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1. Introduction

In the study of complexity theory, a fundamental problem -- normally referred to as a com-
putational prototype — is chosen as the representative of a class of related problems. Establishing a
lower bound on some significant performance parameter of a computational prototype has always
been a difficult task. but once it is accomplished, the same bound for the rest of the problems in the
class is established by means of problem transformation. Employment of a computational proto-
type is now classical; the most well-known examples are satisfiability in the theory of NP-

completeness [GJ] and element uniqueness in the RAM model [PS].

Recent improvements in fabrication technology have made VLSI an attractive computation
environment. The new challenge is the exploitation of the properties of VLSI to build efficient and
effective computational structures. In the VLSI model of computation as formulated by
[T.BK.AA] the fundamental complexity measures are A, the area of the VLSI chip, and T. its com-
putation time. VLSI computation theory addresses the problem of using these two resources in an
optimal (or efficient) manner. In order to establish criteria of optimality, research is often directed
at proving lower bounds on area, time, or various functions that capture an area-lime tradeoff, e.g..
AT?  Standard techniques exist for proving lower bounds on T and AT2: they are based on
bounded fan-in arguments (in the case of T) and on information flow arguments (in the case of
AT?) [T.BP]. In this paper. we will present a standard technique for proving lower bounds on A.
This technique is very similar to Thompson's bisection flow technique. Indeed, we will show that a
lower bound on the bisection flow for a particular computation immediately implies a lower bound

on the area of any chip that performs the computation (subject to appropriate input/output proto-

col constraints).

To establish a lower bound on the bisection flow for a problem II. there are two ways to
proceed. The traditional approach is 1o essentially start from scratch, without taking advantage of
previously derived lower bounds. A different approach is to utilize facts alreadv known about

another problem and show, by means of problem transformation, that II is at least as hard as this



problem. Until now, the first technique has been used almost exclusively; the second approach has

been used only in trivial situations, for example, to observe that inverting an arbitrary matrix is at
least as hard as inverting a triangular matrix. Our goal is to establish a framework in which the
second technique. that is, problem transformation, can be efﬁciémly employed. This framework

can be used to establish nontrivial lower bounds for a large class of related problems.

This paper is organized as follows. In section 2, we modif y the bisection flow technique of
Thompson to lower bound A instead of VAT. We investigate the duality of area and time in these
lower bounds and show how. under this duality. a VAT (i.e., AT?) lower bound. obtained by bisec-
tion flow arguments, implies an A lower bound. In Section 3. we develop a theory of problem
transformation in VLSI that is based on the bisection flow. A computational prototype, namely,
element uniqueness. is introduced and nontrivial lower bounds on the bisection flow f or this prob-

lem are established. Finally, in Section 4, these results are integrated to establish nontrivial AT?

and A lower bounds for a large class of problems.

2. Lower Bounds Using Bisection Flow

Thompson, in his seminal thesis [T]. proposed a now classical technique for analyzing VLSI
complexity, as follows. Consider a problem II(s). where s is the input size, and a chip Cy; with area
A that is capable of solving IT in time T. Let / be a cut that partitions Cy into a left side (L) and a
right side (R), such that each side reads (almost) half of the inputs, i.e.. s/2 — o(s) bits, as shown in
Figure 1a. The general framework is one in which two processors, Py and Pg, associated respec-
tively with L and R cooperate to solve II(s) (see Figure 1b). We denote by énls) the number of
bits that Py and Pz communicate to solve I(s). As Ullman noted [U], the history of the computa-
tion performed by Cp can be modeled with an area-time solid, as shown in Figure 2. The commun-
ication channel between P; and Py is represented by the rectangle F (indicated by the dashed line)
that transects the longer of the two area dimensions. Thus. F has sides of length T and (at most)
VA: so Ap. the area of F, is at most VAT. If ®nls) bits must flow across this channel, then

