
Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

On Processing Nested Queries in

Distributed Object�Oriented Database Systems

Wang�Chien Lee

Department of Computer and Information Science

The Ohio State University

Columbus� Ohio ����������� USA

wlee�cis	ohio�state	edu� FAX
 ������������

Dik Lun Lee�

Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay� Hong Kong

dlee�cis	ohio�state	edu� FAX
 ������������

Abstract
In this paper� we discuss nested query processing in a

distributed object�oriented database system� We present
three query processing strategies to exploit parallelism in
a distributed environment� Then� we review three ac�
cess methods designed for centralized systems and dis�
cuss how they can be applied to the distributed envi�
ronment� Heuristics for selecting attributes for indexing
and determining where to store the indexes are also pre�
sented� Finally� a replication strategy is proposed for the
path dictionary method�

� Introduction
Di
erent strategies supporting nested object query

processing have been discussed in the literature	 Sev�
eral techniques� including indexing� signature �le and
path dictionary� have been proposed �����������	 How�
ever� most of the work are for centralized systems� not
much attention has been devoted to distributed envi�
ronments	 In this paper� we will discuss the research is�
sues and propose query processing strategies and access
mechanisms for nested queries in a distributed object�
oriented database system �DOODS�	
The rest of this paper is organized as follows	 Section

� is an overview of the object�oriented data model and
the query processing strategies for centralized systems	
Section � addresses system issues such as the distribu�
tion of objects and object identi�ers	 Then� we discuss
the query processing strategies and indexing techniques
for DOODSs in Section � and Section �� respectively	
Section � compares various query processing strategies	
Finally� we conclude the paper with Section �	

� Query Processing for OODBSs
In object�oriented database systems� an entity is rep�

resented as an object� which consists of methods and at�
tributes	 Objects having the same set of attributes and
methods are grouped into the same class	 A class may
consist of simple attributes �e	g	� of domain integer or
string� and complex attributes with user�de�ned classes
as their domains	 Since a class C may have a complex at�
tribute with domain C�� an aggregation relationship can

�The author is on leave from the Department of Computer

and Information Science� The Ohio State University� Columbus�

OH ������

Vehicle

Id

Color

Manufacturer

Model

Integer

String

String

Lname

Fname

String

String

Person_Name

ManufacturerManufacturer

Person

Owns

SSN

Residence String

Integer

Age Integer

Name
StringName

StringLocation

Company

StringCountry

Figure �
 Aggregation hierarchy	

be established between C and C�	 Using arrows con�
necting classes to represent aggregation relationship� a
directed graph� called the aggregation hierarchy� may be
built to show the nested structure of the classes	 Figure �
is an example of an aggregation hierarchy� which con�
sists of four classes� Person� Vehicle� Person Name� and
Company	 The class Person has three simple attributes�
SSN� Residence and Age� and two complex attributes� Owns
and Name	 The domain classes of the attributes Owns and
Name are Vehicle and Person Name� respectively	 The class
Vehicle is de�ned by three simple attributes� Id� Color�
and Model� and a complex attribute Manufacturer� which
has Company as its domain	 Person Name and Company con�
sists of two and three simple attributes respectively	
Every object in an OODBS is identi�ed by an object

identi�er �OID�	 The OID of an object may be stored as
attribute values of other objects	 If an object O is refer�
enced as an attribute of object O�� O is said to be nested
in O� and O� is referred to as the parent object of O	
Thus� child objects can be forward referenced from their
parents through the OIDs stored in the parents	 Back�
ward reference from children to parents can be supported
by explicitly creating a complex attribute in the child
object referencing the parent �e	g	� create a owned�by
attribute in Vehicle with Person as its domain�� alterna�
tively� the system may implicitly maintain such inverse
attributes	 Objects are nested according to the aggrega�
tion hierarchy	 Therefore� the aggregation hierarchy may
be used as the schema of the object�oriented database	
Unlike relational databases� which use join opera�

tions to connect objects �tuples�� OODBSs use OIDs

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

embedded in complex attributes as the main mechanism
in accessing nested objects	 Navigation among objects
through the OID links is called traversal	 The naviga�
tional object access method is more e
ective than join
operations since the OIDs provide direct access to the
referenced objects while joins rely on value matchings	
However� for object classes without aggregation relation�
ships among them� join operations are necessary �e	g	� to
retrieve persons who live at the location of an automobile
company�	 Since join operations have been thoroughly
investigated for relational databases� we will focus on
queries involving nested objects	
To facilitate our discussion� we call a query involv�

ing nested objects a nested query	 We also de�ne target
classes as the classes from which objects are retrieved
and predicate classes as the classes involved in the pred�
icates of the query	 Following Orion�s query model ����
we assume that only OIDs from the target classes are
returned to the user	
Nested queries may be classi�ed based on the rela�

tive positions of the target and predicate classes on the
aggregation hierarchy

� TP
 The target class is an ancestor class of the pred�
icate classes� e	g	� Qa
�retrieve persons who own
cars made by GM�	 In this query� Person is the
target class and Company is a predicate class	 The
single�operand query discussed in ��� is a subset of
TP queries	

