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Abstract In this paper, we consider the statistical inference of the unknown parame-
ters of the generalized exponential distribution in presence of progressive censoring.
We obtain maximum likelihood estimators of the unknown parameters using EM al-
gorithm. We also compute the expected Fisher information matrix using the missing
value principle. We then use these values to determine the optimal progressive censor-
ing plans. Different optimality criteria are considered, and selected optimal progres-
sive censoring plans are presented. One example has been provided for illustrative
purposes.
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1 Introduction

Recently, the Type-II progressively censoring scheme has received considerable in-
terest among the statisticians. It can be described as follows. Suppose that n units
are placed on a life test and the experimenter decides beforehand the quantity m, the
number of units to be failed. Now at the time of the first failure, R1 of the remain-
ing n − 1 surviving units are randomly removed from the experiment. Continuing
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on, at the time of the second failure, R2 of the remaining n − R1 − 2 units are ran-
domly withdrawn from the experiment. Finally, at the time of the mth failure, all the
remaining n − m − R1 − · · · − Rm−1(= Rm) surviving units are removed from the
experiment. Some of the earlier work on progressive censoring was conducted by
Cohen (1963), Mann (1971), and Thomas and Wilson (1972). Recently, several arti-
cles have been published on estimating the parameters of the unknown parameters for
different distribution functions, see, for example, Viveros and Balakrishnan (1994),
Balasooriya and Balakrishnan (2000), Balakrishnan et al. (2004), Balakrishnan and
Kannan (2001), etc. A recent account on progressive censoring schemes can be ob-
tained in the monograph by Balakrishnan and Aggarwala (2000) or in the excellent
review article by Balakrishnan (2007).

Although quite a bit of work has been done on the progressively censored Weibull
distribution, we have not come across any work on the progressively censored gamma
or generalized exponential (GE) distribution. It is observed (Gupta and Kundu 1999)
that the GE distribution can be used quite effectively to analyze lifetime data in place
of the Weibull or gamma distribution. The two-parameter GE distribution has the
density/hazard functions which are very similar to the density/hazard functions of
the two-parameter gamma distribution, see Gupta and Kundu (1999). Since the dis-
tribution function of the GE distribution is also in a compact form like the Weibull
distribution, it is observed that it can be used very easily when the data are censored,
unlike the gamma distribution.

In this paper, we consider the statistical inference of the GE distribution when the
data are progressively censored. We obtain likelihood equations, and it is observed
that the maximum likelihood estimators (MLEs) can not be obtained in explicit forms.
The MLEs can be obtained by solving a two-dimensional optimization problem. It is
observed that in certain cases the standard Newton–Raphson algorithm does not con-
verge. We propose to use the EM algorithm to compute the MLEs. We also calculate
the expected Fisher information matrix using the missing information principle, and
they have been used for constructing asymptotic confidence intervals.

Finding any optimal sampling scheme is an important practical problem and it has
received considerable attention in the last few years. But most of the work is related
to the progressively censored Weibull distribution. Finding an optimal censoring plan
means the choice of (R1, . . . ,Rm) for specified values of sample size n and effective
sample size m which provides the maximum information. In this paper, we consider
an optimality criterion (measure of information) based on the expected Fisher infor-
mation matrix and, using this criterion, we propose a method to choose an optimal
sampling scheme for progressively censored GE distribution. Monte Carlo simula-
tions are performed to study the behavior of the proposed methodology, and two data
sets are analyzed for illustrative purposes.

The rest of the paper is organized as follows. In Sect. 2, we provide the maximum
likelihood estimators using the EM algorithm. The observed and expected Fisher
information matrices are provided in Sect. 3. Numerical simulations and data analysis
are provided in Sect. 4. In Sect. 5, we provide a procedure to obtain the optimum
censoring scheme and, finally, we conclude the paper in Sect. 6.
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2 Maximum likelihood estimators

2.1 Model description

A random variable X is said to have two-parameter GE distribution if the probability
density function (PDF) is of the following form:

f (x|α,λ) =
{

0 if x < 0,

αλe−λx(1 − e−λx)α−1 if x ≥ 0
(1)

for α > 0 and λ > 0. Here α and λ are the shape and scale parameters, respectively.
It is known that, for α ≤ 1, the PDF is a decreasing function and, for α > 1, it is a
unimodal function. Shapes of the different PDF of GE distributions can be found in
Gupta and Kundu (1999). For some recent developments of the GE distribution, the
readers may look at the review article by Gupta and Kundu (2007).

2.2 Maximum likelihood estimators

Suppose that n independent items are put on a test and that the lifetime distribution of
each item is given by (1). The ordered m-failures are observed under the type-II pro-
gressively censoring plan (R1, . . . ,Rm), where each Ri ≥ 0 and

∑m
j=1 Rj + m = n.

