
On Promoters/Inhibitors and Symport/Antiport

with Traces in P Systems

Mihai Ionescu⋆

University of Pitesti

Faculty of Mathematics and Computer Science

Pitesti, Arges, Romania

E-mail: ❛r♠❛♥❞♠✐❤❛✐✳✐♦♥❡s❝✉❅❣♠❛✐❧✳❝♦♠

Summary. This article brings together some rather powerful results on P systems

in which the computation is performed by the communication of objects through

symport and antiport rules considering the trace of an object through membranes,

on the one hand, and by P systems with object-rewriting non-cooperative rules,

promoters/inhibitors at the level of rules and only one catalyst, on the other. It is

recalled here that computational universality can be reached whit these formalisms

and that some of the proofs can be sketched. Three ideas are also put forward to

brake the direct relationship (infinite hierarchy) induced by the size of the consid-

ered alphabet and the number of the membranes needed in a P system (with traces)

to generate recursively enumerable languages on the chosen alphabet.

1 Introduction

The present study focuses on P systems with a purely communicative func-
tioning from two different perspectives: the “classical" one, in which the

⋆ This paper was possible thanks to the research grant “Programa Nacional para la

Formación del Profesorado Universitario” from the Spanish Ministry of Educa-

tion, Culture and Sport and to CNCSIS grant RP-4 12/01.07.2009

Triangle: Language, Literature, Computation, n. 6, 2011

Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

68 M. Ionescu

result of the computation is the (number of) objects collected in a specified
membrane, as introduced in [6]; and a “non-classical" one in which the re-
sult of the computation is a trace of a certain object (that is, the string of
labels of the membranes visited by this object, as introduced in [20]).

Symport/antiport phenomena are inspired by the biological process in
which two molecules pass together, simultaneously, through a membrane,
in the same direction (symport), or in opposite directions (antiport). For
further biochemical details the reader is asked to see [1] and [2]. Technically,
the rules used in P systems as models of these biological processes are of
the form (x, in) and (x, out), as models of symport, and (x, out; y, in) as a
model of antiport, where x, y are strings of symbols representing multisets
of chemicals. Of course, this is a generalization of what happens in biology,
where mainly pairs of chemicals are coupled. Several classes of P systems
of this type were considered in [4], [6], [7], etc.

The other formalism we recall here is the one of P systems with pro-
moted/inhibited rules, which also has a strong biological motivation. More
precisely, a promoter is a chemical within a living cell which makes a reac-
tion happen only in its presence. The inhibitor is the opposite: the reaction
can not take place if a certain chemical is present in the cell. These biologi-
cal considerations have been formalized in [12] as u → v|a(u evolves to v in
the presence of the promoter a), and u → v|¬b (u cannot evolve to v if the
inhibitor b is present in the same membrane region).

For the reader’s convenience, we recall the fact that P systems are dis-
tributed parallel computing models which abstract from the structure and
the functioning of the living cells. In short, we have a membrane structure,
consisting of several membranes embedded in a main membrane (called
the skin) and delimiting regions where multisets of certain objects are placed
(Figure 1 illustrates these notions); the objects evolve according to given evo-
lution rules, which are applied nondeterministically (the rules to be used and
the objects to evolve are randomly chosen) in a maximally parallel manner
(in each step, all objects which can evolve must). The objects can also be
communicated from one region to another. In this way, we get transitions
from one configuration of the system to the next. A sequence of transitions
constitutes a computation; with each halting computation we associate a result,
the number of objects from a specified output membrane.

Details can be found at the web address ❤tt♣✿✴✴❜✐♦✐♥❢♦r♠❛t✐❝s✳❜✐♦✳

❞✐s❝♦✳✉♥✐♠✐❜✳✐t✴♣s②st❡♠s.