Ar = Q(dp(s)). Hence, we obtain:
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L R én(s) Pe
s/2 bits s/2 bits s/2 bits s/2 bits
a. Bisection of a chip b. A spatial two-processor system
Figure 1
VAT = Q(¢n(s)). (1)
or, equivalently,

AT? = Q(d3(s)). (2)
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Figure 2. Area-time solid with spatial bisection of inputs

Lower bounds on chip area have been obtained for a number of specific problems, e.g.,
[BK.BP.L.S.DSVT]. However, unlike AT? lower bounds. for which Thompson's thesis gives us a
standard proof technique, A lower bounds are usually proven with involved ad hoc arguments.
Until now, gerieral results on area were known only for 0/1 output functions [Y2] and for transi-

tive functions [V]. Here. we generalize both of these results and present a new methodology for

proving area lower bounds.



Again, we consider the area-time solid that models the computational history of Cp. Suppose
there is a time t, at which Cy; has read (almost) half of the inputs. i.e., s/2 — o(s) bits. Let F (indi-

cated by the dashed line) be the rectangular intersection of the plane t = t;, with the area-time solid,

as shown in Figure 3. Clearly, Af = A.

Area

Figure 3. Area-time solid with temporal bisection of inputs

This bisection also yields a two-processor system. Here. Py and Pg, associated respectively with the
beginning (0 € t S t) and end (1, < t € T) of the computation of Cp, cooperate to solve II(s) (see
Figure 4). We denote by yp(s) the number of bits that Pg and Pg communicate to solve II(s).

Because the electrical circuitry of the chip must be causal, information cannot flow backwards in

time. and so this communication is strictly one-way. from Pg to P.

@ »y @

s/2 bits s/2 bits

Figure 4. A temporal two-processor system

We can now state the following theorem relating A to Yy (s).




Theorem 1: Any chip that solves II(s) must have area satisfying

A = Q(Ypls)). (3)

Proof: As above, let us first assume that there is in fact a time t, when s/2 — o(s) bits have been

read. Then the rectangle F (see Figure 3) represents the communication channel from Pg to Pg. All

information that crosses F must be encoded in the chip’s state (i.e., stored in its memory) at time t,.

Since the storage of a bit requires some constant amount of area under any realistic assumptions,

A = Ap = Q(yp(s)).

Now, if there is no such time t,, then at some instant Q(s) bits must be read simultaneously.
This requires the existence of Q(s) input ports, which would occupy Q(s) area. Thus, A = Q(s) in

this case. But Y(s) < s/2, since Py can simply send all of its inputs to Pg. Therefore, in this case,

we also have A = Q(ypy(s)). O

The above theorem gives us a convenient relationship between the area complexity of a VLSI
chip and the one-way communication complexity of a two-processor system. However, because
Lwo-way communication complexity is the measure of interest in the proof of AT? lower bounds, it
is convenient 1o relate area to this measure also. If we denote by ¥n(s) the number of bits that Py

and Pg must communicate to solve II(s) when two-way communication is allowed, then obviously

Yn(s) € ¥p(s). Thus, we have the following corollary.

Corollary 1: Any chip that solves II(s) must have area satisfying

A = Q(Yp(s)). (4)

Although this bound may in general be quite weak, we will find it sufficiently tight for many prob-

lems.

Input/output protocol constraints are often established in VLSI computation theory. Such
constraints reflect realistic assumptions regarding the physical structure of VLSI chips and the com-
puting environments in which these chips might be used. they simplify the combinatorics involved

in the lower bound arguments, and they avoid redundant solutions. Here, we will investigate the



dual roles played by area and time in the proof of these lower bounds. In particular. we will show
how a spatial constraint on the input/output protocol, which may be used to bound ¢p(s),
corresponds to a temporal constraint, which may be used to bound Y(s). The fundamental obser-
vation here is that ¢ (¥') depends only on the distribution of input/output variables between P

and Pg (Pg and Pg), and that the class of allowed distributions is governed by the spatial (tem-

poral) input/output protocol constraints.

