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Abstract

Optimal transport (OT) distances are in-
creasingly used as loss functions for statisti-
cal inference, notably in the learning of gen-
erative models or supervised learning. Yet,
the behavior of minimum Wasserstein esti-
mators is poorly understood, notably in high-
dimensional regimes or under model misspec-
ification. In this work we adopt the view-
point of projection robust (PR) OT, which
seeks to maximize the OT cost between two
measures by choosing a k-dimensional sub-
space onto which they can be projected. Our
first contribution is to establish several fun-
damental statistical properties of PR Wasser-
stein distances, complementing and improv-
ing previous literature that has been re-
stricted to one-dimensional and well-specified
cases. Next, we propose the integral PR
Wasserstein (IPRW) distance as an alter-
native to the PRW distance, by averaging
rather than optimizing on subspaces. Our
complexity bounds can help explain why
both PRW and IPRW distances outperform
Wasserstein distances empirically in high-
dimensional inference tasks. Finally, we con-
sider parametric inference using the PRW
distance. We provide an asymptotic guar-
antee of two types of minimum PRW estima-
tors and formulate a central limit theorem
for max-sliced Wasserstein estimator under
model misspecification. To enable our analy-
sis on PRW with projection dimension larger
than one, we devise a novel combination of
variational analysis and statistical theory.
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1 Introduction

Recent years have witnessed an ever-increasing role
for ideas from optimal transport (OT) (Villani, 2008)
in machine learning. Combining OT distances with
the general principles of minimal distance estimation
(MDE) (Wolfowitz, 1957; Basu et al., 2011) yields a
powerful basis for various statistical inference prob-
lems, such as density estimation Bassetti et al. (2006),
training of generative model (Arjovsky et al., 2017;
Gulrajani et al., 2017; Montavon et al., 2016; Adler
and Lunz, 2018; Cao et al., 2019), auto-encoders (Tol-
stikhin et al., 2018), clustering (Cuturi and Doucet,
2014; Bonneel et al., 2016; Ho et al., 2017; Ye et al.,
2017), multitask regression (Janati et al., 2020), tra-
jectory inference (Hashimoto et al., 2016; Schiebinger
et al., 2017; Yang et al., 2020; Tong et al., 2020) or
nonparametric testing (Ramdas et al., 2017); see Peyré
and Cuturi (2019) and Panaretos and Zemel (2019) for
reviews on these topics.

For OT ideas to continue to bear fruit in machine
learning, it will be necessary to tackle two characteris-
tic challenges: (1) high dimensionality and (2) model
misspecification. Initial progress has been made on the
latter problem by Bernton et al. (2019), who showed
that in the misspecified case the minimum Wasser-
stein estimator (MWE) outputs the Wasserstein pro-
jection of the data-generating distribution onto the
fitted model class. These authors also obtained re-
sults on robustness and the asymptotic distribution
of the projection, while these results only apply to
the one-dimensional setting. High-dimensional set-
tings are challenging; indeed, it is known that the sam-
ple complexity of estimating the Wasserstein distance
can grow exponentially in dimension (Dudley, 1969;
Fournier and Guillin, 2015; Singh and Póczos, 2018;
Weed and Bach, 2019; Lei, 2020).

We focus on a promising approach to treating high-
dimensional problems: Compute the OT distance be-
tween low-dimensional projections of high-dimensional
input measures. The simplest and most representa-
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tive example of this approach is the sliced Wasserstein
distance (Rabin et al., 2011; Bonnotte, 2013; Bonneel
et al., 2015; Deshpande et al., 2019; Kolouri et al.,
2019a; Nadjahi et al., 2020; Manole et al., 2019), which
is defined as the average OT distance obtained be-
tween random 1-dimensional projections, and which is
shown practical in real applications (Deshpande et al.,
2018, 2019; Kolouri et al., 2016, 2019b; Carriere et al.,
2017; Wu et al., 2019; Liutkus et al., 2019). In an im-
portant extension, Paty and Cuturi (2019) and Niles-
Weed and Rigollet (2019) proposed very recently to
seek the k-dimensional subspace (k > 1) that would
maximize the OT distance between two measures af-
ter projection. The quantity is named as projection
robust Wasserstein (PRW) distance1, which is concep-
tually simple and does solve the curse of dimensional-
ity in the so-called spiked model as proved in (Niles-
Weed and Rigollet, 2019, Theorem 1) by recovering
the n−1/k rate under the Talagrand transport inequal-
ity. This result suggests that PRW can be significantly
more useful than the OT distance for inference tasks
when the dimension is large. From a computational
point of view, PRW becomes the max-sliced Wasser-
stein distance when the projection dimension is k = 1
and has an efficient implementation (Deshpande et al.,
2019). For general k ≥ 1, Lin et al. (2020) proposed to
compute PRW using Riemannian optimization toolbox
and provided theoretical guarantee and encouraging
empirical results. However, it is desirable to under-
stand its statistical behavior which mostly determines
the practical performance of PRW.

Contributions. In this paper, we study the statis-
tical properties of PRW and another so-called inte-
grated PRW (IPRW), which replaces the maximum in
the original PRW with an average of OT distance over
k-dimensional projections. Our contributions can be
summarized as follows.

1. We prove that the empirical measure µ̂n con-
verges to true measure µ⋆ under both PRW and
IPRW with different rates. These rates are new
to our knowledge. For example, when the order
p = 3/2 and the projected dimension k ≥ 3, the
rate is n−1/k for IPRW. For PRW, the rate is
(n−1/k+n−1/6

√
dk log(n)+n−2/3dk log(n)) when

µ⋆ satisfies a projection Bernstein tail condition
and (n−1/k + n−1/2

√
dk log(n) + n−2/3dk log(n))

when µ⋆ satisfies a projection Poincaré inequality.

