ≤ 2m −1, be the Yi, i �= 0, sorted in increasing
order. That is, W1 is the lowest sample bias |Ti/N − 1/2| obtained among the wrong
keys, Wn is the highest. Then, the two conditions for the success of the attack are

X0/(p − 1/2) > 0, (1)

that is, T0/N − 1/2 and p − 1/2 have the same sign, and

|X0| > Wn−r+1. (2)

In the rest of this analysis, we assume for simplicity that p > 1/2.1 Hence, the two
conditions become

X0 > 0, (3)

X0 > Wn−r+1. (4)

This modeling of the success probability was originally given by Junod [7], where
he derived an expression of the success probability in terms of Euler’s incomplete beta
integral assuming that the Tis are independent and they are identically distributed for
i �= 0. He also presented a numerical calculation of that expression for Matsui’s 26-bit
DES attack [12] assuming that the approximation has a zero bias for a wrong key, i.e.,
E[Ti/N − 1/2] = 0 for i �= 0.

Here, we present a more general calculation of the success probability using the nor-
mal approximation for order statistics. Like Junod, we also assume the independence of
the Ti counters and a zero bias for the wrong keys. Since the zero bias for the wrong
keys is the ideal case for an attacker, the results can be seen as an upper bound for the
actual success probability.

2.2. Order Statistics

In this section we give a brief review of order statistics, as treated in [13]. Theorem 1,
the key for our analysis, states the normal approximation for the order statistics.

Definition 1. Let ξ1, ξ2, . . . , ξn be independent, identically distributed random vari-
ables. Arrange the values of ξ1, ξ2, . . . , ξn in increasing order, resulting in ξ∗

1 , ξ∗
2 , . . . , ξ∗

n .
The statistic ξ∗

i is called the i-th order statistic of the sample ξ1, ξ2, . . . , ξn.

Definition 2. For 0 < q < 1, the sample quantile of order q is the �qn� + 1-th order
statistic ξ∗�qn�+1.

Theorem 1. Let ξ1, ξ2, . . . , ξn be independent, identically distributed random vari-
ables, with an absolutely continuous distribution function F(x). Suppose that the

1 The corresponding results for the case p < 1/2 can easily be obtained by substituting −X0 for X0.
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density function f (x) = F ′(x) is continuous and positive on the interval [a, b). If
0 < F(a) < q < F(b) < 1, and if i(n) is a sequence of integers such that

lim
n→∞

√
n

∣
∣
∣
∣

i(n)

n
− q

∣
∣
∣
∣
= 0,

further if ξ∗
i denotes i-th order statistic of the sample ξ1, ξ2, . . . , ξn, then ξ∗

i(n) is in the
limit normally distributed, i.e.,

lim
n→∞P

(

ξ∗
i(n) − μq

σq

< x

)

= �(x),

where

μq = F−1(q),

σq = 1

f (μq)

√

q(1 − q)

n
.

Taking i(n) = �qn� + 1, the theorem states that the empirical sample quantile of order
q of a sample of n elements is for sufficiently large n nearly normally distributed with

expectation μq = F−1(q) and standard deviation σq = 1
f (μq)

√
q(1−q)

n
.

2.3. Success Probability

The sample bias of the right key, X0 = T0/N − 1/2, approximately follows a normal
distribution N (μ0, σ

2
0 ) with μ0 = p − 1/2 and σ 2

0 = 1/(4N). The absolute sample
bias of wrong keys, Yi, i �= 0, follow a folded normal distribution (see Appendix 4)
FN (μw,σ 2

w) with μw = 0, assuming a zero bias for wrong keys, and σ 2
w = 1/(4N). We

use f0,F0 and fw,Fw to denote the probability density and the cumulative distribution
functions of X0 and Yi, i �= 0, respectively.