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 69

✬

✫

✩

✪

✬

✫

✩

✪

✤

✣

✜

✢✤
✣
✜
✢

✓
✒
✏
✑

✗
✖
✔
✕

★
✧
✥
✦

✓
✒
✏
✑
✓
✒
✏
✑

✡
✡

✡✡✢

❅
❅
❅❘

�
�

�
�✠

membrane

❆
❆❯

skin elementary membranemembrane

region ✟✟✯
❍❍❍❍❍❍❍❍❥

❅
❅
❅❅❘

Figure 1: A membrane structure

1 2

3

4
5

6

7

8

9

One particular case of the abovementioned evolution rules is that of cat-
alytic rules, which model the biological reactions that can take place only
with the help of certain enzymatic proteins (which participate in reactions
and remain unmodified after they occur). Another important type is pro-
moted/inhibited reactions, which take place in the presence/absence of cer-
tain chemicals that are not directly involved in reactions.

In this abstract, symbolic, mathematical framework it is interesting to see
what the computational power is when “low" cooperation features are used.
In this regard, as was shown in [14], P systems with non-cooperative and
catalytic rules and only two distinct catalysts are computational universal.
Also, in [12] a model with non-cooperative rules, one catalyst and promoters
at the level of rules is shown to be universal.

In this paper we emphasize the computational power of the systems
with non-cooperative rules, catalytic rules with one catalyst and promot-
ers/inhibitors in both generative and accepting cases. We will also mention
the latest results regarding the computational power of the “traced" variant
of P systems.

TRIANGLE 6 • December 2011

70 M. Ionescu

2 Preliminaries

The language theory notions we use here are standard, and can be found,
for instance, in [10], [11]. We only mention that we denote by V∗ the free
monoid generated by an alphabet V; λ is the empty string, |x| is the length
of x ∈ V∗, and |x|a is the number of occurrences of the symbol a ∈ V in
the string x ∈ V∗. For x ∈ V∗ we denote alph(x) = {a ∈ V | |x|a ≥ 1}
(the set of symbols appearing in x), and for a language L ⊆ V∗ we write
alph(L) =

⋃
x∈L alph(x). By REG, CF, CS, REC, RE we denote the families of

regular, context-free, context-sensitive, recursive, and recursively enumer-
able languages, respectively.

In the (sketches of the) proofs of the theorems presented here, we used
tools such as Regulated Rewriting (more precisely the fact that the families
of languages generated by regularly controlled context-free grammars with
appearance checking and erasing rules are equal in generative power to
the family of all recursively enumerable languages over the same alphabet),
and the generative power of Register Machines (which are computationally
universal). Those readers who are familiar with these concepts can skip the
first two subsections.

2.1 Regulated rewriting

In any Chomsky grammar, at some given step in a derivation one can use for
rewriting any applicable rule in any desired place of the sentential form. In
order to restrict this nondeterminism some regulating mechanisms, which
can control the derivation process, were considered. Using such regulations
we can reach computational universality even if we use context-free gram-
mars as a core generative device. In the literature there are many types of
regulations which restrict the use of rules in a Chomsky grammar (see [3],
[18]). Here we will present only regularly controlled grammars with appear-
ance checking and λ–rules.

A regularly controlled context-free grammar with appearance checking is a 6-
tuple GrC = (N, T, P, S, R, F) where N,T,P, and S are specified as in context-
free grammars, R is a regular language over P, and F is a subset of P.

For a rule p = A → w ∈ P and x, y ∈ V∗
G we write x =⇒ac

p y if either

1. x = x1 Ax2 and y = x1wx2, or
2. x = y, A does not appear in x, and p ∈ F.

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 71

The language L(G) generated by G with appearance checking consists
of all words w ∈ T∗ such that there is a derivation

S =⇒ac
p1

w1 =⇒ac
p2

w2 · · · =⇒
ac
pn

wn = w

with p1 p2 · · · pn ∈ R.
By L(λrCac) we denote the families of languages generated by regularly

controlled grammars with appearance checking and erasing rules. The fol-
lowing result stands:

L(λrCac) = L(RE)

where by L(RE) we denote the family of all recursively enumerable lan-
guages over the same alphabet T.

2.2 Register machines

The power of Minsky’s register machine [16] was also used in some of the
proofs of the theorems that follow, which is why we recall this notion here.
This machine runs a program consisting of numbered instructions of several
simple types. Several variants of register machines with a different number
of registers and different instructions sets were shown to be computationally
universal (see [16] for some original definitions and [15] for the definition
we use here).