If the ordered m failures are denoted by x(1) < · · · < x(m), then the likelihood function
based on the observed sample x(1) < · · · < x(m) is

l(α,λ) = c

m∏
i=1

f (x(i)|α,λ)
[
1 − F(x(i)|α,λ)

]Ri , (2)

where c = n(n − 1 − R1) · · · (n − R1 − · · · − Rm−1 − m + 1) and F(x|α,λ) = (1 −
e−λx)α , the distribution function corresponding to the density function (1).

The MLEs of α and λ can be obtained by solving two nonlinear normal equations,
whose explicit solutions cannot be obtained. They have to be obtained by solving
a two-dimensional optimization problem. It is observed that the standard Newton–
Raphson algorithm does not converge in certain cases. We propose to use the EM
algorithm to compute the MLEs of α and λ as suggested by Dempster et al. (1977)
which involves solving two one-dimensional optimization problems rather than one
two-dimensional problem.

The progressive right censoring model problem can be viewed as an incomplete
data problem, see, for example, Ng et al. (2002). First, let us denote the observed and
censored data by X = (X(1), . . . ,X(m)) and Z = (Z1, . . . ,Zm), respectively, where
each Zj is 1 × Rj vector with Zj = (Zj1, . . . ,ZjRj

) for j = 1, . . . ,m, and they
are not observable. The censored data vector Z can be thought of as missing data.
The combination of (X,Z) = W forms the complete data set. If we denote the log-
likelihood function of the uncensored data set by Lc(W ;α,λ), then, ignoring the
additive constant, we have

Lc(W ;α,λ) = n lnα + n lnλ − λ

m∑
i=1

x(i) + (α − 1)

m∑
i=1

ln
(
1 − e−λx(i)

)
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− λ

m∑
j=1

Rj∑
k=1

zjk + (α − 1)

m∑
j=1

Rj∑
k=1

ln
(
1 − e−λzjk

)
. (3)

For the E-step, one needs to compute the pseudo log-likelihood function. It can
be obtained from Lc(W ;α,λ) by replacing any function of zjk , say g(zjk), with
E{g(Zjk)|Zjk > x(j)}. Therefore, the pseudo log-likelihood function becomes

n lnα + n lnλ − λ

m∑
i=1

x(i) + (α − 1)

m∑
i=1

ln
(
1 − e−λx(i)

)

− λ

m∑
j=1

Rj∑
k=1

E(Zjk|Zjk > x(j))

+ (α − 1)

m∑
j=1

Rj∑
k=1

E
[
ln

(
1 − e−λZjk

)|Zjk > x(j)

]
. (4)

It can be seen that (see the Appendix)

A(c,α,λ) = E(Zjk|Zjk > c) = − α

λ(1 − F(a|α,λ))
× u(c,α,λ), (5)

where

u(c,α,λ) =
∫ e−cλ

0
lny(1 − y)α−1 dy

and

B(c,α,λ) = E
[
ln

(
1 − e−λZjk

)∣∣Zjk > c
]

= 1

α(1 − (1 − e−cλ)α)
× {(

1 − e−cλ
)α(

1 − ln
(
1 − e−cλ

)α) − 1
}
. (6)

Now the M-step involves the maximization of the pseudo log-likelihood function (4),
replacing the corresponding values of (5) and (6) in (4). Therefore, if at the kth stage,
the estimate of (α,λ) is (α(k), λ(k)), then (α(k+1), λ(k+1)) can be obtained by maxi-
mizing

L∗
c (W ;α,λ) = n lnα + n lnλ − λ

m∑
i=1

x(i) + (α − 1)

m∑
i=1

ln
(
1 − e−λx(i)

)

− λ

m∑
j=1

RjA
(
x(j), α

(k), λ(k)
)

+ (α − 1)

m∑
j=1

RjB
(
x(j), α

(k), λ(k)
)

(7)
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with respect to α and λ. Note that the maximization of (7) can be obtained quite
effectively by the similar method proposed by Gupta and Kundu (2001). First, find
λ(k+1) by solving a fixed-point type equation

h(λ) = λ, (8)

where the function h(λ) is defined by

h(λ) =
[

1

n

m∑
j=1

x(j) + 1

n
Ã − 1

n

(̂
α(λ) − 1

) m∑
j=1

x(j)e
−λx(j)

1 − e−λx(j)

]−1

with

Ã =
m∑

j=1

RjA
(
x(j), α

(k), λ(k)
)
, B̃ =

m∑
j=1

RjB
(
x(j), α

(k), λ(k)
)
,

α̂(λ) = − n∑m
j=1 ln(1 − e−λx(j) ) + B̃

.

Once λ(k+1) is obtained, α(k+1) is obtained as α(k+1) = α̂(λ(k+1)). Therefore, we can
use the following algorithm to proceed from the kth iterate to (k + 1)th iterate.
Algorithm

Step 1: Maximize (7) using (8), i.e., continue the process until it converges. At the
(k + 1)th stage, the value of λ that maximizes (7) is λ(k+1).

Step 2: Assign

α(k+1) = − n∑m
j=1 ln(1 − e−λ(k+1)x(j) ) + B̃

·

Step 3: Check the convergence of (α(k+1), λ(k+1)) If the convergence is met, stop the
iteration, otherwise go back to Step 1.