In an a-bit advantage attack on an m-bit key, success is defined as

X0 > 0, (5)

X0 > Wr̄, (6)

where W1,W2, . . . ,W2m−1 are the absolute sample bias of the wrong keys sorted in
increasing order, and r̄ denotes 2m −2m−a . According to Theorem 1, Wr̄ approximately
follows a normal distribution N (μq,σ 2

q ), which we denote by Fq , where

μq = F−1
w (1 − 2−a) = μw + σw�−1(1 − 2−a−1),

σq = 1

fw(μq)
2− m+a

2 = σw

2φ(�−1(1 − 2−a−1))
2− m+a

2 ,

since Fw is folded normal. Then the probability of success, PS , is

PS =
∫ ∞

0

∫ x

−∞
fq(y) dyf0(x) dx. (7)
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For a,m ≥ 8, we have μq > 5σq and, therefore, the probability of Wr̄ < 0 is negligi-
ble. Hence, (5) and (6) can be combined as

X0 > Wr̄. (8)

Since both X0 and Wr̄ follow a normal distribution, X0 −Wr̄ follows a normal distribu-
tion too, which we denote by FJ , with mean μ0 − μq and variance σ 2

0 + σ 2
q . Therefore,

PS = P(X0 − Wr̄ > 0) =
∫ ∞

0
fJ (x) dx =

∫ ∞

− μ0−μq√
σ2

0 +σ2
q

φ(x) dx. (9)

Table 1 gives a numeric calculation of (9) for certain values of a and m, with N =
8|p − 1/2|−2 plaintext blocks.

In Table 1, it is interesting that PS is almost independent of the key length m for a
given a. Note that, for 8 ≤ a ≤ 48, σq satisfies 10−6 ≤ σq/σ0 ≤ 10−1. Especially when
dealing with success probabilities of 80% or more, the effect of σq is negligible and we

can assume
√

σ 2
0 + σ 2

q ≈ σ0. Then (9) becomes

PS =
∫ ∞

− μ0−μq
σ0

φ(x)dx =
∫ ∞

−2
√

N(|p−1/2|−F−1
w (1−2−a))

φ(x) dx, (10)

where the success probability is a function of the advantage level a, independent of the
number of key bits attacked m.

In (10), Fw is the folded normal distribution FN (0, σ 2
w), and F−1

w (1 − 2−a) =
σw�−1(1 − 2−a−1) for σw = 1/(2

√
N), yielding the following main result:

Theorem 2. Let PS be the probability that a linear attack on an m-bit subkey, with
a linear approximation of probability p, with N known plaintext blocks, delivers an a-
bit or higher advantage. Assuming that the linear approximation’s probability to hold
is independent for each key tried and is equal to 1/2 for all wrong keys, we have, for
sufficiently large m and N ,

PS = �
(

2
√

N |p − 1/2| − �−1(1 − 2−a−1)
)

. (11)

A numerical calculation of (11) is shown in Table 2, where the success probability
is given as a function of the aimed advantage level a and cN , the amount of available
plaintexts as a multiple of |p −1/2|−2 (i.e., cN = N/|p −1/2|−2). A comparison of the

Table 1. The success probability PS according to (9) for obtaining an
a-bit advantage on an m-bit key, for N = 8|p − 1/2|−2 plaintexts.

a m = 8 m = 16 m = 32 m = 48

8 0.996 0.997 0.997 0.997
16 − 0.903 0.909 0.909
32 − − 0.250 0.248
48 − − − 0.014
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Table 2. Probability of achieving an a-bit advantage with N = cN |p − 1/2|−2

plaintexts, according to (11).

a cN = 2 cN = 4 cN = 8 cN = 16 cN = 32 cN = 64

8 0.477 0.867 0.997 1.000 1.000 1.000
16 0.067 0.373 0.909 1.000 1.000 1.000
32 0.000 0.010 0.248 0.952 1.000 1.000
48 0.000 0.000 0.014 0.552 0.999 1.000

columns of Table 1 to the column of Table 2 for cN = 8 shows that the two are almost
identical.

Equation (11) implies that 2
√

N |p−1/2|−�−1(1−2−a−1) = �−1(PS), yielding a
direct formula to calculate the required number of plaintexts to achieve a certain success
probability PS :

Corollary 1. With the assumptions of Theorem 2,

N =
(

�−1(PS) + �−1(1 − 2−a−1)

2

)2

· |p − 1/2|−2 (12)

plaintext blocks are needed in a linear attack to accomplish an a-bit advantage with a
success probability of PS .