A n-register machine is a construct M = (n, P, i, h), where:

• n is the number of registers,
• P is a set of labeled instructions of the form j : (op(r), k, l), where op(r) is

an operation on register r of M, and j, k, l are labels from the set Lab(M)
(which numbers the instructions in a one-to-one manner),

• i is the initial label, and
• h is the final label.

The machine is capable of the following instructions:

(add(r), k, l) : Add one to the contents of register r and proceed to in-
struction k or to instruction l; in the deterministic variants usually consid-
ered in the literature we demand k = l.

(sub(r), k, l) : If register r is not empty, then subtract one from its con-
tents and go to instruction k, otherwise proceed to instruction l.

TRIANGLE 6 • December 2011

72 M. Ionescu

halt : This instruction stops the machine. This additional instruction can
only be assigned to the final label h.

A deterministic m-register machine can analyze an input (n1, ..., nα) ∈
Nα

0 in registers 1 to α, which is recognized if the register machine finally
stops by the halt instruction with all its registers being empty(this last re-
quirement is not necessary). If the machine does not halt, the analysis was
not successful.

2.3 P systems prerequisites

A P system (of degree m ≥ 1) with symbol–objects and rewriting evolution
rules is a construct

Π = (V, C, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), i0),

where:

• V is the alphabet of Π; its elements are called objects;
• C ⊆ V is the set of catalysts;
• µ is a membrane structure consisting of m membranes labeled 1, 2, · · · , m;
• wi, 1 ≤ i ≤ m, specify the multisets of objects present in the correspond-

ing regions i at the beginning of a computation;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with

the regions 1, 2, . . . , m of µ, and ρi is a partial order relation over Ri (a
priority relation); these evolution rules are of the form a → v or ca → cv,
where a is an object from V − C and v is a string over

(V − C)× ({here, out, in})

(In general, the target indications here, out, in are written as subscripts
of objects from V.);

• i0 is a number between 0 and m and specifies the output membrane of
Π (in case of 0, the environment is used for the output).

Starting from the original model of P system, several variants were pro-
posed (see [17]). One of them is P systems with promoters/inhibitors and was
introduced, as mentioned previously, in [12]. In the case of promoters, the
rules (reactions) are possible only in the presence of certain symbols. An
object a is a promoter for a rule u → v, and we denote this by u → v|a, if the
rule is active only in the presence of object a. An object b is an inhibitor for

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 73

a rule u → v, and we denote this by u → v|¬b, if the rule is active only if
inhibitor b is not present in the region. In particular, promoters/inhibitors
themselves can evolve according to some rules.

The difference between catalysts and promoters consists of the fact that
the catalysts directly participate in rules (but are not modified by them), and
they are counted as any other objects, so that the number of applications of
a rule is as big as the number of copies of the catalyst, while in the case of
promoters, the presence of the promoter objects makes it possible to use the
associated rule as many times as possible, without any restriction; moreover,
the promoting objects do not necessarily directly participate in the rules. As
a consequence, it can be seen that the catalysts inhibit the parallelism of the
system while the promoters/inhibitors only guide the computation process.

The P system with the mentioned features starts to evolve from the initial
configuration, as in the classical P system, to the final configuration. The
result of the halting computation is the number of objects present in the
region i0 in the halting configuration. The set of all numbers constructed in
this way by a system Π is denoted by N(Π). For this kind of P systems we
will use the following notation:

NOPm(α, β), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0}, β ∈ {proR, inhR}

to denote the family of sets of natural numbers generated by P systems
with at most m membranes, evolution rules that can be non-cooperative
(ncoo), cooperative (coo), or catalytic (catk), using at most k catalysts, and
promoters (proR) or inhibitors (inhR) at the level of rules.

We may also consider the vector Ψ(w) as the result of the halting compu-
tation (the vector of multiplicities of objects) where w is the multiset present
in the region i0 in the halting configuration. In this case, the set of all vectors
constructed in this way by a system Π is denoted by Ps(Π). We will also
use the following notation:

PsIPm(α, β), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0}, β ∈ {proR, inhR},

to denote the family of sets of vectors of natural numbers accepted by
P systems with at most m membranes, evolution rules that can be non-
cooperative (ncoo), cooperative (coo), or catalytic (catk), using at most k
catalysts, and promoters (proR) or inhibitors (inhR) at the level of rules.
Here, I stands for P systems with internal input. For generative devices we
will write PsPm(· · · , · · ·).