We begin by summarizing typical input/output protocol constraints. For the purpose of this

discussion. we will assume that the input is organized as n words, each with k bits. First, we have

spatial constraints:

(A1) Unilocal: Each input/output bit is available at only one port (but perhaps at several time

instances):

(A2) Place-determinate: Input/output data are available at a prespecified (instance-independent)

place;

(A3) Word-local: For any cut ! partitioning the chip. o(n) input (output) words enter (exit) the

chip on both sides of /;

(A4) Bit-local: For any cut ! partitioning the chip. o(k) input (output) bit positions enter (exit)

the chip on both sides of L.
Second. we have temporal constraints:

(B1) Semellective: Each input/output bit is available at only one time instance (but perhaps at

several ports);

(B2) Time-determinate: Input/output data are available at a prespecified (instance-independent)

time;

(B3) Word-serial: At any time instance, at most one input (output) word has some, but not all,

of its bits already read (written):
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(B4) Word-parallel: At any time instance, for all but at most one [, either all or none of the /th

significant bits of the input (output) words are already read (written).

When Al and A2 (B1 and B2) are the only protocol constraints extant, the protocol is said to be

non-word-local (non-word-serial).

Now, we will discuss the manner in which these constraints restrict the class of distributions
of input variables allowed in the two-processor system. Constraint Al ensures that any particular
input/output bit resides in either P; or Pg. but not both. Correspondingly, c-onstraint B1 ensures
that any particular input/output bit resides in either Pg or Pg. but not both. Constraint A2 (or B2)
ensures that, for all problem instances of a given input size, any particular input/output bit resides
always in the same processor. Constraint A3 distributes the input/output bits between P and Py

essentially by word (possibly with o(n) words fragmented across processors). Constraint B3

corresponds to A3 but is somewhat stronger. It distributes the input/output bits between Py and

Pg also by word (with o(1) words fragmented across processors). Constraint A4 distributes the
input/output bits between P, and Py essentially by their position in their respective words (possi-
bly with o(k) positions fragmented across processors). Constraint B4, similar but stronger, distri-
butes the input/output bits between Py and Pg also by bit position (with o(1) positions fragmented
across processors). Because of this correspondence (see Figure 5), any theorem lower bounding ¢
(and hence VAT) that is predicated on some combination of A1-A4 immediately yields a theorem
lower bounding ¥  (and hence A) that is predicated on a corresponding combination of B1-B4.
Hereafter, we will use the notation of the spatial two-processor system to establish lower bounds

on ¢. From the previous discussion, it is clear that the same arguments can be used to establish

lower bounds on ¢ .




spatial constraints | temporal constraints
(for VAT bounds) (for A bounds)
unilocal semellective
place-determinate time-determinate
word-local word-serial
bit-local word-parallel

Figure 5. Table summarizing correspondence between
spatial and temporal constraints

3. Transformability in VLSI

In this section, we will develop a general theory for establishing lower bounds on AT? and A.

In Section 2, it was shown that the bisection flow f ully captures both the AT? and the A measure of

complexity.

Following the notation of Preparata-Shamos [PS], consider two problems II,(s,) and II5(s5).
and assume that a two-processor system Pn,(S,) is available that solves II,(s;). Problem II,(s,) can
be solved as follows.

1)  The input to problem II,(s,) is converted into a suitable input to problem II,(s,).

2) Py, is used to solve II,(s,).

3)  The output of II(s,) is transformed into a solution to problem II,(s,). 3§

Thus, it is said that problem II,(s,) has been transformed to problem II;(s,). If steps 1 and 3
(above) can be done by transmitting ¢, ,(s,) bits between the two processors in Pp (). then II,(s,)

2.1(53)
is said to be ¢ (s2) - transformable to IT;(s,). we write: II,(s,) — II,(sy).