� PT
 The target class is a nested class of the predi�
cate classes� e	g	� Qb
�retrieve manufacturers of the
cars owned by persons at the age of ���	

� MX
 The target class is an ancestor class of some
predicate class and a nested class of some other
predicate class� e	g	� Qc
�retrieve red cars owned by
persons at the age of �� and made by Ford�	

The nested structure of an object suggests that an�
swering a nested query requires traversal along the paths
between the target class and the predicate classes	 There
may be more than one path in a nested query	 For exam�
ple� the query �to retrieve person objects with last name
Smith who own a car made by GM� involves two paths�
Person	Name and Person	Vehicle	Company	 Since di
erent
paths have to be traversed separately� a nested query
with multiple paths can be treated as a combination of
several single path nested queries	 Thus� we only discuss
single path queries in this paper	
There are three basic approaches to evaluating a

nested query
 top�down� bottom�up and mixed evalu�
ations	 The top�down approach traverses the objects
starting from an ancestor class to a nested class	 Since
the OID in a parent object leads directly to a child ob�
ject� this approach is also called a forward traversal ap�
proach	 On the other hand� the bottom�up method� also
known as backward traversal� traverses up the aggrega�
tion hierarchy	 A child object� in general� does not carry
the OID of �or an inverse reference to� its parent object	
Therefore� in order to identify the parent object�s� of
an object� we have to compare the child object�s OID
against the corresponding complex attribute in the par�
ent class	 This is similar to a relational join when we
have more than one child object to start with	 Mixed
evaluation is a combination of the top�down and bottom�
up approaches� which is often used in query optimization
as one of the alternative execution plans	

Both of the top�down and bottom�up approaches
spend a signi�cant part of the query processing cost
on accessing intermediate objects connecting two ob�
jects	 To alleviate this problem� many object access�
ing mechanisms� including indexes �������� signature �les
����� and path dictionary ���� have been proposed	 How�
ever� none of the above mechanisms have been applied
to distributed environments	 In this paper� we propose
several accessing strategies and secondary organizations
to support nested queries in distributed OODBSs	

� Related Issues for DOODBSs
��� System Con�guration
We assume that a distributed object�oriented

database system consists of a collection of sites con�
nected via a communication network	 Each site has a
host and a number of disks� which are treated as one
logical disk	 Each site is capable of data storage and
management and may participate in query processing	
The database is distributed across the sites� each of

which may issue a query and receive the result back	
Each site maintains a copy of the system directory� which
includes the global schema and system information such
as the locations and distribution of the classes� objects
and indexes on the sites	 In addition� information useful
for query optimization is kept in each site	 For example�
the work load at each host� speeds of the communication
links� and statistics such as the cardinality of the classes�
selectivity of the attributes� and access pattern of the
queries� are maintained on each site	

��� OID Formats
In a distributed environment� an object residing on

one site may reference objects on other sites through
OIDs	 Therefore� the object access mechanism must
be able to rapidly access remote objects based on the
OIDs	 Two approaches� namely� physical address and
logical naming� are typically employed for implementing
OIDs	 The physical address approach uses the object�s
physical address as the OID	 In the logical naming ap�
proach� an OID has three parts
 the site number� the
class number and the object number	 The object num�
ber is generated uniquely within a class on a site	 Given
an OID� the site number determines the storage site of
the object	 A table maintained by the object�s storage
site maps the OID�s class number and object number
into the physical address of the object	
The physical address approach is very e�cient	 How�

ever� in a distributed environment� where object migra�
tion could be very frequent� the physical address method
is problematic since it requires all references to an object
to be updated when the object migrates	 For the logi�
cal naming approach� the problem with object migration
may be resolved using forwarding addresses� periodic up�
date to object references can be performed to eliminate
long forward address chains	 Also� this method allows
us to determine the object�s class from an OID without
physically accessing the object from the disk	 Therefore�
we adopt the logical naming scheme in this paper	

��� Object Distribution
The distribution of the classes and objects among the

sites is also an important factor for query processing	
Typically� closely related classes and objects are put on
the same site	 In this paper� we consider two partitioning
methods

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

� Class Partitioning
 di
erent classes may be located
on di
erent sites	

� Object Partitioning
 within a class� objects may be
distributed on di
erent sites	