TRIANGLE 6 • December 2011

74 M. Ionescu

In this paper we will recall how the regularly regulated context-free
grammars with appearance checking can be used to prove the computa-
tional universality of this type of P systems.We will also present the deter-
ministic P systems that accept sets of vectors of natural numbers.

We also recall here the case in which the trace of a certain object is con-
sidered, so we have P systems of the following form:

Π = (V, t, T, h, µ, w1, . . . , wm, E, R1, . . . , Rm),

where V is an alphabet, t ∈ V (a distinguished object, “the traveler"), T is
an alphabet, h : {1, 2, . . . , m} −→ T ∪ {λ} is a weak coding, w1, . . . , wm are
strings representing the multisets of objects present in the m regions of µ, E
is the set of objects present in arbitrarily many copies in the environment,
and R1, . . . , Rm are the sets of symport and antiport rules (with promoters
or inhibitors) associated with the m membranes. The traveler is present in
exactly one copy in the system, that is, |w1 . . . wm|t = 1 and t /∈ E.

Let σ = C1C2 . . . Ck, k ≥ 1, be a halting computation with respect to Π,

with C1 = (w1, . . . , wm, λ) the initial configuration, and Ci = (z
(i)
1 , . . . , z

(i)
m ,

z
(i)
e) the configuration at step i, 1 ≤ i ≤ k. If |z

(i)
j |t = 1 for some 1 ≤ j ≤ m,

then we write Ci(t) = j (therefore, Ci(t) is the label of the membrane where

t is placed). If |z
(i)
j |t = 0 for all j = 1, 2, . . . , m, then we put Ci(t) = λ. Then,

the trace of t in the computation σ is

trace(t, σ) = C1(t)C2(t) . . . Ck(t).

The computation σ is said to generate the string h(trace(t, σ)). Hence the
language generated by Π is L(Π) = {h(trace(t, σ)) | σ is a halting compu-
tation in Π}.

We denote by LPm(psymp, pantiq) the family of languages generated by P
systems with at most m membranes, with symport rules of weight at most p
and antiport rules of weight at most q, using promoters; when the rules have
associated forbidding contexts we write fsym, fanti instead of psym, panti;
when the rules are used in the free mode (they have no promoter/inhibitor
symbols associated), we remove the initial “p" and “f" from psym, panti and
fsym, fanti. As usual, the subscript m is replaced by ∗ when no bound on
the number of used membranes is considered; similarly, if we use symport
or antiport rules of an arbitrary weight, then the subscripts p, q are replaced
with ∗.

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 75

3 Some relevant examples

In this section we will present some examples of P systems computing some
“sensitive" tasks using the types of P systems discussed above. First we will
construct a P system with promoters that, having as input two values, say 0
and/or 1, computes the and operation (see Figure 1).

0 → 0out

1 → 1out

c

0 → 0′Aout

c0′ → c0out

1 → 1′

1′ → 1′′Bout

c1′′ → c1out

A → A′

0 → 0out|A′

A′ → A′′

0 → λ|A′′

A′′ → λ

B → B′

1 → λ|B′

B′ → B′′

1 → 1out|B′′

B′′ → λ

✬

✫

✩

✪
1

2

3

✬

✫

✩

✪

✬

✫

✩

✪
Fig. 1. Simulation of the AND gate using promoters and one catalyst

Formally, we define the following P system

ΠAND = (V, C, µ, w1, w2, w3, R1, R2, R3, 0),

where:

• V = {0, 1, 0′, 1′, 1′′, A, A′, A′′, B, B′, B′′, c};
• C = {c};
• µ = [3[2[1]1]2]3;
• w1 = w3 = ∅, w2 = {c};
• R1 = {1 → 1out, 0 → 0out};

R2 = {0 → 0′Aout, c0′ → c0out, 1′ → 1′′Bout, 1 → 1′,
c1′′ → c1out};

R3 = {A → A′, 0 → 0out|A′ , A′ → A′′, 0 → λ|A′′ ,
A′′ → λ, B → B′, 1 → λ|B′ , B′ → B′′,
1 → 1out|B′′ , B′′ → λ}.