Proposition: If problem II,(s,) is known to require ®n,(s2) bits of information flow and I1,(s,) is

®2.1(sz)-transformable to I,(s,). then II,(s,) requires information flow of at least ¢y, (s,) — ¢, (s,)

bits in the two-processor system associated with ,(sy).




Now we need to search for a problem II(s) for which we can establish a lower bound of ¢y(s)

0(¢nls)) }
on the information flow and a transformation II(s) — II'(s"). for many related problems II'(s'). |

II(s) then serves as a computational prototype for this class of related problems. A good computa-

tional prototype for a complexity class must be a simple problem, which makes it difficult to estab- ‘
lish a lower bound on its bisection flow complexity. Indeed. this is the case for computational pro-
totypes in other models of computation (e.g.. satisfiability in the theory of N

P-completeness). In

Lhis paper, we choose element uniqueness (EU) as a computational prototype.

EU(n.h): Given n inputs (x,, ... x,). each of which is represented with h+logn-1 bits, decide if they

are all unique (h21, otherwise the problem is trivial). By convention, if they are all

unique, then the output (one bit) is 1. otherwise the output is 0.

The following framework will be used to establish a lower bound on the communication com-
plexity of any two-processor system that solves EU( n.h). Consider a decision problem II(s), where
S is the number of inputs and let Pp(s) be a two-processor system that solves II(s). Consider a
matrix My(s), called the result matrix of II(s), with all 252 possible values of inputs in Py as its
row indices and all 25/2

possible values of inputs in Py as its column indices. The (i.j)-th entry of

the matrix is the output of II(s) when its input corresponds to the values of i and j- It has been

shown by [Y1, MS]: 2
on(s) = Q[log rank (Mp(s))] (5)

In what follows, we show that ¢gy(n.h) = Q(nh) under the word-local protocol (Lemma 1)
and also under the bit-local protocol (Lemma 2). The two results will be combined in Theorem 2 to

show the same lower bound for EU under the non-word-local protocol. Consider the input data

organized as an array, with each word constituting a row and with the bit positions aligned as

columns. We begin by partitioning the input array as X = [M,D], where M (the matching part) and

D (the data) are blocks of logn-1 and h columns:
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X;: m; d;

logn-1 bits h bits

The bits of M will be used to enforce an appropriate matching of the input words, which will be
specified later. Subsequently, we will be concerned only with the information flow induced by D,

and all bisection arguments will be based on the bits of D.

Lemma 1: Under the word-local protocol assumption (A3), deu(n.h) = Q(nh).

Proof: The proof is based on a restriction of element uniqueness 10 pair-wise element uniqueness.

Without loss of generality, we assume that d; enters P for 0 i < n/2 and it enters Py for

n/2 i< n We will prove a lower bound on the flow by considering the restricted class of input

assignments such that:

m; =i for0<ic< % and
m,=i—;.f0r;<i<n.

In essence, we have partitioned the inputs into n/2 pairs, where each pair contains d; and di4n/2 for
0 € i < n/2. The two members of each pair are in a different processor (one in Py, the other in Pg).
Thus, the elements are not unique (output = 0) if d, = di4n/2 for any 0 < i < n/2. It can be shown

by a generalization of the argument in [MS] that the result matrix has full rank (2°*2), and thus

the flow has a bound of Q(nh)[GLTWZ]. O

Under the word-local assumption, each bit of a given input word enters the same processor

(Py or Pg). Now., we consider the "opposite case.” where half of the input bit positions are assigned

to each processor.

Lemma 2: Under the bit-local protocol assumption (A4), ¢guy(n.h) = Q(nh), for h = O(logn).