2. We derive the concentration results when µ⋆ sat-
isfies a Bernstein tail condition or a projection
Poincaré inequality. In terms of tail conditions,

1This quantity is also named as Wasserstein Projec-

tion Pursuit (WPP) (Niles-Weed and Rigollet, 2019). For
simplicity, we refer from now on to PRW/WPP as PRW.

our Bernstein condition and Poincare inequality
handle subexponential tail while Talagrand in-
equality in Niles-Weed and Rigollet (2019) ad-
dresses subgaussian tail. Our assumptions are
thus weaker than Niles-Weed and Rigollet (2019).

3. We establish asymptotic guarantees for the mini-
mal PRW and expected minimal PRW estimators
under model misspecification. For minimal PRW
estimator with the order p = 1 and the projected
dimension k = 1, we derive an asymptotic distri-
bution for arbitrary dimension d with the n−1/2

rate in the Hausdorff metric. Our assumptions are
weaker than those used in Bernton et al. (2019),
not requiring the nonsingularity of the Jacobian
or the separability of the parameters. Our tech-
niques for CLT in misspecified settings did not
appear in Nadjahi et al. (2019) and complete the
analysis in Bernton et al. (2019).

4. We conduct experiments on synthetic data and
neural networks to validate our theory. We also
present a simple optimization algorithm that can
efficiently compute the PRW distance in practice
even when k ≥ 2; see Appendix F or Appendix B
of the concurrent work byLin et al. (2020).

2 Preliminaries on Projected Optimal

Transport

In this section, we provide some technical background
materials on projection optimal transport. Through-
out the paper, we denote ‖ · ‖ as the Euclidean norm
(in the corresponding vector space) and ⇒ as the con-
vergence in the weak sense.

Wasserstein and sliced Wasserstein. Let p ≥ 1
and define P(Rd) and Pp(Rd) as the set of all Borel
measures on R

d and the subset that satisfies Mp(µ) :=∫
Rd ‖x‖pdµ(x) < +∞. For two probability measures

µ, ν ∈ Pp(Rd), their Wasserstein distance of order p
is defined as follows:

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫

Rd×Rd

‖x− y‖pdπ(x, y)

)1/p

,

(1)
where the infimum is taken over Π(µ, ν) ⊆ P(Rd ×
R

d)—the set of probability measures with marginals
µ and ν. In the 1D case, Rachev and Rüschendorf
(1998, Theorem 3.1.2.(a)) have shown that Wp(µ, ν) =

(
∫ 1

0
|F−1

µ (t) − F−1
ν (t)|pdt)1/p, where F−1

µ and F−1
ν are

the quantile functions of µ and ν. This 1D formula
motivates the sliced Wasserstein (SW) and max-sliced
Wasserstein (max-SW) distances (Bonnotte, 2013;
Bonneel et al., 2015; Deshpande et al., 2019). In par-
ticular, the idea is to use as a proxy of (1) the aver-
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age or maximum of a set of 1D Wasserstein distances
constructed by projecting d-dimensional measures to
a random collection of 1D spaces. Computation-
ally appealing, both SW and max-SW distances are
widely used in practice, especially in generative mod-
eling (Kolouri et al., 2019b; Deshpande et al., 2019;
Liutkus et al., 2019). Practitioners observe that the
SW distance only outputs a good Monte-Carlo approx-
imation with a large number of projections, while the
max-SW distance achieves similar results with fewer
projections (Kolouri et al., 2019a; Nguyen et al., 2020).

Encouraged by the success of SW and max-SW, Paty
and Cuturi (2019) asked whether we can gain more by
using a subspace of dimension k ≥ 2, define the pro-
jection robust Wasserstein (PRW) distance, and prove
that this quantity is well posed if the order is p ≥ 1.
More specifically, let Sd,k = {E ∈ R

d×k : E⊤E = Ik}
be the set of d × k orthogonal matrices and E⋆ be
the linear transformation associated with E for any
x ∈ R

d by E⋆(x) = E⊤x. For any measurable func-
tion f and µ ∈ P(Rd), we denote f#µ as the push-
forward of µ by f , so that f#µ(A) = µ(f−1(A)) where
f−1(A) = {x ∈ R

d : f(x) ∈ A} for any Borel set A.
For any given subspace dimension K, the PRW dis-
tance of order p between µ and ν is defined by

PWp,k(µ, ν) := sup
E∈Sd,k

Wp(E⋆
#µ,E

⋆
#ν). (2)

The PRW distance has better discriminative power
than the SW or max-SW distances since it can extract
more geometric information from high-dimensional
projections than that from 1-dimensional projections;
see Paty and Cuturi (2019) for more details.

As an alternative, we define the IPRW distance, which
replaces the supremum in Eq. (2) with an average. The
IPRW distance of order p between µ and ν is

PWp,k(µ, ν) :=

(∫

Sd,k

Wp
p (E⋆

#µ,E
⋆
#ν)dσ(E)

)1/p

,

(3)
where σ is the uniform distribution on Sd,k. Note that
IPRW is well defined for comparing two measures and
match our intuition. For example, given three Gaus-
sian distributions µi = N (ui, Id) for i = 1, 2, 3, we
have PWp,2(µi, µj) = c‖ui − uj‖ where c > 0 only
depend on p and the dimension d.