3 Fisher information matrix

In this section, we compute the observed and expected Fisher information matri-
ces using the idea of missing information principle of Louis (1982); see also Tanner
(1993). The observed Fisher information matrix can be used to construct the asymp-
totic confidence intervals, whereas the expected Fisher information matrix will be
used for constructing optimal censoring plans.

3.1 Observed information matrix

In this subsection, we compute the observed Fisher information matrix, given the
observations {x(1), . . . , x(m)} and R1, . . . ,Rm. The idea of the missing information
principle of Louis (1982) can be expressed as follows:

Observed information = Complete information − Missing information.
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In our case, if we denote θ = (α,λ), X = the observed data, W = the complete
data, IW (θ) = the complete information, IX(θ) = the observed information, and
IW |X(θ) = the missing information, then they can be expressed as follows:

IX(θ) = IW (θ) − IW |X(θ). (9)

The complete information IW (θ) is given by

IW (θ) = −E

[
∂2Lc(W ; θ)

∂θ2

]
.

The Fisher information in one observation, which is censored at the time of the j th
failure time x(j), can be computed as

I
(j)
W |X(θ) = −EZj |X(j)

[
∂2 lnfZj

(zj |x(j), θ)

∂θ2

]
.

Therefore, the expected information for conditional distribution of W given X (the
missing information) is

IW |X(θ) =
m∑

j=1

RjI
(j)
W |X(θ).

So the observed information can be obtained from (9). The asymptotic variance co-
variance matrix of θ̂ = (̂α, λ̂) can be obtained by inverting IX(θ̂).

Both the matrices IW (θ) and IW |X(θ) are of order 2 × 2. Now, we present all
the elements of both matrices. The 2 × 2 matrix IW (θ) for complete data is already
available, see Gupta and Kundu (2001). For convenience, we present it below. If we
denote the (i, j)th element of the matrix IW (θ) by aij (α,λ), then they are as follows:

a11 = n

α2
,

a12 = a21 = −n

λ

[
α

α − 1

(
ψ(α) − ψ(1)

) − (
ψ(α + 1) − ψ(1)

)]
if α > 2,

= −nα

λ

∫ ∞

0
xe−2x

(
1 − e−x

)α−2
dx if 0 < α ≤ 2,

a22 = n

λ2

[
1 + α(α − 1)

α − 2

(
ψ ′(1) − ψ ′(α − 1) + (

ψ(α − 1) − ψ(1)
)2)]

+ nα

λ2

[(
ψ ′(1) − ψ(α)

) + (
ψ(α) − ψ(1)

)2] if α > 2,

= n

λ2
+ nα(α − 1)

λ2

∫ ∞

0
x2e−2x

(
1 − e−x

)α−3
dx if 0 < α ≤ 2.

Here ψ and ψ ′ are the digamma and trigamma functions, see, for example,
Abramowitz and Stegun (1964).
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Now we present I
(j)
W |X(θ). If

I
(j)
W |X(θ) =

[
b11(x(j);α,λ) b12(x(j);α,λ)

b21(x(j);α,λ) b22(x(j);α,λ)

]
,

then

b11(x(j);α,λ) = 1

α2
− [

ln
(
1 − e−λx(j)

)]2 (1 − e−λx(j) )α

(1 − (1 − e−λx(j) )α)2
,

b22(x(j);α,λ) = 1

λ2
+ (α − 1)h1(x(j);α,λ)

− αx2
(j)e

−λx(j) (1 − e−λx(j) )α−2

(1 − (1 − e−λx(j) )α)2
× [

αe−λx(j) − 1 + (
1 − e−λx(j)

)α]

b12(x(j);α,λ) = −h2(x(j);α,λ) + x(j)e
−λx(j) (1 − e−λx(j) )α−1

(1 − (1 − e−λx(j) )α)2

× [
1 + α ln

(
1 − e−λx(j)

) − (
1 − e−λx(j)

)α]
,

where

h1(x(j);α,λ) = 1

λ2(1 − (1 − e−λx(j) )α)

×
∫ 1

(1−e
−λx(j) )α

(
ln

(
1 − u1/α

))2(1 − u1/α
)
u−2/α du and

h2(x(j);α,λ) = 1

λ(1 − (1 − e−λx(j) )α)

×
∫ 1

(1−e
−λx(j) )α

(− ln
(
1 − u1/α

))(
1 − u1/α

)
u−1/α du.

3.2 Expected Fisher information matrix

In this subsection, we provide the expected Fisher information matrix for the pro-
gressively censored data. For this, we need the following. The probability density
function of X(j) for j = 1, . . . ,m is

fX(j)
(x) = cj−1

j∑
i=1

ai,j

(
1 − (

1 − e−λx
)α)ri−1

αλe−λx
(
1 − e−λx

)α−1 (10)

for x > 0 and 0 otherwise, where

rj = m − j + 1 +
m∑

i=j

Ri, cj−1 =
j∏

i=1

ri for j = 1, . . . ,m
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and

a11 = 1, ai,j =
j∏

k=1,k �=i

1

rk − ri
for 1 ≤ i ≤ j ≤ m.