Proof: The fragment of d, in P, (Py) is denoted by d,* (dR). As before, we restrict our attention to

a particular class of inputs. one that forces a pairing of a word fragment in P with one in Pg.
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We partition D into |n/H

groups of H elements each, where H = 2%/2*1_ In the jth group

(0 < j<

n/H I—l ). let:

m; =j forO<i<H,
dfisi = dfe = 1. for 0 € i < H/2. and

difivi = m(i=H/2), df,; = o (i=H/2), for H/2 € i < H.

where ; is an arbitrary permutation of {0...H/2-1} and O is an arbitrary mapping

{0....H/2—=1} = {0.....H/2—-1}:

b DR M
h/2 bits h/2 bits logn-1 bits
de: 0 0 J
de+l: 1 1 _]
diH+n/2-10 e 201
dipgens2 m(0) a(0)
dig+H-1: m(2Y4-1) o (2Me=~1) i

In this setting, the elements are not unique (output=0) if 7(i) = o (i) for 0 € i < H/2 and any j.

There are (H/2)! permutations of 7, for any j. The result matrix for any one group is the subma-

trix obtained by deleting certain rows from the matrix introduced in Lemma 1. Thus, it also has

full rank, i.e.. (H/2)\. The overall result matrix is the Kronecker product of the group matrices,

and its rank is therefore the product of the ranks of these matrices:

n/H l

I (H/2) .
1=1



12

From Equation 5, we can establish the desired bound on the flow:

ln/ H | n/H

¢ =1log [T (H2)!' = ¥ log(H/2)! =
i=1 i=1

n/H ](H/ZlogH/i!) = Q(nlogH),

and, because H = 2%2*1 ¢ = Q(nh). O

Now we will extend the results of Lemmas 1 and 2 1o the non-word-local protocol assump-

tion. In this situation, any bit of any word may enter either of the two processors.
Theorem 2: Under the non-word-local protocol assumption, ¢gy(n.h) = Q(nh), for h = O(logn).

Proof: Our strategy is to show that, for an arbitrary (but fixed) partition of the input bits, a large
portion of the input words must all be either "substantially” word-local or "substantially” bit-local.
The set of input words is partitioned into two sets, the set B of biased words and the set U of
unbiased words. Intuitively, a biased word is one with most of its bits in one processor (P or Pg),

and an unbiased word is one with almost the same number of bits in each processor. More for-

mally,

B={dldLl > %Eorldikl > 34—h}.andU={dilh < 1ab) < 3b

A i1 )
' 4

Note that B U U=DandB n U =@. We analyze the distribution of input bits in each proces-

sor according to the size of the sets B and U.

Case 1) |IBI| 2 3n/4 (thus |1UI < n/4):

We partition the biased words further into the left-biased By and the right-biased Bg. namely,

B, = {d;€B|Id}I > 3Th}.and Bg = {d;€B|Id}I > 34_h}

The total number of bits in P; are nh/2. At most n/4(3h/4) = 3nh/16 of these bits belong to the
set U, and at most n(h/4) = nh/4 of these bits belong to the set Bg. Thus, at least nh/2 - (3nh/16 +
nh/4) = nh/16 bits in P belong to the words in BL. A symmetric argument verifies that at least
nh/16 bits in Py belong to the words in Bg: thus, IBy|.IBg! 2 n/16. Consider two input words

d;€B; and d;€Bg. Clearly, d," has at least h/2 bit positions that correspond with positions in d!R.
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The remaining h/2 bits (of both d, and dy) may be set to any arbitrary value. The result matrix has

rank 2°%32 and thus ¢ = Q(nh).

Case2) IBI < 3n/4 (thus |UI > n/4):

Consider an arbitrary pairing of the elements of U and let (d,.d;) be one such pair. By the
definition of unbiased. d, must have at least h/4 bits in each processor. Each bit position in d;* (d;})

corresponds 10 a bit position in either dJL or de. We can distinguish two subcases:

Case 2a) Either h/8 positions in d; correspond to positions in df or h/8 positions in d} correspond

10 positions in d JL. These pairs are referred to as word-type.

Case 2b) In the event that (d;.d;) does not satisfy the conditions of Case 2a, then, by the pigeonhole
principle, h/8 positions in d;" correspond to positions in d* and h/8 positions in d} correspond to

positions in df. These pairs are referred to as bit-type.