ManufacturerManufacturer

Person

Owns

SSN

Residence String

Integer

Vehicle

Id

Color

Manufacturer

Model

Integer

String

String

Lname

Fname

String

String

Person_Name

Age Integer

Name

Host 1

Host 2
Host 3

Host 4

String

String

Name

Location

Company

StringCountry

String

String

Name

Location

Company

StringCountry

Figure �
 Database Partition	

Figure � is a partition of the database described in
Fig	 �	 In this example� the classes are distributed on
di
erent sites
 Person and Person Name reside on site ��
Vehicle resides on site �� Company are stored on sites �
and � based on the values of the Country attribute �
objects with Country equal to �USA� are stored on host
�� those without are stored on host �	
In addition to class and object partitioning� a class

may be vertically partitioned to expedite the retrieval of
frequently accessed attributes	 In addition� objects on
the same site may be clustered to reduce the number of
disk accesses for retrieving nested objects	 In this paper�
we won�t consider vertical partitioning and clustering	
We assume that an object resides entirely on one site
since an object is a coherent entity and that objects of
a class on a site are randomly stored in a �le	

� Query Processing for DOODBSs

Vehicle

ManufacturerManufacturer

Person

Age = 50

Company

Name = ’GM’

Figure �
 Query Graph	

In OODBSs� a query may be represented as a sub�
graph of the aggregation hierarchy containing only the
classes speci�ed in the query	 Figure � shows the query
graph for the query �retrieve person who is at the age
of �� and owns a car made by GM�	 There are three
classes involved in the query	 Person is both the target
class and a predicate class	 Company is a predicate class	
The query graph may be decomposed into subgraphs for
evaluation on di
erent sites	
In this section� we discuss two factors which have

profound impacts on nested query processing in a dis�
tributed environment	

��� Nested Object Traversal
In a distributed system� an object and its nested ob�

jects may be stored on di
erent sites	 As a result� access
to nested objects might cross several sites� imposing ex�
tra communication cost and thus introducing a new vari�
able for query optimization	

The forward and backward traversal approaches dis�
cussed in Section � can be applied to a distributed envi�
ronment	 Since the backward traversal approach is sim�
ilar to join operations in relational database systems�
most of the query processing techniques developed for
distributed relational database systems are applicable
to distributed OODBSs	 For the forward traversal ap�
proach� the OIDs embedded in an object provide a di�
rect reference to the child objects	 The main di
erence
is that the communication cost in a distributed system
makes it especially important to have an e�cient object
traversal mechanism	

��� Parallel Processing
The concurrent execution of subplans on di
erent

sites may signi�cantly speed up the evaluation of nested
queries	 There are basically three strategies for the con�
current execution of a query plan	
����� Parallel approach
In the parallel approach� the user site �rst divides the

query into subqueries according to the classes involved	
The subqueries� consisting of predicates� are sent to the
storage sites of the classes in the subqueries	 After ex�
ecuting the subqueries� the storage sites send the OIDs
of the quali�ed objects and the OIDs and their nested
objects to the user site for further processing	 After re�
ceiving all of the OIDs� the user site performs the joins
as in a centralized environment	

Person Vehicle Company

Q1 Q2 Q3

Q1 Q2 Q3 Q3

User
Site

Site 1 Site 2 Site 3 Site 4

Name
= GMAge=50

<Company[]> <Company[]><Vehicle[],
 Company[]>

<Person[],
 Vehicle[]>

Figure �
 Parallel processing strategy	

Figure � illustrates the parallel strategy for the fol�
lowing query� Qd
�retrieve persons who are at the age of
�� and own cars made by GM�	 In the �gure� Person���
Vehicle�� and Company�� represent sets of OIDs in the re�
spective classes	 After receiving the query� the user site
decomposes the query into Q�� Q� and Q� and submits
them to the sites corresponding to Person� Vehicle and
Company for processing	 Based on Q�� site � returns the
OIDs of the persons at the age of �� and the OIDs of
their respective vehicles	 Site � returns the OIDs of all
vehicles and the OIDs of their respective manufacturers	
Meanwhile� sites � and � return the OIDs of the compa�
nies with name �GM�	 At the user site� the sets of OIDs
received from the storage sites are joined and the result
is projected on Person to produce the �nal result	
The advantage of this approach is easy of implemen�

tation	 Optimization techniques developed for relational
joins may be used at the user site for the �nal join op�
erations	 Also� access to objects on di
erent sites may
proceed in parallel	 However� the storage sites rely only
on the local predicates to restrict the result set to be
sent back to the user site� this leads to a large amount
of information passed back to the user site for the �nal
join operation	 As a result� the user site may become