See, for example, Balakrishnan and Aggarwala (2000), p. 26.
Based on (10), the expected Fisher information matrix can be obtained. If we

denote the 2 × 2 matrix E by

E =
[

E11 E12

E21 E22

]
= −E

⎡
⎣ ∂2 ln l(α,λ)

∂α2
∂2 ln l(α,λ)

∂α∂λ

∂2 ln l(α,λ)
∂λ∂α

∂2 ln l(α,λ)

∂λ2

⎤
⎦ ,

then

E11 = 1

α2

[
m +

m∑
j=1

Rjh1j (α,λ)

]
,

E22 = 1

λ2

[
m + α(α − 1)

m∑
j=1

h2j (α,λ) + α2
m∑

j=1

h3j (α,λ)

]
,

E12 = E21 = −α

λ

[
m∑

j=1

h4j (α,λ) −
m∑

j=1

Rjh5j (α,λ) − α

m∑
j=1

Rjh6j (α,λ)

]
,

where

h1j (α,λ) = cj−1

j∑
i=1

ai,j

∫ 1

0
u(lnu)2(1 − u)ri−3 du,

h2j (α,λ) = cj−1

j∑
i=1

ai,j

∫ 1

0
uα−3(1 − uα

)ri−1
(1 − u)

(
ln(1 − u)

)2
du,

h3j (α,λ) = cj−1

j∑
i=1

ai,j

∫ 1

0
u2α−3(1 − uα

)ri−3
(1 − u)

(
ln(1 − u)

)2

× (
αu − uα − α + 1

)
du,

h4j (α,λ) = cj−1

j∑
i=1

ai,j

∫ 1

0
uα−2(1 − uα

)ri−3
(1 − u)

(− ln(1 − u)
)
du,

h5j (α,λ) = cj−1

j∑
i=1

ai,j

∫ 1

0
u2α−2(1 − uα

)ri−2
(1 − u)

(− ln(1 − u)
)
du,

h5j (α,λ) = cj−1

j∑
i=1

ai,j

∫ 1

0
u2α−2(1 − uα

)ri−3
(1 − u)

(− ln(1 − u)
)

lnudu.
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Therefore, the asymptotic variance covariance matrix of the MLEs of (α,λ) becomes

V =
[

V11 V12
V21 V22

]
= E−1.

4 Numerical experiments and data analysis

4.1 Experimental results

In this subsection, we present some experimental results to observe how the MLEs
perform for different sampling schemes and for different sample sizes. All the com-
putations are performed at the Indian Statistical Institute Kolkata. We have taken
n = 20, 25, 30, m = 10 and 15, and eleven ([1]–[11]) different sampling schemes. In
all cases, we have used λ = 1.0 and we have taken α = 1.5 and α = 0.75. For particular
n, m, and a sampling scheme, we have used the method proposed by Balakrishnan
and Sandhu (1995) to generate progressively censored generalized exponential sam-
ples. In each case, we have calculated the MLEs using the EM algorithm and also the
asymptotic confidence intervals of α and λ based on the Fisher information matrix.
We replicate the process 10000 times and compute the average biases and standard
deviations of the different estimates.

Note that the sampling schemes [1], [3], [6], [8], [10] are the usual Type-II censor-
ing scheme, i.e., n−m items are removed at the time of the mth failure. The sampling
schemes [2], [4], [7], [9], [11] are just the opposite of the Type-II sampling schemes,
i.e., n−m items are removed at the time of the first failure. In this paper, we will refer
this censoring scheme as Type-III censoring scheme. It is well known that, for fixed n

and m, the expected experimental time of the Type-II censoring schemes is less than
that of the corresponding Type-III schemes. In fact, the expected time of any other
censoring scheme, for fixed n and m, will be always between these two extremes.
For illustrative purpose, we have taken one arbitrary censoring scheme, scheme [5],
whose expected experimental time is between the schemes [3] and [4].

For different sampling schemes, we use the notation of Ng et al. (2004). For ex-
ample, when n = 25 and m = 10, the scheme (5, 5, 5, 7*0) means that, after the first
failure, from the remaining 24 items 5 items are removed at random, after the second
failure, from the remaining 18 items 5 items are removed at random, similarly, after
the third failure, from the remaining 12 items 5 items are removed at random, and we
observe the next seven failure times. The results are reported in Tables 1–4.