Clearly. each of the n/8 pair of unbiased inputs is either word-type or bit-type. By another appli-
cation of the pigeonhole principle, either there are at least n/16 word-type pairs or there are at least

n/16 bit-type pairs. Thus, we either have a word-local setting or a bit-local setting. In either case,

from Lemmas 1 and 2. we conclude ¢ = Q(nh). O

This implies. by virtue of Equation 1, that any chip with area A that solves EU(n.€logn) in time T

satisfies AT? = Q(n?log’n) under the non-word-local assumption, and. by virtue of Equation 4,

A = Q(nlogn) under the non-word-serial assumption.

4. Applications

In this section. we demonstrate the application of the previous results to the establishment of
AT? and A lower bounds for related problems. First. however, we prove the following lemma,
which [acilitates problem transformation by allowing us to relax the unilocal (semellective)

assumption, Al (B1). Instead, we now assume A1’ (B1').

(A1') Bilocal: Each input/output bit is available at no more than two ports (but perhaps at several

time instances).
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(B1') Bilective: Each input/output bit is available at no more than two time instances (but

perhaps at several ports).

Let ¢'gy(n.h) denote the bisection flow under A1', A2. and A3. Obviously, the traditional
bisection technique fails to establish any bound on @'ev(n.h) because each input may enter both
processors (P and Py). Nevertheless, we can still obtain a lower bound on ¢'ev(n.h) by employing
a method similar to the bisection technique.

Lemma 3: ¢'gy(n.h) = Q(nh) for h = O(logn).

Proof: Consider any (convex) chip C'gy that solves EU(n,h) under A1’. A2. and A3. Let us parti-
tion the chip into four sections. by means of lines parallel to the shorter side of the minimum-area
enclosing rectangle, such that each section contains n/2 input words (recall that there are now 2n
input words: {X¢.Xg.X;,Xy.....Xq—1.X,—}). The general framework is one in which the four proces-

sors (P,.P,.P;,P,) associated with the four sections of C'gy cooperate to solve EU(n,h) (see Figure 6).

n/2 n/2 n/2 n/2

a. C'gy to solve EU(n.h)

b. a four-processor system

Figure 6

A straightforward modification of Equation 2 implies:
AT? = Q((¢'gy(n.h))?).

where ¢'gy(n.h) = max(¢';.¢'5.8'3). A lower bound on any one of the ¢'ss cannot be established
independent of the others, for it may be the case that processors to the left or right of the link asso-

ciated with @'; have access to the entire input set and thus do not need to send or receive any infor-
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mation to or from the other processors. In fact, this situation occurs when P; and P; each contain a

copy of (xg. ..., X,-,). and P> and P, each contain a copy of (x5, ..., Xt

Our strategy is to partition the four processors into two sets, P; and Py, such that each set
contains both copies of (at least) n/16 input words. These inputs can then be revealed to the other
set only by information flow through the links connecting P; and Py. Since there are a total of n/2
inputs in Py, and each input is repeated twice then there must be at least n/4 distinct inputs in P;.
The other copies of these n/4 input words are in Py. P, Py or P,. By the pigeonhole principle,
P,and P; (for some 1 € i < 4) must contain both copies of at least n/16 input words. Let
P, ={P,} U {P} and Py = {P,. P,. P,} — {P,}. We can view P,—Py as a two processor system with
a flow ¢y of Q(nh/16) bits between P, and Py (see Lemma 1). Clearly, ¢1x € ¢'; + @', + ¢'5, and

thus, ¢'Ev(ﬂ.h) = max(¢',.¢'g.¢'3) = Q(nh). O

From the discussion of section 2, it is clear that the temporal analog of Lemma 3 also holds under
assumptions B1', B2, B3. Furthermore, A3 (B3) may be replaced by A4 (B4) while maintaining the

same flow bound. (The roles of n and h are simply reversed in Lemma 3.)