The IPRW and PRW distances generalize the SW and
max-SW distances to the high-dimensional projection
setting. Both PRW and and IPRW are distances and
satisfy the triangle inequality: the proof for PRW is
in Paty and Cuturi (2019, Proposition 1), while that
for IPRW is the same as that for SW in Bonnotte
(2013). Compared to the PRW distance, the IPRW
distance performs better statistically but remains un-

favorable in computational sense. Indeed, a large
amount of projections from Sd,k are necessary to ap-
proximate the IPRW distance. However, if the intrin-
sic dimension of data distribution is small, the required
number of random projections is small; see Nadjahi
et al. (2019).

Let X1:n = (X1, . . . , Xn) be independent and identi-
cally distributed samples according to the true mea-
sure µ⋆ ∈ Pq(Rd). The empirical measure of X1:n is
defined by µ̂n := (1/n)

∑n
i=1 δXi

. It is known that
µ̂n ⇒ µ⋆ almost surely, and Wp(µ̂n, µ⋆) → 0 almost
surely since Wasserstein distances metrizes weak con-
vergence (Villani, 2008, Theorem 6.9) (note that q ≥
p ≥ 1). However, E[Wp(µ̂n, µ⋆)] ≃ n−1/d whenever µ
is absolutely continuous with respect to Lebesgue mea-
sure and d > 2p (Dudley, 1969; Fournier and Guillin,
2015; Weed and Bach, 2019) (≃ means “equal to” with
a constant independent of n). The convergence is slow
when the dimension is high — an instance of the well-
known curse-of-dimensionality phenomenon.

Due to the low-dimensional structure of the IPRW and
PRW distances, the rate of IPRW and PRW distances
is expected to be of n−1/k in the large-n limit. Sim-
ilar rates have been derived for E[|PWk,p(µ̂n, ν̂n) −
Wp(µ, ν)|] as a function of n under a spiked trans-
port model for both µ and ν; see Niles-Weed and
Rigollet (2019, Theorem 8). Their bound depends on
problem dimension d and requires µ and ν to satisfy
the Talagrand transport inequality (Talagrand, 1996).
For the special case when k = 1, the rate for the
IPRW distance was studied in (Nadjahi et al., 2020)
and the minimax confidence intervals were established
in Manole et al. (2019). To our knowledge, there has
been no other paper on the statistical properties of
IPRW and PRW distances for k ≥ 2.

Parametric modeling and inference. A statisti-
cal model is a family of distributions, M = {µθ ∈
P(Rd) | θ ∈ Θ}, where Θ is the parameter space. A
minimal set of the conditions of a proper family of dis-
tribution are: (i) (Θ, ‖ · ‖Θ) is a Polish space, (ii) Θ
is σ-compact, i.e., it is the union of countably many
compact subspaces, and (iii) parameters are identifi-
able, i.e., µθ = µθ′ implies θ = θ′ for all θ, θ′ ∈ Θ.
Since the space Pp(Rd) endowed with the distance
Wp is a Polish space, we estimate model coefficients us-
ing minimum distance estimation (MDE) (Wolfowitz,
1957; Basu et al., 2011), where the distance we con-
sider here is PRW. The main reason why we do not
choose IPRW in this setting is computational. The
minimum project robust Wasserstein (MPRW) estima-
tor is defined as follows:

θ̂n := argmin
θ∈Θ

PWp,k(µ̂n, µθ). (4)
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Note that the probability density function of µθ can
be difficult to evaluate in practice, especially when µθ

is a generative model. Nevertheless, in various set-
tings, even if the density is not available, one can
generate samples Z1:m from µθ and use them to ap-
proximate µθ. With this approximation, a natural al-
ternative is the minimum expected projection robust
Wasserstein (MEPRW) estimator, which is defined as
follows (Bernton et al., 2019; Nadjahi et al., 2019):

θ̂n,m := argmin
θ∈Θ

E[PWp,k(µ̂n, µ̂θ,m) | X1:n], (5)

where n is the number of samples from the data dis-
tribution µ⋆, m is the number of samples from the
parametric distribution µθ, and µ̂θ,m is an empirical
version of µθ based on samples Z1:m.

Existing works have established asymptotic guaran-
tees for minimal Wasserstein and sliced Wasserstein
estimators (Bernton et al., 2019; Nadjahi et al., 2019).
Despite the similar proof paths, our results for the
MPRW and MEPRW estimators are new and derived
under weaker assumptions and more general settings
than previous work; see Sections 3.3 and 3.4.

3 Main Results on Projection Robust

Optimal Transport Estimation

Throughout this section, we assume p ≥ 1 and k ∈
[d] , {1, 2, . . . , d} unless stated otherwise. Focusing
on the IPRW and PRW distances, we prove that they
are lower semi-continuous and metrize weak conver-
gence. Through a new sample complexity analysis,
we derive the convergence rate of empirical measures
under both distances as well as an improved rate for
the PRW distance when µ⋆ satisfies either a Bernstein
tail condition or the Poincaré inequality. For the gen-
erative models with the PRW distance, we study the
misspecified setting where the limit θ⋆ is not neces-
sarily the limit of the maximum likelihood estimator.
We establish the asymptotic properties of the MPRW
and MEPRW estimators and formulate a central limit
theorem when p = 1 and k = 1.

3.1 Topological properties

We begin with the results on the relationship between
the IPRW, PRW and Wasserstein distances. The
following lemma demonstrates their equivalence in a
topological sense.

Lemma 3.1 The IPRW, PRW and Wasserstein dis-
tances are equivalent. That is, for any sequence of
probability measures {µi}i∈N and probability measure
µ in Pp(Rd), we have PWp,k(µi, µ) → 0 if and only

if PWp,k(µi, µ) → 0 if and only if Wp(µi, µ) → 0.