Some of the points are quite clear from Tables 1 and 2. For example, in all the
cases considered, the average biases and the standard deviations of the MLEs of α

and λ are smallest for Type-III schemes and largest for Type-II schemes. For other
censoring schemes, the average biases and the standard deviations are between these
two extremes. It is also observed that, for fixed m, as n increases, the average biases
and the standard deviations decrease. Moreover, for fixed n, as m increases, the same
phenomena are observed. Therefore, it is clear that, as the sample size increases or the
effective sample size increases, the performances of the MLEs in terms of biases and
standard deviations become better. When the effective sample size is 15, then, in most
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Table 1 The average biases (AB), the standard deviations (SD), 95% coverage percentages (CP-95),
and 90% coverage percentages (CP-90) for MLE of α when α = 1.5 are presented for different sample
sizes and different sampling schemes

n m Scheme No. AB SD CP-95 CP-90

20 10 (9*0, 10) [1] −0.1537 0.3024 92.3 88.2

20 10 (10, 9*0) [2] −0.1382 0.2737 95.2 89.7

25 10 (9*0, 15) [3] −0.2599 0.2832 93.8 88.7

25 10 (15, 9*0) [4] −0.2303 0.2610 94.1 90.5

25 10 (5, 5, 5, 7*0) [5] −0.2493 0.2730 94.2 91.8

25 15 (14*0, 10) [6] −0.0980 0.2156 96.8 91.2

25 15 (10, 14*0) [7] −0.0902 0.2025 97.1 92.5

30 10 (9*0, 20) [8] −0.3384 0.2730 93.5 87.2

30 10 (20, 9*0) [9] −0.2840 0.2388 94.2 87.8

30 15 (14*0, 15) [10] −0.1880 0.2309 97.0 92.5

30 15 (15, 14*0) [11] −0.1760 0.2127 96.2 91.5

Table 2 The average biases (AB), the standard deviations (SD), 95% coverage percentages (CP-95), and
90% coverage percentages (CP-90) for MLE of λ when α = 1.5 are presented for different sample sizes
and different sampling schemes

n m Scheme No. AB SD CP-95 CP-90

20 10 (9*0, 10) [1] 0.1509 0.2786 91.2 85.6

20 10 (10, 9*0) [2] −0.1400 0.2537 92.3 87.8

25 10 (9*0, 15) [3] −0.2410 0.2240 93.8 88.7

25 10 (15, 9*0) [4] −0.2128 0.2128 92.5 89.2

25 10 (5, 5, 5, 7*0) [5] −0.2202 0.2172 93.6 89.5

25 15 (14*0, 10) [6] −0.0997 0.2693 92.7 88.1

25 15 (10, 14*0) [7] −0.0342 0.2156 94.2 89.6

30 10 (9*0, 20) [8] −0.3150 0.2130 92.5 86.5

30 10 (20, 9*0) [9] −0.2649 0.1799 93.2 87.8

30 15 (14*0, 15) [10] −0.1486 0.2072 95.0 91.0

30 15 (15, 14*0) [11] −0.1054 0.1510 96.2 90.5

of the cases, the coverage percentages are very close to the corresponding nominal
levels. Therefore, the asymptotic results can be used for all practical purposes.

One of the referees raised a valid point that why an EM algorithm should be used
rather than the traditional Newton–Raphson method. It may be mentioned that to em-
ploy the Newton–Raphson method, one needs to compute the second derivatives of
the log-likelihood function. Sometimes, like in the present situation, calculation of
the second derivatives based on progressive censored data are quite complicated. In
such a scenario, the EM algorithm is a very useful technique. Moreover, as Little and
Rubin (1983) correctly mentioned, the EM algorithm will converge rather slowly but
more reliably (as compared to the Newton–Raphson method) when the amount of
information in the missing data is relatively large. We present a small comparison be-
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Table 3 The average biases (AB), the standard deviations (SD), 95% coverage percentages (CP-95), and
90% coverage percentages (CP-90) for MLE of α when α = 0.75 are presented for different sample sizes
and different sampling schemes

n m Scheme No. AB SD CP-95 CP-90

20 10 (9*0, 10) [1] 0.2090 0.2445 91.6 88.9

20 10 (10, 9*0) [2] 0.1467 0.2207 94.9 90.2

25 10 (9*0, 15) [3] 0.2036 0.1853 92.8 85.8

25 10 (15, 9*0) [4] 0.1421 0.1719 92.6 88.2

25 10 (5, 5, 5, 7*0) [5] 0.1470 0.1792 94.5 90.5

25 15 (14*0, 10) [6] 0.1334 0.2342 93.2 89.7

25 15 (10, 14*0) [7] 0.1271 0.2107 96.2 92.5

30 10 (9*0, 20) [8] 0.2058 0.1634 92.2 87.6

30 10 (20, 9*0) [9] 0.1390 0.1316 92.8 89.2

30 15 (14*0, 15) [10] 0.1627 0.1449 95.8 89.8

30 15 (15, 14*0) [11] 0.1208 0.1126 96.8 91.3

Table 4 The average biases (AB), the standard deviations (SD), 95% coverage percentages (CP-95), and
90% coverage percentages (CP-90) for MLE of λ when α = 0.75 are presented for different sample sizes
and different sampling schemes