Now we demonstrate the problem transformation methodology by means of two examples.
Specifically, two fundamental problems are shown 1o be at least as hard (in either the AT2 or the A
sense) as element uniqueness. We conclude with a brief catalog of related problems. together with

lower bounds on their AT? and A complexity. as obtained via problem transformation.

The first problem is a fundamental one in computational geometry, namely, closest pair.

CP(n,h): Given a set of n points p; = (a.by for 0 € i < n, where each coordinate is represented

with h+logn-1 bits. find the closest pair of points.

ofnh)

We want to show EU(n,h) = CP(n,h). Assume there is a two-processor system Pcp(n.h) that

solves CP(n,h). This system can then be used to solve EU(n,h) under the non-word-local assump-

tion (Al and A2) in the following manner.
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1)  The coordinates of each point are set as p; = (x,,0), which is a trivial transformation.

2)  Pcp is used to solve this (restricted) closest pair problem. (The chip is bisected in such a way

that each processor inputs half of the "meaningful” data, that is. x;s.)

3)  Once the closest pair of points is determined. P, sends all of its output bits (O(logn)) to Pg.
Pg then computes the distance between the two points and outputs a 0 if the distance is equal

to 0 and a 1 otherwise. It is clear that the output is 1 if and only if the elements are unique.

By Theorem 1. ¢gy(n.h) = Q(nh). Since steps 1 and 3 above require the transmission of

o(lngll)
O(logn) = o(nh) bits, EU(n,h) — CP(n.h). Theorem 3 follows immediately from the proposition.

Theorem 3: Under the non-word-local protocol assumption, ¢ep(n.h) = Q(nh) for h = O(logn).

Thus. any chip with area A that solves CP(n.€logn) in time T satisfies AT? = Q(n%log®n) under the

non-word-local assumption, and A = Q(nlogn) under the non-word-serial assumption.

Now we establish a ¢ lower bound on the problem of finding the size of the maximum clique
in an interval graph (MCIG) by showing that EU is transformable to it. This serves as an excellent

illustration of the utility of the previous results.

MCIG(n.h): Given a collection of intervals [=(l,.r;) for 1 < i < n, where l; and r; are respectively
the left and right endpoints of interval I;, we can define a graph G = (V.E), where
V={L |1 €i < n} and E={(1,])) | NIj#= ¢.1 < i,j < n}. Such a graph is called an

interval graph. Let h+logn-1 be the length of the integers used to represent the [s

and r;s, i.e.. 0 € fir;, € n2"'=1 for 1 € i € n. The problem is to find the size of the

maximum clique in this graph.

o(nh)
We want to show EU(n,h) — MCIG(n.h). Assume there is a two-processor system Pyvcig(n.h) that

solves MCIG(n,h). This system can then be used to solve EU(n.h) under the bilocal assumption

(A1, A2, and A3) in the following manner.
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1) Each interval issetas I, = (x:.x;), which is a trivial transformation due to the bilocality.
2)  Pycig is used to solve this (restricted) maximum clique problem.

3) Ignoring the least significant bit, P, and Py form the logical OR of their output bits. Py then
sends its result to Py (or vice versa), and P, outputs the NOR of its result and that of Py.
This requires exactly one bit of additional communication. It is clear that the output is 1 if

and only if the elements are unique.

By Lemma 3. ¢'gy(n.h) = Q(nh). Since steps 1 and 3 above require the transmission of one bit,

o(1)
EU(n.h) = MCIG(n,h). Theorem 4 follows immediately from the proposition.

Theorem 4: Under the word-local protocol assumption, ¢yci(n.h) = Q(nh) for k = O(logn).

Thus, any ch.ip With area A that solves MCIG(n.€logn) in time T satisfies AT? = Q(n?log?n) under

the word-local or bit-local assumption, and., A = Q(nlogn) under the word-serial or word-parallel

assumption.

Element uniqueness can be transformed to a large number of related problems. Here, we list

a few. All of these problems have AT? = Q(n’logn? and A = nlogn.