2.4. Discussion of the Assumptions and Experimental Results

In a typical linear attack, N is at least in the order of 220 and p is very close to 1/2.
Hence, the normal approximation for the binomial Ti counters and for Xi = (Ti/N −
1/2) can be expected to be extremely good.

Regarding the normal approximation for the order statistics, the sample size is
n = 2m − 1, which can be expected to give accurate results for fairly large values of
m [16]. For a practical evaluation, we implemented Matsui’s 8-round DES attack [12]
and compared the actual success probability to the results of (11). The attack uses a
6-round DES approximation with a bias 1.95 · 2−9 and targets the keys of S5 in the first
and the eighth rounds, with 12 key bits in total.2 In the experiments the attack was run
10,000 times for each value of N .

The success probability according to the experimental results and according to (11)
are compared in Fig. 1. Figure 1(a) shows that (11) gives a quite precise calculation of
the success probability for most cases. The exception to this accuracy, as Figure 1(b)
shows, is when the top ranking probability is of concern and with a relatively small PS

value, in which case about a 10% error rate is possible.

2 The benefit of using DES in this experiment is that, it was observed in [15] that the bias of linear approx-
imations of DES-like ciphers can be estimated accurately by the piling-up lemma [11], which is not always
the case for other ciphers (e.g., RC5). Hence, using DES as the test cipher, the experiments can be conducted
free of the errors that would result from a miscalculation of the bias.
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(a) The results for the range 1 ≤ rank(k0) ≤ 1000. The theoretical and experimental
results are mostly indistinguishable.

(b) The same plots with a focus on the range 1–10. Now a difference can be observed,
especially when the top ranking probability is of concern. The theoretical and practical
results are still indistinguishable for N = 220.

Fig. 1. A comparison of (11) with the experimental success rates. The bias of the linear approximation is
1.95 · 2−9. The plots with the linespoint style show the experimental results; those with the lines style are PS

according to (11).

2.5. Probability of Top Ranking

A more precise calculation of the success probability is possible for the special case
a = m (i.e., when the right key is to be ranked the highest) which does not use the
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Table 3. The top ranking probability P(rank(k0) = 1) in LC
according to (11), (13), and the experimental results.

N (11) (13) Exp.

216 0.043 0.038 0.033
217 0.181 0.159 0.151
218 0.592 0.539 0.509
219 0.968 0.949 0.930
220 0.999 0.999 0.999

normal approximation for order statistics. In this case, the success probability can be
expressed directly as

PS =
∫ ∞

0

(∫ x

−x

fw(y) dy

)2m−1

f0(x) dx

=
∫ ∞

−2
√

N |p−1/2|

(
∫ x+2

√
N |p−1/2|

−x−2
√

N |p−1/2|
φ(y)dy

)2m−1

φ(x)dx, (13)

again assuming that the Ti counters are independent. A numerical comparison of (11),
(13), and the experimental results is given in Table 3.

3. Success Probability in Differential Cryptanalysis

Differential cryptanalysis, developed by Biham and Shamir [1], is a chosen-plaintext
attack that exploits the correlation between the input and output differences of a pair of
plaintext blocks encrypted under the same key. The first step in a differential attack is to
find a characteristic of the cipher attacked. A characteristic is a sequence of differences
between the round inputs in the encryption of two plaintext blocks with a given initial
difference. For a characteristic to be useful in an attack, a plaintext pair with the given
initial difference must have a non-trivial probability to follow the given sequence of dif-
ferences during encryption. Having obtained such a characteristic, the attacker collects
a large number of plaintext-ciphertext pairs with the given initial difference. Assum-
ing that the characteristic is followed at the inner rounds of the cipher, each pair will
suggest a set of candidates for the last round key. When a pair is a “right pair”, which
followed the characteristic, the actual key will always be among the keys suggested. If
the pair is “wrong”, it may be detected and discarded, or, otherwise, it will suggest a set
of random keys. After processing all collected pairs and counting the keys they suggest,
the key value that is suggested most will be taken as the right key.