Lemma 3.1 is a generalization of Bayraktar and Guo
(2019, Theorem 1) where the projection dimension is
k = 1. By Lemma 3.1 and Villani (2008, Theorem 6.9),
we obtain the following result regarding the topology
induced by the IPRW and PRW distances of order p.

Theorem 3.2 The IPRW and PRW distances both
metrize weak convergence. In other words, for any se-
quence of probability measures {µi}i∈N and probability
measure µ in Pp(Rd), we have PWp,k(µi, µ) → 0 if

and only if PWp,k(µi, µ) → 0 if and only if µi ⇒ µ.

Theorem 3.2 generalizes Villani (2008, Theorem 6.9)
since the PRW distance is the Wasserstein distance
when the projection dimension k = d. When k = 1,
Theorem 3.2 recovers the results presented by Bayrak-
tar and Guo (2019) which implies that the SW and
max-SW distances metrize weak convergence. It
is worthy noting that this implication is stronger
than Nadjahi et al. (2019, Theorem 1), which only
provides a one-sided argument.

Theorem 3.3 The IPRW and PRW distances are
both lower semi-continuous in the usual weak topology.
In other words, if the sequences of probability mea-
sures {µi}i∈N, {νi}i∈N ⊆ P(Rd) satisfy µi ⇒ µ and
νi ⇒ ν for probability measures µ, ν ∈ P(Rd), then we
have PWp,k(µ, ν) ≤ lim infi→+∞ PWp,k(µi, νi) and

PWp,k(µ, ν) ≤ lim infi→+∞ PWp,k(µi, νi).

The above theorem generalizes Nadjahi et al. (2019,
Lemma S6) and is pivotal to our asymptotic analysis
for the MPRW and MEPRW estimators.

3.2 Convergence and concentration of
empirical measures

We provide the rate of the empirical measures under
the IPRW and PRW distances of order p with the pro-
jection dimension k. We present our main result on
convergence rates in the following theorem.

Theorem 3.4 Let µ⋆ ∈ Pq(Rd) and Mq(µ⋆) < +∞
for some q ≥ p ≥ 1. Then we have2

E[PWp,k(µ̂n, µ⋆)] .p,q n−[ 1
(2p)∨k

∧( 1
p
− 1

q
)](log(n))

ζp,q,k
p ,

where .p,q refers to “less than” with a constant de-
pending only on (p, q) and

ζp,q,k =





2 if k = q = 2p,

1 if (k 6= 2p and q = kp
k−p ) or (q > k = 2p),

0 otherwise.

Remark 3.1 Theorem 3.4 shows that our bound does
not depend on d, while all bounds for the Wasserstein

2a ∨ b = max{a, b} and a ∧ b = min{a, b} here.
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distance grow exponentially in d when d ≥ 2p (Lei,
2020, Theorem 3.1). This improvement shows that
the PRW distance does not suffer from the curse of
dimensionality while retaining flexibility via the choice
of k. We are also aware of concurrent work (Nath and
Jawanpuria, 2020) in which the sample complexity has
no dependence on dimensionality.

Definition 3.1 We say µ ∈ P(Rd) satisfies a pro-
jection Bernstein tail condition if there exist σ, V > 0
for all E ∈ Sd,k and X ∼ E⋆

#µ such that E[‖X‖r] ≤
(1/2)σ2r!V r−2 for all r ≥ 2.

Theorem 3.5 Suppose µ⋆ ∈ Pq(Rd) satisfies a pro-
jection Bernstein tail condition and assume the same
setting as in Theorem 3.4. For all n ≥ 1, the following
inequality holds true:

E[PWp,k(µ̂n, µ⋆)] .p,q n−[ 1
(2p)∨k

∧( 1
p
− 1

q
)](log(n))

ζp,q,k
p

+n
1
2−

1
p

√
dk log(n) + n− 1

p dk log(n).

Definition 3.2 We say µ ∈ P(Rd) satisfies a pro-
jection Poincaré inequality if there exists M > 0 for
all E ∈ Sd,k and X ∼ E⋆

#µ such that Var (f(X)) ≤
ME[‖∇f(X)‖2] for any f : R

d → R satisfying that
E[f(X)2] < +∞ and E[‖∇f(X)‖2] < +∞.

Theorem 3.6 Suppose µ⋆ ∈ Pq(Rd) satisfies a pro-
jection Poincaré inequality and assume the same set-
ting as in Theorem 3.4. For all n ≥ 1, the following
inequality holds true:

E[PWp,k(µ̂n, µ⋆)] .p,q n−[ 1
(2p)∨k

∧( 1
p
− 1

q
)](log(n))

ζp,q,k
p

+n− 1
2∨p

√
dk log(n) + n− 1

p dk log(n).

We present concentration results when µ⋆ satisfies
stronger conditions than Definition 3.1 and 3.2.

Definition 3.3 A measure µ ∈ P(Rd) satisfies a
Bernstein tail condition if there exists σ, V > 0 such
that EX∼µ[supE∈Sd,k

‖E⊤X‖r] ≤ (1/2)σ2r!V r−2 for
all i = 1, 2, . . . , n and all r ≥ 2.

Theorem 3.7 If µ⋆ ∈ P(Rd) satisfies a Bernstein
tail condition then the following statement holds true
for both W = PWp,k and W = PWp,k:

P(|W (µ̂n, µ⋆) − E[W (µ̂n, µ⋆)]| ≥ t)

≤ 2 exp

(
− t2

8σ2n1−2/p + 4tV n−1/p

)
.