n m Scheme No. AB SD CP-95 CP-90

20 10 (9*0, 10) [1] 0.6104 0.7852 90.5 84.9

20 10 (10, 9*0) [2] 0.4448 0.6281 91.8 85.2

25 10 (9*0, 15) [3] 0.7190 0.7551 88.1 84.9

25 10 (15, 9*0) [4] 0.5250 0.6128 88.8 83.2

25 10 (5, 5, 5, 7*0) [5] 0.5541 0.6888 90.2 86.8

25 15 (14*0, 10) [6] 0.3931 0.5426 90.2 86.2

25 15 (10, 14*0) [7] 0.3138 0.4379 92.8 88.0

30 10 (9*0, 20) [8] 0.8248 0.7312 91.2 86.6

30 10 (20, 9*0) [9] 0.5886 0.6013 92.5 88.5

30 15 (14*0, 15) [10] 0.4795 0.5498 93.7 89.1

30 15 (15, 14*0) [11] 0.3680 0.4482 94.5 90.5

tween the EM algorithm and the Newton–Raphson method in the following Table 5.
In Table 5, we present the number of times (out of 1000) the Newton–Raphson algo-
rithm converges (NTC). In all the cases, the EM algorithm has always converged. It
clearly shows the advantage of using the EM algorithm.

4.2 Data analysis

In this subsection, we provide a data analysis for illustrative purposes. The data have
been taken from Lawless (1982, p. 491), and it represents the failure or censoring
times of 36 appliances subjected to an automatic life test. The data given below con-
sist of only the failure times: 11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594,
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Table 5 The number of times (NTC) the Newton–Raphson algorithm converges out of 1000 replications
for different censoring schemes and different sets of parameters

n m Scheme α λ NTC

20 10 (10, 9*0) 1.5 1.0 921

20 10 (10, 9*0) 0.75 1.0 944

25 15 (10, 14*0) 1.5 1.0 957

25 15 (10, 14*0) 0.75 1.0 971

1925, 1990, 2223, 2327, 2400, 2451, 2471, 2551, 2565, 2568, 2694, 2702, 2761,
2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 6367, 6976, 7846, 13403.

Before progressing further, we have first fitted the GE distribution to the complete
data set, and it is observed that α̂ = 0.96001 and λ̂ = 0.00035. The Kolmogorov–
Smirnov distance is 0.202, and the corresponding p value is 0.11. Therefore, the GE
distribution provides a reasonable fit. Moreover, we have tested the following hypoth-
esis: H0 : Data follow exponential, vs. H1 : Data follow GE. The −2 ln(L0 − L1) =
7.013, and it implies that H0 is rejected with the level of significance less than 0.001.

We have generated progressively censored samples using three different sampling
schemes, from the above data with m = 12, as follows:

Censoring Scheme 1: (15, 5, 4, 9*0). We obtain the following progressively censored
sample: 11, 35, 49, 329, 1062, 1167, 1594, 1990, 2451, 2471,2551, 3059.

Censoring Scheme 2: (11*0, 24). We obtain the following progressively censored
sample: 11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925.

Censoring Scheme 3: (24, 11*0). We obtain the following progressively censored
sample: 11, 35, 49, 329, 381, 958, 1062, 1594, 1925, 2223, 2451, 2471.

In all the three cases, we have used the EM algorithm to compute the MLEs.
The MLEs of (α,λ) for Scheme-1, Scheme-2, and Scheme-3 are (0.89532, 0.00074),
(0.79080, 0.00020), and (0.88723, 0.00093), respectively. The corresponding
variance-covariance matrices are

[
6.217 × 10−2 4.143 × 10−5

4.143 × 10−5 7.767 × 10−8

]
,

[
9.338 × 10−2 4.356 × 10−5

4.356 × 10−5 2.522 × 10−8

]
,

and [
6.313 × 10−2 5.192 × 10−5

5.192 × 10−5 1.237 × 10−7

]
,

respectively. In Fig. 1, we have plotted the estimated distribution functions based on
complete sample and also based on three different sampling schemes. Interestingly, in
this case, the estimated distribution function based on Scheme-2 (Type-II censoring)
provides the closest approximation to the distribution function based on complete
sample.
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Fig. 1 Four different estimated distribution function

5 Optimal censoring scheme

So far we have discussed about the statistical inferences of the unknown parameters
of the GE distributions when the data are progressively censored for a known censor-
ing scheme. A natural question arises how to choose a particular censoring scheme.
Should we choose a particular scheme just based on convenience or based on some
statistical criteria. Recently, choosing the optimal censoring scheme in different prob-
lems has received considerable attention in the statistical literature. See, for example,
Zhang and Meeker (2005), Ng et al. (2004), Kundu (2007), Wang and Yu (2007), and
the references cited there.