An important measure for the success of a differential attack is the proportion of the
probability of the right key being suggested by a right pair to the probability of a random
key being suggested by a random pair with the given initial difference. This proportion
is called the “signal-to-noise ratio”. Biham and Shamir [1] observed a strong relation
between the signal-to-noise ratio and the success chance of an attack. By empirical
evidence, they suggested that when the signal-to-noise ratio is around 1–2, about 20–40
right pairs would be sufficient; and when the signal-to-noise ratio is much higher, 3–4
right pairs would usually be enough.
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3.1. Distribution Parameters

We use a notation similar to the one used for linear cryptanalysis: m is the number of
key bits attacked; N denotes the total number of pairs analyzed. k0 denotes the right
key, ki,1 ≤ i ≤ 2m − 1, denote the wrong keys. pi is the probability of ki being sug-
gested by a plaintext pair; Ti counts the number of times ki is suggested. Wi,1 ≤ i ≤
2m − 1, denote Ti, i �= 0, sorted in increasing order. The probability of the characteristic
is denoted by p, and μ = pN denotes the expected number of right pairs. pr is the
average probability of some given key being suggested by a random pair with the given
initial difference. SN denotes the signal-to-noise ratio, p/pr .

In our analysis, we assume that the Ti values are independent and that they are iden-
tically distributed for i �= 0. The latter assumption means that all wrong keys have the
same chance of being suggested by a random pair. That is, all pi, i �= 0, are identical.
We denote this probability by pw .

The Ti counters have a binomial distribution, B(N,p0) for T0 and B(N,pw) for
Ti, i �= 0. We denote these distribution functions by F0 and Fw , and their density func-
tions by f0 and fw , respectively. Typically, N is very large and therefore these binomial
distributions can be approximated by normal distributions, N (μ0, σ

2
0 ) and N (μw,σ 2

w),
where the distribution parameters are,

μ0 = p0N, σ 2
0 = p0(1 − p0)N ≈ p0N,

μw = pwN, σ 2
w = pw(1 − pw)N ≈ pwN.

In a typical differential attack, the right key gets counted by right pairs and also gets
random hits from wrong pairs, while the wrong keys only gets hits from wrong pairs. In
this case, we have

p0 = p + (1 − p)pr ≈ p + pr,

pw = pr .

Note that this typical behavior does not always happen and in certain exceptional cases
(e.g., [5]) the right key gets counted only by right pairs without getting any random hits
from wrong pairs. In such attacks, we have p0 = p. The following analysis assumes the
more typical case where p0 = p + pr but can easily be extended to cases where p0 = p

by substituting p for p0 in (16) and doing the following derivations accordingly.

3.2. Success Probability

In an a-bit advantage attack, success is defined by getting k0 ranked within the top 2m−a

candidates; that is, T0 > W2m−2m−a . We denote 2m − 2m−a by r̄ .
An analysis along the same lines as the one on linear cryptanalysis—with the only

major difference being that the Tis here have a normal distribution whereas the Yis in
linear cryptanalysis had a folded normal—gives

PS =
∫ ∞

− μ0−μq√
σ2

0 +σ2
q

φ(x) dx, (14)
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where μq = μw + σw�−1(1 − 2−a), σq = σw

φ(�−1(1−2−a))
2− m+a

2 . For σ 2
q  σ 2

0 , we have

PS =
∫ ∞

− μ0−μq
σ0

φ(x)dx. (15)

The lower bound of the integral can be written in terms of the signal-to-noise ratio as,

−μ0 + μq

σ0
= −p0N + pwN + √

pwN�−1(1 − 2−a)√
p0N

= −pN + √
prN�−1(1 − 2−a)√
(p + pr)N

= −√

pN

√
p

p + pr

+
√

pr

p + pr

�−1(1 − 2−a)

= −√
μ

√

SN

SN + 1
+

√

1

SN + 1
�−1(1 − 2−a). (16)

Hence, the following result is obtained for the success probability:

Theorem 3. Let PS be the probability that a differential attack on an m-bit key, with
a characteristic of probability p and signal-to-noise ratio SN , and with N plaintext-
ciphertext pairs, delivers an a-bit or higher advantage. Assuming that the key counters
are independent and that they are identically distributed for all wrong keys, we have,
for sufficiently large m and N , and μ denoting pN ,

PS = �

(√
μSN − �−1(1 − 2−a)√

SN + 1

)

. (17)

A numerical calculation of (17) for SN = 1 and SN = 1000 is given in Table 4 to
provide a comparison with Biham and Shamir’s empirical results [1]. The values very
much agree with their observations for large SN . For small SN , the suggested 20–40
right pairs give a good success rate only for a < 20. To have a good success rate for
larger values of a as well, 80 or more right pairs may be needed.