Definition 3.4 µ ∈ P(Rd) satisfies a Poincaré in-
equality if there exists M > 0 for X ∼ µ such that
Var [f(X)] ≤ ME[‖∇f(X)‖2] for any f satisfying
E[f(X)2] < +∞ and E[‖∇f(X)‖2] < +∞.

Theorem 3.8 If µ⋆ ∈ P(Rd) satisfies Poincaré in-
equality then the following statement holds true for
both W = PWp,k and W = PWp,k:

P(|W (µ̂n, µ⋆) − E[W (µ̂n, µ⋆)]| ≥ t)

≤ 2 exp(−K−1 min{n 1
p t, n

2
2∨p t2}),

where K > 0 only depends on M (cf. Definition 3.4).

Discussions. We demonstrate that the Bernstein-
type tail conditions in Definition 3.1 and 3.3 are not
strong enough to give an effective bound for all p ≥ 1.
The similar results for the Wasserstein distance have
been recently derived by Lei (2020) and recognized
as the standard limitation for the Bernstein-type tail
conditions. This is also the motivation which drives us
to consider a Poincaré inequality.

For Theorem 3.5 and 3.6, the first term matches that
in Theorem 3.4 while the extra two terms come from
bounding the gap E[supE∈Sd,k

(Wp(E⋆
#µ̂n, E

⋆
#µ⋆) −

E[Wp(E⋆
#µ̂n, E

⋆
#µ⋆)])]. Compared with Niles-Weed

and Rigollet (2019, Theorem 8), where µ⋆ satis-
fies the Talagrand transport inequality, our condi-
tions are weaker but our rate matches their n−1/k +
n−1/2

√
dk log(n) rate in the large-n limit when p = 1.

For Theorem 3.7 and 3.8, the latter bound is better
than the former bound when p > 1. Moreover, the tail
condition in Definition 3.3 is stronger than that in Def-
inition 3.1 yet weaker than the standard Bernstein tail
condition where X ∼ µ inside the expectation without
a sup; see Wainwright (2019). The Poincaré inequality
is weaker than the log-Sobolev inequality and is sat-
isfied by various exponential measures and the mea-
sures induced by Markov processes (Ledoux, 1999).
Intutively, These two conditions handle subexponen-
tial tail while Talagrand inequality in Niles-Weed and
Rigollet (2019) addresses subgaussian tail; see Ledoux
(1999) and Talagrand (1996) for the details.

3.3 Properties of MPRW and MEPRW
estimators

We derive the asymptotic properties of the MPRW
and MEPRW estimators under model misspecifica-
tion, which is common in practice. Our setting is
more general than that considered in (Nadjahi et al.,
2019) and our results support the applications in real-
world scenario better. Specifically, while Nadjahi et al.
(2019) focused on the well-specified setting, the statis-
tical models can be misspecified in many real-world
applications. We also use the Wasserstein distance
in Assumptions 3.1 and 3.4 since these assumptions
have been shown valid for many real-world application
problems (Bernton et al., 2019).
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Assumption 3.1 There exists a probability measure
µ⋆ ∈ P(Rd) such that the data-generating process sat-
isfies that limn→+∞ Wp(µ̂n, µ⋆) = 0 almost surely.

Assumption 3.2 The map θ 7→ µθ is continuous:
‖θn − θ‖Θ → 0 implies µθn ⇒ µθ.

Assumption 3.3 There exists a constant τ > 0 such
that the set Θ⋆(τ) ⊆ Θ is bounded where Θ⋆(τ) = {θ ∈
Θ : PWp,k(µ⋆, µθ) ≤ infθ∈Θ PWp,k(µ⋆, µθ) + τ}.

Theorem 3.9 Under Assumption 3.1-3.3, there
exists a sample space Ω with P(Ω) = 1 such that, for
all ω ∈ Ω, limn→+∞ infθ∈Θ PWp,k(µ̂n(ω), µθ) =
infθ∈Θ PWp,k(µ⋆, µθ), and
lim supn→+∞ argminθ∈Θ PWp,k(µ̂n(ω), µθ) ⊆
argminθ∈Θ PWp,k(µ⋆, µθ). In addition,
argminθ∈Θ PWp,k(µ̂n(ω), µθ) 6= ∅ for all n ≥ n(ω)
with some n(ω) > 0.

Assumption 3.4 If ‖θn − θ‖Θ → 0, then
E[Wp(µ̂θn,n, µθn)|X1:n] → 0.

In the next result, we present an analogous ver-
sion of Theorem 3.9 for the MEPRW estimator as
min{n,m} → +∞. For the simplicity, we set m :=
m(n) such that m(n) → +∞ as n → +∞.

Theorem 3.10 Under Assumption 3.1-
3.4, there exists a sample space Ω with
P(Ω) = 1 such that, for all ω ∈ Ω,
limn→+∞ infθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n))|X1:n] =

infθ∈Θ PWp,k(µ⋆, µθ) and
lim supn→+∞ argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n)) |
X1:n] ⊆ argminθ∈Θ PWp,k(µ⋆, µθ). In addition,
argminθ∈Θ E[PWp,k(µ̂n(ω), µ̂θ,m(n))|X1:n] 6= ∅ for
n ≥ n(ω) with some n(ω) > 0.

Assumption 3.5 There exists a constant τ > 0 such
that the set Θn(τ) ⊆ Θ is bounded where Θn(τ) = {θ ∈
Θ : PWp,k(µ̂n, µθ) ≤ infθ∈Θ PWp,k(µ̂n, µθ) + τ}.