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

a bottleneck because of the expensive join operations it
has to perform	
����� Pipeline approach
The pipeline approach processes a query top�down in

order to utilize the OIDs embedded in a parent object to
access the child objects stored in another site	 In general�
this will restrict the size of the result set at the child site
even when the query doesn�t have any condition speci�ed
on the child class	
The query graph is decomposed by sending it to the

storage site of the query graph�s root class� C�	 In gen�
eral� upon receiving a query graph� a site will retain
the predicates speci�ed on its local classes� record down
the names of the local classes� child classes on the query
graph� and send the rest of the graph to the storage sites
of the child classes	
Processing starts from the root class�s storage site�

where the local predicates speci�ed on the root class are
evaluated	 The embedded child OIDs needed by the next
storage site are extracted from the quali�ed objects and
passed onto the pipeline	 The sites down the pipeline
uses the OIDs received from the pipeline to directly re�
trieve the objects from their local classes for predicate
evaluation� extract the OIDs needed by the next stor�
age site from the quali�ed object and feed them on the
pipeline	 If the storage site holds a target class� it also
passes the OIDs of the quali�ed target objects to the suc�
ceeding sites	 At the end of the pipeline� the remaining
target OIDs which satis�ed the entire query are returned
to the user site	 This process is carried out in a pipeline	
Once an object has passed the local predicate evalua�
tion� the embedded OID can be extracted and passed to
the next site for further processing	 If transfering only
one or one pair of OIDs each time is too expensive� sev�
eral OIDs may be packed together to reduce the message
transmit overhead	
Further optimization in the pipeline approach can be

considered	 For instance� a site may proceed with the
local predicate evaluation without waiting for the OIDs
to arrive from the pipeline� this is pro�table if the local
predicate is known to have a very high selectivity �i	e	�
very few objects qualify the predicate�	

Person Vehicle Company

Q3
Q2

Q1

Site
User

Q1

Site 1 Site 2

Site 3

Site 4Q2 Q3

Person[]
Company[]

Person[]
Vehicle[]

Person[]

Person[]

Name
= GM

Age=50

Figure �
 Pipeline processing strategy	

We use Figure � and Qd to illustrate the pipeline
strategy	 Since query decomposition takes a small
amount of time� we assume that it is done before the
pipeline starts to simplify our description	 The pipeline
starts at site �� the storage site for Person	 It sequentially
retrieves the Person objects for evaluating the predicate
�age � ��	� The OIDs of the quali�ed Person objects
and the OIDs stored in the complex attribute Owns are
delivered to site �	 When site � receives a pair of Person

and Vehicle OIDs� it uses the Vehicle OID to directly
retrieve the Vehicle object and to project out the the
Company OID stored in its Manufacturer attribute	 The
pair of Person and Company OIDs is then transferred to
either site � or site �� depending on the site identi�er
embedded in the Company OID	 Finally� sites � and ��
using the Company OID� retrieve the Company object for
evaluating the predicate �name � GM	� If the car is in�
deed made by GM� then the Person OID is returned to
the user site	
This approach is also very easy to implement	 It

balances the workload with cooperation among di
erent
sites in the system	 The pipeline approach supports a
high degree of parallelism	 However� the path of traver�
sal is prede�ned by the query plan� which might not be
optimal	
����� Distributed approach

The distributed approach is less rigid than the paral�
lel and pipeline approaches	 It provides more options for
executing a query and thus more opportunities for op�
timization	 As in the parallel approach� the distributed
approach divides a query into subqueries based on the
classes involved	 Then it dispatches the subqueries to
the storage sites for further processing	 Instead of send�
ing the quali�ed objects back to the user site� the join
operations proceed at the local storage sites	 Unlike
the pipeline approach� which has a pre�de�ned order of
traversal� the distributed approach allows any pair of
neighboring classes to be joined in either top�down or
bottom�up fashion	 The join operations proceed until
the objects in the involved classes are all linked together	
In other words� the join operations are executed in a dis�
tributed manner	 This approach allows high degree of
parallelism	 In addition� optimization techniques such
as dynamic programming may be used to estimate the
cost for di
erent join plans and to select the least ex�
pensive one	 The site executing the �nal join operations
will return the OIDs of the quali�ed target objects to
the user site	

Person Vehicle Company

Q1 Q2 Q3

Name
= GMAge=50

Site 3

Q1 Q2 Q3 Q3

User
Site

Site 1 Site 2 Site 4

Person[], Comany[]

Person[] Person[]

Vehicle[],
Company[]

Figure �
 Distributed processing strategy	

Figure � demonstrates one way� which may not be the
best way� to execute Qd	 Like the parallel approach� the
user site dispatches subqueries Q� to site �� Q� to site ��
and Q� to both sites � and �	 Every site processes the
subqueries they received	 Since no predicates are spec�
i�ed on Vehicle� site � sends the entire set of Vehicle
OIDs and the corresponding nested Company OIDs to
site �	 Concurrently� site � retrieves the Person objects
to check if their ages are ��	 The quali�ed objects are
joined with the OIDs received from site �� and the OID
pair for Person and Company resulted from the join are de�

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

livered to sites � and �� depending on the site identi�ers
in the Company OIDs	 Finally� sites � and � concurrently
join the OID pairs received from site � to the Company
objects with name GM	 The Person OIDs are projected
from the result and returned to the user site	
Since the parallel and pipeline approaches may be

considered as special cases of the distributed approach�
the distributed approach will produce the best execution
plan� assuming that the cost of query optimization is not
overwhelming	