1) Visibility problem: Given a collection of vertical segments S; = (b;.1;). where b; and t; are respec-
tively the bottom and the top points of S;, for 1<i<n, find all pairs of segment that "see" each

other -- two segments §; and S; "see" each other if and only if there exist a horizontal segments that

crosses only §; and S;. Element uniqueness is o(1) transformable to this problem even if only one

such a pair is desired.

2) Interval graph problems: maximum independent set, minimum clique cover, and minimum

dominating set in interval graphs.

3) Proximity problems: all closest pairs. euclidean minimum spanning tree, Delaunay triangula-

tion, convex hull.




18

ACKNOWLEDGEMENTS

We would like to express our gratitude to Franco Preparata for his guidance during this

research. We also acknowledge many helpful and enlightening discussions with Gianfranco Bilardi,

Prasoon Tiwari, and Doug West.



19

REFERENCES

[AA] Abelson. H. and Andreae, P., "Information Transfer and Area-Time Trade-offs for VLSI Mul-

tiplication," Communications of the ACM, vol. 23, no. 1, 1980, pp- 20-22.

[BP] Bilardi. G. and Preparata. F. P., "Tessellation Techniques for Area-Time Lower Bounds with

Applications to Sorting," to appear in Algorithmica. Mar. 1986.

[BK] Brent, R. P. and Kung, H. T., "The Chip Complexity of Binary Arithmetic," Journal of the
ACM, vol. 28, 1981, pp. 521-534.

[DSVT]
Duris, P., Sykora, O., Vrt'o. L, and Thompson, C. D., "Tight Chip Area Lower Bounds for
Discrete Fourier and Walsh-Hadamard Transformations." Information Processing Letters, vol.
21, no. 5, Nov. 1985, pp. 245-247.

[GJ] Garey, M. R. and Johnson, D. S.. Computers and Intractability, W. H. Freeman and Co.. 1979.

[GLTWZ]
Gafni. E., Loui, M. C., Tiwari, P., West D. B., and Zaks, S.. "Lower Bounds on Common
Knowledge in Distributed Algorithms,” technical report ACT-50, Coordinated Science Labora-

tory, University ofvlllinois. 1984.

[L] Leighton, F. T., “Tight Bounds on the Complexity of Parallel Sorting." Proceedings of the 16th

Annual ACM Symposium on the Theory of Computing, Washington D.C., Apr. 1984, pp. 71-80.

[MS] Mehlhorn. K. and Schmidt, E. M., "Las Vegas is Better than Determinism in VLSI and Distri-

buted Computing," Proceedings of the 14th Annual ACM Symposium on the Theory of Comput-

ing, San Francisco, May 1982, pp. 330-337.
[PS] Preparata, F. P. and Shamos. M., Computational Geometry, Springer-Verlag, 1985.

[S] Siegel. A. R., "Minimum Storage Sorting Networks," JEEE Transactions on Computers, vol. C-

34, no. 4, Apr. 1985, pp. 355-361.




(T]

(U]
(V]

(y1]

[Y2]

20

Thompson. C. D., A Complexity Theory for VLSI, Ph.D. thesis, Department of Computer Sci-

ence, Carnegie-Mellon University, 1980.
Ullman, J. D., Computational Aspects of VLSI, Computer Science Press, 1983.

Vuillemin. J.. "A Combinatorial Limit to the Computing Power of VLSI Circuits." JEEE Tran-

sactions on Computers, vol. C-32, no. 3, Mar. 1983, pp. 294-300.

Yao. A. C., "Some Complexity Questions Related to Distributive Computing," Proceedings of

the 11th Annual ACM Symposium on the Theory of Computing, Atlanta, Apr. 1979, pp- 209-
213.

Yao, A. C., "The Entropic Limitations on VLSI Computations.” Proceedings of the 13th Annual

ACM Symposium on the Theory of Computing, Milwaukee, May 1981, pp. 308-311.