Theorem 3.11 Under Assumption 3.2, 3.4 and 3.5,
it holds that limm→+∞ infθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) |
X1:n] = infθ∈Θ PWp,k(µ̂n, µθ) and
lim supm→+∞ argminθ∈Θ E[PWp,k(µ̂n, µ̂θ,m) |
X1:n] ⊆ argminθ∈Θ PWp,k(µ̂n, µθ). In addition,
argminθ∈Θ E[PWp,k(µ̂n, µ̂θ,m)|X1:n] 6= ∅ for m ≥ mn

with some mn > 0.

To this end, the MPRW and MEPRW estimators both
asymptotically converge to θ⋆ ∈ Θ, which is a mini-
mizer of θ → PWp,k(µ⋆, µθ), assuming its existence.
Moreover, θ⋆ is not the limit of maximum likelihood
estimator and satisfies µθ⋆ = µ⋆ in a well-specified
setting. Our consistency results support the success of
generative modelling using the max-SW distance.

3.4 Rate of convergence and asymptotic
distribution

We investigate the asymptotic distribution of the
MPRW estimator under model misspecification and
establish the rate of convergence when k = p = 1. For
any u ∈ S

d−1 and t ∈ R, we define

Fθ(u, t) =

∫

Rd

1(−∞,t](〈u, x〉) dµθ(x),

F̂n(u, t) = (1/n)|{i ∈ [n] : 〈u,Xi〉 ≤ t}|.

The functions Fθ(u, ·) and F̂n(u, ·) are the cumula-
tive distribution functions of u⋆

#µθ and u⋆
#µ̂n where

u ∈ S
d−1 is a unit vector. Let L(Sd−1 × R) be the

class of functions on S
d−1 ×R such that f(·, t) is con-

tinuous and f(u, ·) is absolutely integrable, with the
norm ‖f‖L = supu∈Sd−1

∫
R
|f(u, t)| dt.

Assumption 3.6 There exists a measurable function
D⋆ : Sd−1 ×R → R

dθ such that ‖Fθ(u, t) − Fθ⋆(u, t) −
〈θ − θ⋆, D⋆(u, t)〉‖L = o(‖θ − θ⋆‖Θ).

Assumption 3.7 There exists a random element G⋆ :
S
d−1×R 7→ R such that the stochastic process

√
n(F̂n−

F⋆) converges weakly in L(Sd−1 × R) to G⋆
3.

Assumption 3.8 There exists a neighborhood N of
θ⋆ ∈ Θ and a positive constant c⋆ such that
PW1,1(µθ, µ⋆) ≥ PW1,1(µθ⋆ , µ⋆) + c⋆‖θ − θ⋆‖Θ for
all θ ∈ N .

Remark 3.2 Assumption 3.6 is strictly weaker than
a norm-differentiation condition where D⋆ has to be
nonsingular. Assumption 3.7 permits model misspeci-
fication where there is no θ⋆ ∈ Θ such that Fθ⋆ = F⋆

and thus is more general than Nadjahi et al. (2019,
A8). Assumption 3.8 accounts for local strong iden-
tifiability for the model µθ around θ⋆ and is neces-
sary for the fast rate of n−1/2 under model misspec-
ification. (Bernton et al. (2019) assumes the analo-
gous condition for the Wasserstein distance. However,
their analysis depends on a much stronger version with
N = Θ.) Thanks to Assumption 3.8, we do not require
the condition that the parameters are weakly separable
in the PRW sense.

Remark 3.3 In well-specified setting where there ex-
ists θ⋆ ∈ Θ such that F⋆ = Fθ⋆ , it is straightforward
to derive the norm-differentiation condition from As-
sumption 3.6 and 3.8. This is not true, however, un-
der model misspecification. Moreover, there are minor

3As pointed by Nadjahi et al. (2019), one can prove
that Assumption 3.7 holds in general by extending (Dede,
2009, Proposition 3.5) and (del Barrio et al., 1999, Theo-
rem 2.1(a)) with some mild conditions on the tails of u⋆

#µ⋆.
Using the same argument, this extension can also be done
for ‖ · ‖L in our paper.
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technical issues in the proof of Bernton et al. (2019,
Theorem B.8); see Appendix E.4. Fixing them would
be straightforward but require additional assumptions.
Fortunately, we can overcome this gap using some new
techniques. Thus, with some refinement, our results
can be interpreted as an improvement of Bernton et al.
(2019) with fewer assumptions.

To study the asymptotic distributions in the misspeci-
fied setting, we employ definitions from Pollard (1980,
Section 7). (Note, however, that our proof technique
is different from Pollard (1980), which depends on the
nonsingularity of D⋆ and requires µ⋆ = µθ⋆ for some
θ⋆ in the interior of Θ.)

Definition 3.5 (Hausdorff metric) Let S be the
class of convex and compact sets in L(Sd−1 × R)
equipped with ‖ · ‖L. The Hausdorff metric on S is de-
fined by dH(S1, S2) = inf{δ > 0 : S1 ⊆ Sδ

2 , S2 ⊆ Sδ
1},

where Sδ = ∪x∈S{z ∈ L(Sd−1 × R) : ‖z − x‖L ≤ δ}.

Definition 3.6 (Approximate MPRW estimators)
The set of approximate MPRW estimators is
defined by Mn = {θ ∈ Θ : PW1,1(µ̂n, µθ) ≤
infθ′∈Θ PW1,1(µ̂n, µθ′) + ηn/

√
n}, where ηn > 0 such

that P(ηn → 0) = 1 and Mn is nonempty.