� Secondary Organizations for Query Pro�
cessing
In centralized OODBSs� indexes� signature �les and

path dictionaries are the major secondary organizations
for supporting nested queries	 In a distributed environ�
ment� these secondary access mechanisms will play an
even more important role since accesses across the net�
work are expensive	 In this section� we discuss several
indexing and path dictionary mechanisms to support
nested queries in distributed OODBSs

� Indexes
 Indexing techniques may be used to cre�
ate implicit reverse links from an attribute to the
ancestor objects	 The ancestor classes are called
range classes and the indexed attribute is called
the key attribute	 The index mechanisms reduce the
amount of actual traversal through the network and
the number of join operations needed	 The nested
index and the path index approaches are two exam�
ples of this technique	 However� they only support
backward traversal	

� Path dictionary
 Instead of creating links in the
backward direction� the path dictionary provides a
bi�directional highway for traversing objects of dif�
ferent classes	 Coupled with attribute indexes� the
path dictionary can greatly reduce the amount of
accesses to the database	

In the following� we use examples to illustrate the
evaluation of nested queries with support of nested in�
dex� path index and path dictionary	

��� Nested Index
For a given path� the nested index maps the values of

a nested attribute to the objects in the root class of the
path	 For example� a nested index may be created for
the path Person	Vehicle	Company to map Company	Name to
Person	 Therefore� Name is the key attribute and Person
is the range class for the index	 The following is an
example of the mapping

BMW
 Person���
GM
 Person���� Person���� Person���
Ford
 Person���� Person���

In the example� Person�i�� where i is an integer� denotes
the OID of a Person object	 A query such as Qa may be
answered by sending the query to the resident sites of
the index	 The OIDs of the quali�ed Person objects can
be returned to the user site after scanning the index	
For a query with predicates on the range class of

the index �e	g	� Qd�� traversal over the network is still
needed	 One way to answer the query is to send the
query graph to the resident site of the index for index
scanning	 The Person OIDs obtained from the scan �i	e	�

persons who own �GM� cars� will be delivered to the
Person site for further predicate evaluation	 Finally� the
quali�ed objects �who are at the age of ��� are returned	
For queries with predicates which are not the range

classes of any index� the nested index cannot prevent
traversal but it helps in reducing the amount of commu�
nication	 Consider the query� Qe
 �retrieve persons who
own red cars made by GM�	 One way to answer this
query is to use the index to �nd the OIDs of persons
who own �GM� cars and pass them to the Person site�
where the person objects are retrieved and passed to the
Vehicle site for predicate evaluation	 Finally� the OIDs
of the quali�ed persons are returned	

��� Path Index
Unlike the nested index� the path index maps the val�

ues of the nested attributes to lists of objects� each of the
objects in the list belongs to a class in the given path	
The linkages of the objects constitute the physical paths
in the database	 The range of a path index consists of
all of the classes on the path	 Thus� the scope of a path
index is broadly extended	 Assuming that a path index
is created for the path Person	Vehicle	Company� mapping
Company	Name to lists of objects corresponding to Person�
Vehicle and Company classes� the following is an example
of the mapping

BMW
 Person���	Vehicle���	Company���
GM
 Person���	Vehicle���	Company����

Person���	Vehicle���	Company����
Person���	Vehicle���	Company���

Ford
 Person���	Vehicle���	Company����
Person���	Vehicle���	Company���

The evaluation of Qa and Qd with the path index is
similar to that of the nested index	 For Qe� however�
the path index is more e�cient� because the OIDs of the
objects in the predicate classes may be obtained through
index scanning	 After scanning the index using �GM� as
the key� the OIDs of the Person objects and the Vehicle
objects corresponding to �GM� companies are sent to
the Vehicle site for predicate evaluation	 The OIDs of
the Person objects with a red car are then returned from
the Vehicle site to the user site	

��� Path Dictionary
The idea of path dictionary is to extract the path in�

formation �i	e	� the physical linkage among objects� from
the database into a secondary organization	 This is done
by storing in the path dictionary only the complex at�
tributes of the objects	 Since simple attribute values are
not stored in the path dictionary� it is much faster to
search the path dictionary than to traverse the objects
in the database	 Therefore� we can use the path dictio�
nary to reduce the number of accesses to the database�
and� in particular� to avoid accessing intermediate ob�
jects when we traverse from one class to another	 In a
distributed environment� since traversal among objects
involves passing OIDs from one node to another for per�
forming joins� the bene�ts of the path dictionary in a
distributed environment is even more signi�cant than in
a centralized system	
In the following� we use examples to illustrate how

nested queries are processed with the path dictionary	
Assume that a path dictionary is created for the path

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

Person	Vehicle	Company	 Figure � shows the information
stored in the path dictionary

Person[3]

Person[5]
Person[8] Vehicle[6]

Vehicle[3]
Company[2] GM

black

white

Person[1] Vehicle[5] Company[4]
BMWred

Person[2]

Person[6] Vehicle[2]