Note that in (17), when SN is very large, (
√

μSN − �−1(1 − 2−a))/
√

SN + 1 ≈ √
μ

and PS ≈ �(
√

μ). Hence, for large SN , we can talk about the success probability as a
function of μ only, independent of a, as it was discussed by Biham and Shamir [1].

As in linear cryptanalysis, we can use (17) to get a direct formulation of the required
number of plaintext-ciphertext pairs to achieve a certain success probability PS :

Corollary 2. With the assumptions of Theorem 3,

N = (
√

SN + 1�−1(PS) + �−1(1 − 2−a))2

SN

p−1 (18)

plaintext-ciphertext pairs are needed in a differential attack to accomplish an a-bit ad-
vantage with a success probability of PS .
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Table 4. Probability of achieving an a-bit advantage for various values of
the expected number of right pairs μ, according to (17).

a μ = 20 μ = 40 μ = 60 μ = 80 μ = 100 μ = 120

8 0.900 0.995 1.000 1.000 1.000 1.000
16 0.585 0.936 0.994 1.000 1.000 1.000
32 0.107 0.527 0.858 0.973 0.996 1.000
48 0.010 0.151 0.490 0.794 0.942 0.988

(a) SN = 100

a μ = 4 μ = 5 μ = 6 μ = 7 μ = 8 μ = 9

8 0.972 0.984 0.991 0.995 0.997 0.998
16 0.969 0.982 0.990 0.994 0.997 0.998
32 0.964 0.979 0.988 0.993 0.996 0.998
48 0.960 0.977 0.986 0.992 0.995 0.997

(b) SN = 1000

3.2.1. Alternative Models

It can reasonably be said that the normal approximation for the binomial counters may
not be accurate when Np(1 − p) < 4; hence alternative distributions should be consid-
ered in the attacks where SN is high and the number of rights pairs is accordingly low.
For such attacks, Poisson approximations P(μ0) and P(μw) or the original binomial
distributions B(N,p0) and B(N,pw) can be preferred to model the counters.

Although more accurate results are possible by the Poisson or binomial distributions,
these distributions lack the main advantage of using the normal distribution, which is
to provide closed form expressions such as (17) and (18). Besides, as the results in
Section 3.4 show, there does not appear to be a significant difference between the re-
sults obtained by the normal approximation and those obtained by the original binomial
distribution, even for smaller values of μ0. Hence, the normal approximation appears
to be mostly satisfactory. The experimental results point out a different, more inherent
limitation however, which is discussed in Section 3.4.

3.3. Probability of Top Ranking

Similar to that in LC, a more precise, direct calculation of the success probability of a
differential attack is possible for the special case a = m (i.e., when the right key is to be
ranked the highest) which does not use the normal approximation for order statistics:

PS(m) =
∫ ∞

−∞

(∫ x

−∞
fw(y)dy

)2m−1

f0(x) dx

=
∫ ∞

−∞

(∫ x
√

SN+1+√
μSN

−∞
φ(y)dy

)2m−1

φ(x)dx, (19)

again assuming the independence of the counters and the normal approximation for the
binomial distribution.
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3.4. Discussion of the Assumptions and Experimental Results

There were three main assumptions employed in developing the results in this section:

1. The binomial Ti counters can be approximated by the normal distribution.
2. The Ti counters can be taken to be independent.
3. Order statistics can be approximated by the normal distribution.

The normal approximation to the order statistics can be expected to behave similar to
that in LC. However, the other two assumptions appear to be less accurate in DC than
in LC:

First of all, the binomial counters Ti ∼ B(N,pi), may not be accurately modeled by
the normal distribution unless Npi(1 − pi) ≥ 4. This may not be so much of a problem
for T0, since in a differential attack typically 4 or more expected right pairs are used.
But for Ti, i �= 0, the same may not hold true. Especially in attacks with a large SN ratio,
Npi(1 − pi), i �= 0, will be much less than 4.