For a practitioner, it is quite important to choose the optimal censoring scheme
from a class of possible schemes. Here possible schemes mean, for fixed sample size
n and for fixed effective sample size m, the different choices of R1, . . . ,Rm, such that

R1 + · · · + Rm + m = n. (11)

In many practical situations, the experimenter may not have any choice on m and n,
but he/she can choose a particular (R1, . . . ,Rm) satisfying (11). Therefore, our
problem boils down as follows: for fixed m and n, choose that particular scheme
(R1, . . . ,Rm) which is optimal in the sense it provides the maximum information of
the unknown parameters.

Immediately, the first question arises how to define the information measure of
the unknown parameters for a particular censoring scheme, or how to compare two
censoring schemes based on their information measures? In this respect, comparing
the Fisher information matrices seems to be a natural choice. If the model has only
one unknown parameter, then this comparison can be easily made. But, if both the
parameters are unknown, then the comparison of the two Fisher information matrices
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is not a trivial task. Some of the existing choices are to compare the traces or the
determinants of the two Fisher information matrices. Unfortunately, in presence of
the shape and scale parameters, it can be easily seen that (Gupta and Kundu 2006)
the trace or the determinant is not scale invariant. Therefore, it may happen that,
for a particular scheme, its determinant or trace of the Fisher information matrix is
more than another scheme, but if we change the unit of the data (multiply the data
by a positive constant), then the inequality becomes reversed, which may not be very
desirable.

An alternative way of comparing the information measures of two different
schemes is to compare their precisions of the 100pth quantile estimators, i.e., to
compare the variances of the corresponding estimators for different schemes. Sim-
ilar ideas were used by Zhang and Meeker (2005) in the Bayesian set up and also by
Ng et al. (2004) in the frequentest context. Interestingly, this information measure is
independent of the scale parameter, but unfortunately it depends on ‘p’. Balakrish-
nan and Aggarwala (2000) proposed for some specific choices of ‘p’ based on some
practical consideration, may be p = 0.95 or p = 0.99, but they can be argued upon.

Here we use the following information measure. Consider the pth quantile of the
lifetime distribution,

Tp = −1

λ
ln

(
1 − p

1
α
)
.

In this paper, following the idea of Gupta and Kundu (2006), we consider the follow-
ing information measures for a particular censoring scheme:

IW

{
(R1, . . . ,Rm)

} =
∫ 1

0
V

{
(R1, . . . ,Rm)

}
p
W(p)dp, (12)

where V {(R1, . . . ,Rm)}p denotes the asymptotic variance of T̂p , the MLE of Tp ,
based on the censoring scheme (R1, . . . ,Rm). Here W(p) ≥ 0 is a nonnegative
weight function such that ∫ 1

0
W(p)dp = 1.

Note that V {(R1, . . . ,Rm)}p is

T 2
p

[
p

1
α (− lnp)

α2[− ln(1 − p
1
α )](1 − p

1
α )

, −1

λ

][
V11 V12

V21 V22

]⎡
⎣ p

1
α (− lnp)

α2[− ln(1−p
1
α )](1−p

1
α )

− 1
λ

⎤
⎦ .

It may be noted that criterion (12) is very flexible and it may take care over all vari-
ability of the percentile estimator due to a particular censoring scheme. Depending on
the choice of W(p), it can be made dependent or independent of p. For example, if we
choose W(p) = 1 for all 0 < p < 1, then the information measure IW {(R1, . . . ,Rm)}
is independent of p. Moreover, if we want to consider the variability of the percentile
estimator for certain ranges of p, we can choose W(p) accordingly. Clearly, this is
a more general information measure than those information measures proposed by
Zhang and Meeker (2005) or Ng et al. (2004). Using W(p) as the point mass at any
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Table 6 The optimal censoring scheme for different criteria when α = 2, λ = 1, m = 5 and n = 10, 15,
25, and 30. Against each criterion, the first row, second row, third row, and fourth row represent the optimal
censoring schemes corresponding to n = 10, n = 15, n = 25, and n = 30, respectively

Criterion R1 R2 R3 R4 R5

1 0 0 0 0 5

0 0 0 0 10

0 0 0 5 15

0 0 0 6 19

2 5 0 0 0 0

0 0 2 8 0

0 0 1 0 19

0 0 0 0 25

3 5 0 0 0 0

10 0 0 0 0

0 0 1 0 19

0 0 1 2 22

4 0 0 0 5 0

0 0 0 0 10

0 0 0 0 20

0 0 0 6 19

5 0 0 0 0 5

0 0 0 0 10

0 0 0 0 20

0 0 0 6 19

6 0 0 0 0 5

0 0 0 0 10

0 0 0 5 15

0 0 0 6 19

particular point, the information measures proposed by Zhang and Meeker (2005) or
Ng et al. (2004) can be obtained.