Vehicle[4] Company[7] Ford

blue

Figure �
 Path Dictionary Instances	

To implement the path informationamong the objects
in a �le� several organizations have been proposed� in�
cluding s�expression� multi�links and path schemes �����	
The s�expression scheme represents the path informa�
tion with subtree expressions	 Take the path dictionary
in Figure � as an example	 The linkage information
in the database can be represented in the following s�
expressions

Company����Vehicle����Person�����
Company����Vehicle����Person���	 Person����	

Vehicle�
��Person�����
Company����Vehicle����Person����	 Vehicle����Person�
���

On top of the path dictionary� indexes on arbitrary at�
tributes can be built to map attribute values to the lo�
cations of the corresponding s�expressions in the path
dictionary� thus avoiding a sequential search on the path
dictionary	 Since attribute indexes are very small com�
pared to nested indexes and path indexes� a larger num�
ber of attributed indexes can be built for the same stor�
age overhead	
To answer Qa with the path dictionary� the attribute

index on Company	Name is scanned to locate the addresses
of the s�expressions corresponding to the speci�ed key
value	 The OIDs of the quali�ed Person objects can be
obtained directly from the s�expressions	 To answer Qd�
the Company	Name and Person	Age indexes are searched
based on the predicates given in the query and the re�
sults are intersected	 The OIDs of the quali�ed Person
objects can be obtained from the s�expressions obtained
from the intersected list	 Qe is processed in the same
way as Qd	 If the attribute indexes on Person	Age and
Vehicle	Color are not available� then the path dictionary
will be the same as the path index as far as Qd and Qe

are concerned	
An important feature of the path dictionary is that

it supports PT queries	 Take Qb as an example and as�
sume Person	Age is indexed	 The attribute index for Age
is scanned to locate the addresses of the s�expressions
corresponding to the search key values	 Then� the s�
expressions are read from the path dictionary and the
OIDs of the Company objects in the s�expressions are re�
turned	

	 Issues with the Secondary Organizations
The nested index� path index and path dictionary are

originally designed for the centralized systems	 To ex�
pedite query processing in the distributed environment�
there are several issues� such as storage location� parti�
tion� replication and update of the secondary organiza�
tions� to be considered	 Possible change or extension of
the organizations are under study	

	�� Building Indexes and Path Dictionary
Two factors must be considered when we select an

attribute for indexing

� The attribute is frequently used in the predicates�
since indexes built on frequently used attributes will
bene�t many queries	

� The mapping from the key attribute to the range
classes is highly selective	 That is� a key attribute
value maps to only a few objects in the range classes	
Since predicates on indexed attributes are most
likely evaluated �rst� if the indexes produce very few
quali�ed objects in the range classes� the amount of
data transfer on the network will be greatly reduced	

Therefore� the choice of attributes for indexing should
be based on two factors
 the frequency of an attribute
being used in queries� F � and selectivities of the attribute
corresponding to the range classes� S	 F can be obtained
by analyzing the cumulative statistics of the queries	 If
we assume a uniform distribution of the objects in the
range class� Cr� on the index key values� S may be es�
timated by n�jCrj� where n is the number of distinct
values in the key attribute	 For the path index� the se�
lectivity of the index may be obtained as the average of
the selectivities of the attribute corresponding to each
of the range classes	 Thus� FS � F �S may be used as a
heuristics to choose attributes for indexing	
Another issue with building indexes is to decide the

site for the installation of the indexes	 To minimize the
amount of data transfer� a nested index should be stored
at the same site as its range class	 For the path index�
which may have multiple range classes� a site accommo�
dating one of the classes on the path has to be chosen	
Since the major concern with the index location is to
reduce the cost of future predicate evaluation involving
other classes� we want to choose a site with the following
characteristics

� the site accommodates many classes�
� those classes have many attributes frequently used
in the predicates�

� the attributes of those classes have high selectivity
corresponding to their resident classes	

The site with many classes means that� after search�
ing the index� it is more likely for one of the classes to be
involved in future predicate evaluation	 If the index is
installed at the site where many attributes are frequently
used in predicates� the cost of data transfer among the
sites may be reduced	 So are the attributes with good
selectivity	 Therefore� we feel that the secondary organi�
zations should be stored at the sites characterized above	
The heuristics we developed to choose attributes for

indexing may be modi�ed in order to be applicable to
the selection of storage site for indexes	 The selectivity
Sa of an attribute corresponding to its class C is de�
�ned as the number of objects in class C corresponding
to a speci�c attribute value	 Assuming a uniform dis�
tribution of the attribute values among its objects in C�
Sa � jCj�n� where n is the number of distinct values for
the attribute	 Therefore� the new heuristics for selecting
the installation site of a path index is as follows