Regarding the assumption of independent counters, in a differential attack, every
plaintext-ciphertext pair suggests on average a certain number of key candidates. For
instance, in a DES attack, on average 4 keys are suggested per s-box by a plaintext-
ciphertext pair. Consequently, the key counters Ti in a differential attack sum up to a
certain value, and hence are inherently correlated.

For a practical evaluation of these assumptions, we tested the derived equations in the
6-round DES attack of Biham and Shamir [1]. This attack uses a 3-round characteristic
with p = 1/16, SN = 216, and aims to discover 30 bits of the 6th round key, namely the
keys of the s-boxes 2, 5, 6, 7, 8. To also test the equations in an attack with a low SN

ratio, we took a variant of this attack with the same characteristic where only the key of
S5 is attacked. In this variant, we have m = 6, p = 1/8, and SN = 2. The attacks were
run 10,000 times for each value of μ. The results are summarized in Fig. 2.

Figure 2 shows that (17) is not as accurate to calculate the success probability as
its counterpart in LC. Nevertheless, when a success probability of 99% or higher is of
interest, (17) gives a quite reliable estimate for PS . For lower values, the results obtained
through (17) may have a 30% or higher error rate.

To trace the source of this error, we first looked into the normal approximation for
the binomial distribution. Recall that in formulation of the success probability,

PS = P(T0 > Wr̄) =
∫ ∞

0

∫ x

−∞
fq(y) dyf0(x) dx. (20)

Equation (17) was derived from (20) assuming the normal distribution for f0,

N (μ0, σ
2
0 ). Also, μq = F−1

w (q) and σq = 1
fw(μq)

√
q(1−q)

n
were calculated assum-

ing fw was N (μw,σ 2
w). In Fig. 3, we instead calculated (20) using f0 = B(N,p0),

fw = B(N,pw) without the normal approximation.3 The plots show that the results
obtained are not much better than those of (17) with the normal approximation.

3 Poisson approximations P(μ0) and P(μw) can also be used here for the binomial f0 and fw if a more
efficient calculation is desired. The Poisson approximation yielded very similar results to those obtained with
the binomial distribution presented here.
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(a) Attack on s-box 5; SN = 2.

(b) Attack on s-boxes 2, 5, 6, 7, 8; SN = 216.

Fig. 2. A comparison of (17) and the experimental success rates of the 6-round DES attacks tested. The
results show a considerable difference for the lower values of μ.

As another source of error, we turned to the normal approximation for the order sta-
tistics and, for a comparison, calculated the top ranking probabilities according to (19)
which does not make use of this approximation, with f0 = B(N,p0), fw = B(N,pw).
The results are shown in Table 5.

Results of (19), although somewhat better, turn out not to be much more accurate
than those of (17), with a possible error rate as high as 30%. Equation (19) was derived
without the normal approximation for the order statistics nor for the binomial distribu-
tion, the only major assumption employed being that the key counters Ti can be taken
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(a) Attack on s-box 5; SN = 2.

(b) Attack on s-boxes 2, 5, 6, 7, 8; SN = 216.

Fig. 3. A comparison of (20) and the experimental success rates of the DES attacks tested. The binomial
distribution does not provide any significant improvements over the normal approximation. The step-like
behavior of (20) is due to the discrete nature of the binomial distribution used for F0 and Fw .

to be independent. Hence, it appears that neglecting the dependence of the counters in
DC is causing a non-negligible error in the success probability calculation.

This analysis shows that the dependence among the key counters is the principal
source of the error observed in this section. As mentioned earlier, each plaintext-
ciphertext pair suggests a certain number of keys in DC, and hence the key counters
are inherently correlated. The results demonstrate that treating these counters indepen-
dently can be a significant source of error in success probability calculations.
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Table 5. P(rank(k0) = 1) according to (17), (20), (19), and the experimental results.

μ (17) (20) (19) Exp.