Theorem 3.12 Suppose Assumption 3.1-3.3 and 3.6-
3.8 hold for some θ⋆ in the interior of Θ and let Gn =√
n(F̂n −Fθ⋆) and G⋆

n = G⋆ +
√
n(F⋆ −Fθ⋆). We also

define K(x, β) = {θ ∈ N1 : ‖x−√
n〈θ − θ⋆, Dθ⋆〉‖L ≤

infθ′∈N1 ‖x−√
n〈θ′ − θ⋆, Dθ⋆〉‖L + β} where

N1 =

{
θ ∈ N :

‖Fθ − Fθ⋆ − 〈θ − θ⋆, D⋆〉‖L
‖θ − θ⋆‖Θ

≤ c⋆
2

}
.

Then there exists a sequence satisfying limn→+∞ βn =
0 such that4 P⋆(Mn ⊆ K(Gn, βn)) → 1 as n → +∞.
For any ǫ > 0, we have P(dH(K(G⋆

n, 0),K(Gn, βn)) <
ǫ) → 1 as n → +∞.

Theorem 3.12 provides the theoretical guarantee for
statistical inference with the max-SW distance un-
der model misspecification. Indeed, since K(G⋆

n, 0) =
argminθ∈N1

‖G⋆ +
√
n(F⋆−Fθ⋆ −〈θ− θ⋆, Dθ⋆〉)‖L, the

results indicate that the distributional limit of the ap-
proximate MPRW estimator set is close to the limit
of the sets argminθ∈N1

‖G⋆ +
√
n(F⋆ − Fθ⋆ − 〈θ −

θ⋆, Dθ⋆〉)‖L in the Hausdorff metric. Note that d > 1
is allowed but we need k = 1. This is necessary for
our techniques since the current analysis heavily de-
pends on the explicit form of PRW using cumulative
distribution functions. Deriving CLT when k > 1 is
important but out of the scope of this paper.

4
P⋆ denotes the (inner) probability; see Pollard (1980)

for details.

Remark 3.4 In the well-specified setting, Assump-
tion 3.8 can be replaced by Assumption A.1-A.2. Un-
der certain conditions, we derive the CLT (cf. Theo-
rem A.3) which is analogous to Nadjahi et al. (2019,
Theorem 6) for the minimum sliced Wasserstein esti-
mators. We refer to Theorem A.3 in Appendix A for
a simplified version in well-specified setting.

Discussions. We make some additional remarks on
the relationship between our work and the existing
works by Bernton et al. (2019) and Nadjahi et al.
(2019). Since PRW is a type of Wasserstein, the con-
sistency proof roadmap is essentially similar to that
in Bernton et al. (2019) and Nadjahi et al. (2019).
However, we remark that (i) the sample complexity
bounds of PRW are new; (ii) the techniques for CLT
in misspecified settings did not appear in Nadjahi et al.
(2019) and complete the analysis in Bernton et al.
(2019). Remark 3.2 states that our Assumption 3.8
is weaker than that is used in Bernton et al. (2019).
In particular, N is the neighborhood defined in As-
sumption 3.8 and accounts for a local strong identi-
fiability. In contrast, Bernton et al. (2019) requires a
global strong identifiability (N = Θ). Remark 3.3
states that our setting is more general than the well-
specified setting which is discussed by Nadjahi et al.
(2019) from a technical point of view.

4 Experiments

We empirically validate our theoretical findings
through several experiments on synthetic and real
data. Given the space limit, we present the experimen-
tal setup in Appendix G and explain an optimization
algorithm for computing the PRW distance and esti-
mators in Appendix F. We defer the additional results
on other dataset to Appendix H.

We set µ = ν = U([−v, v]d) as an uniform distribu-
tion over a hypercube and study the convergence and
computation of PW2,k(µ̂n, ν̂n) and PW2,k(µ̂n, ν̂n) for
n ∈ {20, 100, 250, 500, 1000}. Figure 1 presents av-
erage distances and computational times for (d, v) ∈
{(10, 1), (30, 5), (50, 5)}, where the shaded areas show
the max-min values over 100 runs. First, the IPRW
distance is significantly smaller than the PRW distance
for small n especially when d and v are large. This
confirms Theorem 3.4 which shows that the IPRW dis-
tance is independent of d. Second, the PRW distance
nearly matches the IPRW distance when n is large.
This confirms Theorem 3.6 since the uniform distri-
bution with its bounded domain satisfies the Poincaré
inequality. Finally, the computation of the PRW dis-
tance is faster than that of the IPRW distance.

Consider the parametric inference using Gaussian
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Figure 1: Mean values (Top) and mean computational time (Bottom) of the IPRW and PRW distances of order
2 between empirical measures µ̂n and ν̂n as the number of points n varies. Results are averaged over 100 runs.

Figure 2: Probability density of estimation of centered
and rescaled σ̂n on the Gaussian model.

models M = {N (m, σ2I) : m∈R2, σ2>0} and a col-
lection of i.i.d. observations generated from a mixture
of 8 Gaussian distributions in R

2. This simple setting
is useful since the closed-form expression of Gaussian
density makes the computation of the MPRW estima-
tor of order 1 tractable. Following the setup in Nadjahi
et al. (2019, Section 4), we illustrate the consistency
of the MPRW and MEPRW estimators of order 1 and
the convergence of MEPRW estimator of order 1 to
MPRW estimator of order 1. Results are shown in
Figure 3; they are consistent with Theorem 3.9, 3.10
and 3.11, where m⋆ = m̂105 . Despite the model mis-
specification, our estimators still converge as the num-
ber of observations increases and the MEPRW estima-
tor converges to the MPRW estimator as we generate
more samples. We also verify our central limit the-
orem by estimating the density of σ̂2

n with a kernel

density estimator5 over 100 runs. Figure 2 shows the
distribution centered and rescaled by

√
n for each n,

where σ2
⋆ = σ̂2

105 , and it confirms the convergence rate
we derived in Theorem 3.12; see Appendix H for the
case with 12 or 25 distributions.