FS � �m

i��

Fai �Sai
m

�

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

where ai is an attribute of the classes stored on the site
and m is the total number of attributes	
Since the path dictionary are shared by attribute in�

dexes� its storage cost is much lower than the path in�
dexes	 Therefore� it�s a
ordable to attach many at�
tribute indexes on the path dictionary	 The choice of
attributes indexing may use the same heuristics FS we
developed for indexing organizations	 Meanwhile� the
choice of storage sites for path dictionary may be de�
cided by using FS	

	�� Partition of the Indexes and Path Dic�
tionary

Data distribution introduces to the system advan�
tages such as increased reliability and availability� data
sharing� and better performance	 However� distribution
also increases the complexity in the system design and
implementation	 Since objects belonging to the same
class might be stored on di
erent sites �e	g	� Company in
our example�� the organization of the indexes becomes
complex	 We address this problem in this section	
Since our discussion concluded that a nested index

should be stored with its range class� let�s consider the
situation when the range class is distributed to more
than one site	 There are two basic approaches to build�
ing the index

� Integrated index
 Create an index mapping from
the key attributes to the whole class and choose the
site with the most objects to store the index	

� Distributed index
 Treat the split classes as inde�
pendent classes and create an index for each site
which maps the key attributes onto the objects at
the site	

The advantage of the integrated index is its simplic�
ity
 there is only one index to manage and maintain	
However� when the range class needs further process�
ing after index scanning� some of the object OIDs need
to be delivered to the other sites for evaluation	 On the
other hand� the distributed index consists of multiple in�
dependent subindexes	 The overall storage overhead is
higher than that of the integrated index	 However� dur�
ing query processing� the indexes on di
erent sites may
be scanned concurrently	 Also� no data transfer is re�
quired if further evaluation on the range class is needed	
Assume that� due to system expansion� the admin�

istrator of our example database decides to split the
Person class on site �a� including Person���� Person��� and
Person���� and site �b� including Person���� Person��� and
Person���	 In the integrated approach� the index is not
changed but rather stored either on site �a or site �b	
In the distributed approach� the mapping of the nested
index for the path is as follows	

Site �a BMW
 Person���
GM
 Person���� Person���

Site �b GM
 Person���
Ford
 Person���� Person���

Assuming that the path index is also stored with class
Person	 The mapping of the distributed path index for

the path is as follows	

Site �a BMW
 Person���	Vehicle���	Company���
GM
 Person���	Vehicle���	Company����

Person���	Vehicle���	Company���
Site �b GM
 Person���	Vehicle���	Company���

Ford
 Person���	Vehicle���	Company����
Person���	Vehicle���	Company���

Similarly� the path dictionary may be distributed on
several sites	 The distributed path dictionary on each
site will contain the path information about the objects
reachable from the objects on the site	 Figure � is an
example of the distributed path dictionary	 As shown in
the �gure� the attribute indexes built on top of the path
dictionary should be separated too	

Person[3]

Person[1]

Person[5]

Vehicle[5]

Vehicle[3]

Company[4]
BMW

red

black
Company[2] GMSite 1a

Person[2]
Person[8]

Person[6] Vehicle[2]
Vehicle[4]
Vehicle[6]

Company[7] Ford

white

blue

Company[2] GM
black

Site 1b

Figure �
 Distributed Path Dictionary Instances	

	�� Replication of the Path Dictionary
If most of the frequently used attributes are indexed

on top of the path dictionary� many queries may be an�
swered on the site where the path dictionary is stored	
Use Figure � as an example	 To answer the query �re�
trieve persons who have red BMW cars�� the query
graph may be dispatched to site �a and site �b for pro�
cessing	 On both sites� the attribute indexes for Color
of Vehicle and Name of Company are scanned to locate
their corresponding sets of Person objects	 The two sets
of Person objects corresponding to �color � red� and
�name � BMW� are intersected and returned to the
user site� where the Person objects from site �a and �b
are unioned and returned to the user	
The above query may be answered with a small num�

ber of page accesses and minimal data transfer	 How�
ever� the storage sites of the path dictionary will be con�
tended for answering queries� thus creating a bottleneck	
One way to alleviate the problem is to replicate the path
dictionary on several sites to split the work load	 An�
other advantage of replication is that a query may be
processed cooperatively by several hosts without com�
munication among them	 Let�s reconsider the red BMW
example	 Assuming that all of the sites of Person and
Company have the Person	Vehicle	Company path dictionary
and Color and Name attributes on top of the path dictio�
nary	 Figure � illustrates the query processing process	
The user site may send subquery �retrieve person who

own BMWs� to Company and send the subquery �retrieve
person who own red cars� to Person	 On these sites� the
path dictionaries may be scanned concurrently and the
OIDs of the quali�ed Person objects are returned to the
user site	 On the user site� the OIDs from Person sites
are unioned and OIDs from Company sites are unioned	
The resulting sets of OIDs are then intersected as the
answer to the users	
Even though the path dictionary may be replicated

for di
erent sites� the information on di
erent sites may

Proceedings of the Fifth International Workshop on Research Issues in Data Engineering ��

Site 3

Person Vehicle Company

Q2

User
Site

Site 1a Site 1b Site 4

Person[] Person[]Person[] Person[]

name=
BMW

Person Vehicle
color
= red

Q1

Q2

Q2 Q1 Q1

Path
Dic.