1 0.336 0.318 0.314 0.228
2 0.466 0.476 0.422 0.291
4 0.653 0.657 0.613 0.408
8 0.858 0.826 0.847 0.643

16 0.979 0.991 0.981 0.878
32 0.999 0.999 0.999 0.988
64 1.000 1.000 1.000 1.000

(a) SN = 2

μ (17) (20) (19) Exp.

1 0.836 0.644 0.602 0.449
2 0.918 0.873 0.769 0.588
4 0.976 0.915 0.925 0.800
6 0.992 0.985 0.985 0.899
8 0.997 0.998 0.998 0.952

12 0.999 0.999 0.999 0.990
16 1.000 1.000 1.000 0.998

(b) SN = 216

Note that assuming the key counters to be independent random variables is a very
fundamental assumption for any general analysis of the success probability and, there-
fore, these results point out what appears to be a fundamental limitation of analytical
success probability calculations for DC.

On the positive side, the equations derived in this section—(17), as well as (18), (19),
and (20)—can be used reliably as long as the success probability of interest is 99% or
higher. The equations can be useful for the lower values of the success probability as
well, where they can be used to obtain rough estimates for PS or N .

4. Conclusions

In this paper, we gave a formal probabilistic model of success in linear and differential
cryptanalysis. We also provided efficient formulations that can be used to estimate the
success probability of a given attack or to find its plaintext requirement to achieve a
certain success level.

Experimental results show that the formulas developed for LC are quite precise, es-
pecially when a success probability of 90% or higher is of interest. The formulas appear
to be less accurate for DC. The fact that the key counters are inherently correlated con-
stitutes a fundamental difficulty for a simple and general formulation. Nevertheless,
the equations derived neglecting this correlation turn out to provide reasonably accu-
rate estimates for the higher values of the success probability. For the lower values, the
equations can still be useful to obtain a rough estimate for the success probability or for
the plaintext requirement.

It must be noted that, in the analysis for LC, it was assumed that the linear approxi-
mation would have a negligible bias for a wrong key. This assumption may not be true
for some ciphers (e.g., for RC5 [14]), in which case the results obtained for the success
probability here must be seen as an upper bound rather than an exact estimate, since
having a zero bias for the wrong keys constitutes the ideal case for the attacker. On a
separate note, our notion of “advantage” does not include the one bit of key information
derived in a linear attack from the exclusive-or of the key bits on the right-hand side
of the linear approximation. Counting that bit of information—if the bits included in
the exclusive-or are not all included among the key bits derived—the advantage of the
attack can be seen as a + 1.

There are several significant open problems in analyzing the success probability of
cryptanalytic attacks. Finding a more accurate formulation of the success probability in
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DC than those discussed in this paper would be a significant contribution. Success prob-
ability of different kinds of attacks such as differential-linear cryptanalysis [6], linear
cryptanalysis with multiple approximations [4,9], boomerang attacks [17], or attacks
with impossible differentials [2,3] can also be analyzed. On a more general theme, in
this paper we discussed the success probability of a simple ranking attack, where the
key portion attacked is attacked as a single part using a single ranking procedure. An-
alyzing the success probability of compound ranking attacks, where parts of the key
are derived in separate attacks and then combined (e.g., Matsui’s attack on the 16-round
DES [12]), would be an important contribution. In particular, the success probability can
be studied according to the optimal key ranking procedure of Junod and Vaudenay [8]
for combining independently attacked key bits using a Neyman-Pearson approach.
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Appendix The Folded Normal Distribution

When a normal random variable is taken without its algebraic sign, the negative side
of the probability density function becomes geometrically folded onto the positive side.
That is, if X has a normal distribution N (μ,σ 2) with density function

fX(x) = 1

σ
√

2π
e
− (x−μ)2

2σ2 , −∞ < x < ∞,

then Y = |X| has the density function

fY (y) = 1

σ
√

2π

(

e
− (y−μ)2

2σ2 + e
− (y+μ)2

2σ2

)

, y ≥ 0.

The distribution of Y is called a folded normal distribution [10], which we denote by
FN (μ,σ 2). The mean and variance of Y are,

E(Y) = μ(1 − 2�(−μ/σ)) + 2σφ(μ/σ),

Var(Y ) = μ2 + σ 2 − E(Y)2.
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