We conduct experiments on image generation us-
ing the PRW generator of order 2, as an alterna-
tive to the SW generator (Deshpande et al., 2018).
Here we focus on the case of k = 1, where the
PRW generator is exactly max-SW generator. We
train the neural networks (NNs) with (n,m) ∈
{(100, 20), (1000, 40), (5000, 60), (10000, 100)} where n
is the number of training samples and m is the num-
ber of generated samples. We compare their testing
losses to that of a NN trained using n = 105 (i.e.
whole training dataset) and m = 200. All the test-
ing losses are evaluated using the trained models on
the the testing dataset (n = 104) with m = 250 gen-
erated samples. Figure 4 presents the mean testing
loss on ImageNet200 over 10 runs, where the shaded
areas show the max-min values over the runs.

Discussions. First, PRW has better discriminative
power than max-SW or SW since it considers high-
order summaries and extract more geometric infor-
mation from two high-dimensional distributions, in
order to distinguish them better; see Paty and Cu-
turi (2019) for the details. Moreover, we have pre-
sented in Figure 1 (top row) and Figure 5 (top row)
that the PRW/IPRW value increase as k increases.

5The approach we apply here is the same as used
by Nadjahi et al. (2019).
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(a) MPRW vs. n (b) MEPRW vs. n = m (c) MEPRW with n = 2000 vs. m

Figure 3: Minimal PRW and expected PRW estimations using Gaussian models and n samples from the mixture
of 8 Gaussian distributions. Results are averaged over 100 runs and shaded areas represent standard deviation.

Figure 4: Mean test loss for different value of (n,m)
on ImageNet200.

Thus, PRW/IPRW based on larger k-dimensional pro-
jections have better discriminative power.

Second, the IPRW computation generally requires
many random projections and is thus more time-
consuming than PRW for a desired accuracy when
k = 1; see Kolouri et al. (2019a, Page 4). Fortunately,
it may require much fewer for certain application prob-
lems when the intrinsic dimension of data distribution
is small, and is easily amenable to parallel computa-
tion. Thus, IPRW can serve as a practical alternative
to PRW. Moreover, the reported PRW and IPRW val-
ues in Figure 1 and Figure 5 (appendix) are computed
by using 30 iterations for PRW and 100 projections for
IPRW. Therefore, the statistical/simulation error con-
tributes to the flip of order between IPRW and PRW
when their true values are close.

Finally, our experimental results show that the max-
sliced Wasserstein estimator works well in practice and

converges to some point as the number of samples
grow. This supports our consistency results since the
max-sliced Wasserstein distance is PRW with k = 1.
Note that there are many existing works on the empir-
ical comparison between max-SW and SW using gen-
erative modeling and we refer the interested readers
to Kolouri et al. (2019a) and the reference therein.

5 Conclusion

We study in this paper the statistical aspect of the pro-
jection robust Wasserstein (PRW) distance. Our work
provides an enhanced understanding of two PRW dis-
tances and the associated minimal distance estimators
under model misspecification, complementing the ex-
isting literature (Niles-Weed and Rigollet, 2019; Bern-
ton et al., 2019; Nadjahi et al., 2019, 2020). Exper-
iments on synthetic and real datasets highlight some
aspects of our theoretical results. Future work includes
theory for entropic PRW and the applications of PRW
with k ≥ 2 to deep generative models.
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S. Singh and B. Póczos. Minimax distribution esti-
mation in Wasserstein distance. ArXiv Preprint:
1802.08855, 2018.

M. Talagrand. Transportation cost for Gaussian and
other product measures. Geometric & Functional
Analysis GAFA, 6(3):587–600, 1996.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf.
Wasserstein auto-encoders. In ICLR, 2018.

A. Tong, J. Huang, G. Wolf, D. van Dijk, and S. Krish-
naswamy. Trajectorynet: A dynamic optimal trans-
port network for modeling cellular dynamics. ArXiv
Preprint: 2002.04461, 2020.

C. Villani. Optimal Transport: Old and New, volume
338. Springer Science & Business Media, 2008.

M. J. Wainwright. High-dimensional Statistics: A
Non-asymptotic Viewpoint, volume 48. Cambridge
University Press, 2019.



On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification

J. Weed and F. Bach. Sharp asymptotic and finite-
sample rates of convergence of empirical measures in
Wasserstein distance. Bernoulli, 25(4A):2620–2648,
2019.

J. Wolfowitz. The minimum distance method. The An-
nals of Mathematical Statistics, pages 75–88, 1957.

J. Wu, Z. Huang, D. Acharya, W. Li, J. Thoma, D. P.
Paudel, and L. V. Gool. Sliced Wasserstein genera-
tive models. In CVPR, pages 3713–3722, 2019.

K. D. Yang, K. Damodaran, S. Venkatachalapathy,
A. C. Soylemezoglu, G. V. Shivashankar, and C. Uh-
ler. Predicting cell lineages using autoencoders and
optimal transport. PLoS computational biology, 16
(4):e1007828, 2020.

J. Ye, P. Wu, J. Z. Wang, and J. Li. Fast discrete
distribution clustering using Wasserstein barycenter
with sparse support. IEEE Transactions on Signal
Processing, 65(9):2317–2332, 2017.