Now we provide few optimal censoring schemes for different criteria. We have
used the minimum trace criterion (Criterion-1), minimum determinant criterion
(Criterion-2), and the minimum variance of the pth percentile estimator for dif-
ferent p, namely p = 0.5 (Criterion-3), p = 0.9 (Criterion-4), and p = 0.999
(Criterion-5). Finally, we have used minimizing IW {(R1, . . . ,Rm)} as defined in (12)
(Criterion-6). Note that, in all the above cases, the minimization has to be performed
numerically. They are discrete optimization problems. For given n, m, α, and λ, the
optimum censoring scheme with respect to a given criterion can be found by ex-
haustive search for all possible Ri values satisfying (11). For illustrative purpose, the
results are presented in Tables 6 and 7 when α = 2.0 and λ = 1. Interestingly, it is
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Table 7 The optimal censoring scheme for different criteria when α = 2, λ = 1, m = 6, 8, 10, and n = 15

Table-7a: [n = 15, m = 6]

Criterion R1 R2 R3 R4 R5 R6

1 0 0 0 0 2 7

2 0 8 1 0 0 0

3 9 0 0 0 0 0

4 0 0 0 0 1 8

5 0 0 0 0 1 8

6 0 0 0 0 2 7

Table-7b: [n = 15, m = 8]

Criterion R1 R2 R3 R4 R5 R6 R7 R8

1 0 0 0 0 0 0 0 7

2 6 1 0 0 0 0 0 0

3 6 1 0 0 0 0 0 0

4 0 0 0 3 2 2 0 0

5 0 0 0 0 0 0 4 3

6 0 0 0 0 0 0 0 7

Table-7c: [n = 15, m = 10]

Criterion R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

1 0 0 0 0 0 0 0 0 0 5

2 4 1 0 0 0 0 0 0 0 0

3 4 1 0 0 0 0 0 0 0 0

4 4 1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 5 0 0

6 0 0 0 0 0 0 0 0 0 5

observed that, in all the cases considered, the Criterion-1 and Criterion-6 provide the
same optimal censoring schemes.

Although the total number of sampling schemes are finite, they can be quite large.
For fixed m and n, total

(
n−1
m−1

)
possible progressive censoring schemes are avail-

able. For example, when n = 25 and m = 12, then the possible number of censoring
schemes is

(24
11

) = 2496144, which is quite large. Till date, we do not have any ef-
ficient algorithm to find the optimal censoring scheme in this case. We propose the
following sub-optimal censoring scheme. Note that, for fixed n and m, all the censor-
ing schemes of the form (R1, . . . ,Rm) such that R1 + · · · + Rm = n − m will belong
to the convex hull generated by the points (n − m,0, . . . ,0), . . . , (0, . . . ,0, n − m).
Therefore, a sub-optimal censoring scheme can be obtained by choosing the optimal
censoring scheme among these extreme points on the convex hull.
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6 Conclusions

In this paper, we have considered the estimation of the GE parameters when the
data are progressively censored. It is observed that when both the parameters are
unknown, the maximum likelihood estimates cannot be obtained in explicit form. In
our simulation studies, it is observed that, for certain cases, the Newton–Raphson
algorithm does not converge. We have used the EM algorithm to compute the MLEs
of the unknown shape and scale parameters and observed their performance through
numerical simulations. It is observed that the proposed EM algorithm works quite
well.

We have also proposed different criteria to compare two different sampling
schemes based on their information contents. We have also reported the optimal sam-
pling schemes with respect to different criteria for small values of m and n. It is an
important problem to find an algorithm to choose the optimal sampling scheme. More
work is needed in this direction.

Acknowledgements The authors would like to thank the associate editor and the referees for their fruit-
ful suggestions.

Appendix

To prove (5), we need the following theorem.

Theorem 1 Given X(1) = x(1), . . . ,X(j) = x(j), the conditional distribution of Zjk

for k = 1, . . . ,Rj is

fZ|X(zj |X(1) = x(1), . . . ,X(j) = x(j)) = fZ|X(zj |X(j) = x(j)) = f (zj |α,λ)

[1 − F(x(j)|α,λ)]
for zj > x(j) and 0 otherwise.

Proof The proof is straightforward. For details, see Ng et al. (2002).
Note that using Theorem 1, we can write

E(Zjk|Zjk > c) = αλ

1 − F(c|α,λ)
×

∫ ∞

c

xe−λx
(
1 − e−λx

)α−1
dx (put λx = y)

= α

λ(1 − F(c|α,λ))
×

∫ ∞

cλ

ye−y
(
1 − e−y

)α−1
dy (put e−y = z)

= − α

λ(1 − F(c|α,λ))

∫ e−cλ

0
ln z(1 − z)α−1 dz

= − α

λ(1 − F(c|α,λ))
u(c,α,λ).

To prove (6), note that using Theorem 1, we can write
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E
(
ln

(
1 − e−λZjk

)|Zjk > c
)

= αλ

1 − F(c|α,λ)
×

∫ ∞

c

ln
(
1 − e−λx

)
e−λx

(
1 − e−λx

)α−1
dx

= 1

α(1 − F(c|α,λ))

×
∫ 1

(1−e−cλ)α
lny dy (using y = (

1 − e−λx
)α

)

= 1

α(1 − F(c|α,λ))

× [(
1 − e−cλ

)α(
1 − α ln

(
1 − e−cλ

)) − 1
]
. �
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