Path
Dic.

Path
Dic.

Path
Dic.

Figure �
 Query Processing with Replicated Path Dic�
tionary	

be di
erent	 Use the instances in Figure � as example	
Assuming that Company��� and Company��� are located on
site � and Company��� on site �	 The replicated path dic�
tionaries for site � and site � are shown in Figure ��	
Therefore� a path dictionary will contain the path infor�
mation about objects reachable from the local objects	

Person[1] Vehicle[5] Company[4] BMW
red

Person[2]
Person[6]

Vehicle[2]
Vehicle[4] Company[7] Ford

blue

black
Site 3

Person[3]
Person[5]
Person[8] Vehicle[6]

Vehicle[3]
Company[2] GM

black

white

Site 4

Figure ��
 Path Dictionary for Company Sites	

Similarly� the nested index and path index may be
replicated on several sites	 However� not every site is
suitable for replication in order to expedite query pro�
cessing	 The most reasonable site for the installation
of an nested index is the site where its range class re�
sides	 As discussed� if the nested index is not located on
the same site as its range class is� data transfer among
sites is necessary for queries which need further predi�
cate evaluation after index scanning	 There may exist
more than one range class for the path index	 There�
fore� the number of sites suitable for installing a path
index are more than that of the nested index	 How�
ever� the sites accommodating the classes nested in the
class of the key attribute of a path index are not good
candidates for storing the path index	 That is because
the backward reference nature of the indexing techniques
doesn�t use the nested classes as range classes	 For ex�
ample� a path index based on Vehicle	Color has Person
and Vehicle as the range classes	 Company cannot be part
of the path index	 Therefore� it is not suitable for the
path index mapping from Color to Person	Vehicle	 As a
consequence� a query such as �retrieve persons who have
red BMW� will need to traverse to the Company sites no
matter where the path index for Color is located	

 Conclusion
In this paper� we propose query processing strate�

gies and support mechanisms for nested queries in dis�
tributed object�oriented database systems	 Three query
processing strategies� namely� parallel� pipeline and dis�
tributed approaches� were developed	 Among these ap�
proaches� the distributed approach is expected to have
the best performance� and the pipeline approach� with

less communication overhead� is better than the parallel
approach	
We discussed several approaches to using indexing

organizations and path dictionary in nested query pro�
cessing	 We felt that the path dictionary is the most
suitable secondary organization for the distributed envi�
ronment	 In addition to providing e�cient support for
distributed object retrieval� it also provides support for
bi�directional traversals without causing much disk ac�
cesses and data transfer	
Another contribution of this paper is that we pro�

posed heuristics for selecting attributes to build object
access support mechanisms and for selecting sites to in�
stall these mechanisms	 Among the three organizations
we discussed� we found that the path dictionary is the
best� because of its �exibility on selecting attributes and
sites to index and low storage overhead when many in�
dexes are to be created	 Another noble characteristics
of the path dictionary organization is its ease of repli�
cation for balancing the work load of the global system	
We discussed an approach to replicate the path dictio�
nary for split classes	 A strategy for query processing
with replicated path dictionary is also given	

References
��� E	 Bertino� �An Indexing technique for object�

oriented databases�� Proceedings of the Seventh In�
ternational Conference on Data Engineering � Kobe�
Japan� ����� �������	

��� E	 Bertino� �Optimization of Queries using Nested
Indices�� Proceedings of International Conference
on Extending Database Technology � Venice� Italy�
March ����� �����	

��� E	 Bertino W	 Kim� �Indexing techniques for
queries on nested objects�� IEEE Transactions on
Knowledge and Data Engineering � Vol	 �� No	 �� June
����� �������	

��� Y	 Ishikawa� H	 Kitagawa N	 Ohbo� �Evaluation of
Signature Files as Set Access Facilities in OODBs��
Proceedings of the ���� SIGMOD Conference� Wash�
ington� DC� June ����� �������	

��� W	 Kim� �A Model of Queries for Object�Oriented
Databases�� Proceedings of the IEEE International
Conference on Very Large Data Bases� Amsterdam�
����� �������	

��� D	L	 Lee W	�C	 Lee� �Using Path Information
for Query Processing in Object�Oriented Database
Systems�� Proceedings of Conference on Information
and Knowledge Management� Washington� DC� Nov	
����� �����	

��� W	�C	 Lee D	L	 Lee� �Signature File Methods for
Indexing Object�Oriented Database Systems�� Pro�
ceedings of the �nd International Computer Science
Conference� Hong Kong� Dec	 ����� �������	

��� W	�C	 Lee D	L	 Lee� �Path dictionary
 A new
approach to query processing in object�oriented
databases�� in preparation	