TRIANGLE 6 • December 2011

76 M. Ionescu

The simulation of the AND gate uses the catalyst c to inhibit the par-
allelism and to separate the entrance time of objects 0 and 1 into region 3.
Depending on the entrance time, objects will be either deleted, or sent out
into the environment. More specifically, if we consider that initially we had
two objects 0 inside region 2, the rule 0 → 0′Aout is executed. Its role is to
introduce object A into region 3 to set up the “right" configuration of the
region. Next, in region 2 the only applicable rule is c0′ → c0out, which will
introduce one object 0 into region 3. At the same time, in region 3 the rule
A → A′ is executed. Now, we will have in region 3 the objects A′ and 0,
and the rules that will be applied are 0 → 0out|A′ and A′ → A′′. These rules
guarantee that an object 0 is sent out into the environment. In the meantime,
in region 2, the remaining object 0′ reacts with the catalyst c and an object
0 will be introduced into region 3 (the rule used is again c0′ → c0out). Here,
object 0 will find a different context since now, in region 3 there is no object
A′. Therefore, the rules 0 → λ|A′′ and A′′ → λ are applied. Hence the initial
configuration of the system is restored. Basically, a similar method stands
for the other cases, with some minor changes: objects 1 enter into region 3
with one computational delay (because of the rule 1 → 1′ present in region
2) in order not to influence the processes executing in region 3; the first
object 1 that enters into region 3 is deleted (as opposed to the above case
when the first object 0 that arrives in region 3 is sent out) by using the rule
1 → λ|B′ .

Recall that membrane 1 can be entirely avoided, its role being only to
specify the entry point of the input. Also, the result of computation is sent
out into the environment even if it is actually obtained in region 3. These
features are useful when we want to connect gates to circuits (see [13] for
more details).

The second example (see Figure 2) uses context-free rules, inhibitors and
one catalyst to compute the arithmetic difference between the initial multi-
plicity of two distinct objects, present at the beginning of computation into
an input region.

Formally, we define the following P system

Πdi f = (V, C, µ, w1, w2, R1, R2, 2),

where:

• V = {a, b, a′, b′, d, A, B, c};
• C = {c};

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 77

c, an, bm

ca → ca′d|¬a′

cb → cb′d|¬b′

a′ → Aout|¬b

b′ → Bout|¬a

d → λ
a′ → λ|¬d

b′ → λ|¬d

1

2

✬

✫

✩

✪

✬

✫

✩

✪
Fig. 2. Integer subtraction using inhibitors and one catalyst

• µ = [2[1]1]2;
• w1 = {c, an, bm}, w2 = ∅;
• R1 = {ca → ca′d|¬a′ , cb → cb′d|¬b′ , a′ → Aout|¬b,

b′ → Bout|¬a, d → λ, a′ → λ|¬d, b′ → λ|¬d};
R2 = ∅.

The system starts the computation by inputting into membrane 1 a cat-
alyst c and the objects an, bn, whose multiplicity we want to subtract. The
result of computation is sent to region 2 and it is represented by:

• An−m if n > m;
• Bm−n if m > n;
• no object is sent to region 2 meaning that m = n.

We will not give many details regarding the computations here (these
can be found in [19]). We only mention that the system works as follows:
while there are still objects a and b, they are deleted in pairs, iteratively, until
there are no more objects a, for instance (or objects b). At that moment, the
flow of computation changes and as a result, also iteratively, the remaining
objects b (or objects a, respectively) are sent out. During the computation,
the promoters control the derivation process, while the catalyst inhibits the
parallelism.

The third example (detailed also in [20]) shows how a P system consid-
ering traces of an object is computing. Consider the system

Π = ({d, t}, t, {a, b, c}, h, [1[2[3[4[5]5]4]3]2]1, t,

∅, ∅, ∅, ∅, {d}, R1, R2, R3, R4, R5),

TRIANGLE 6 • December 2011

78 M. Ionescu

with h(1) = a, h(3) = b, h(5) = c, h(2) = h(4) = λ, and the following sets of
rules:

R1 = R3 = R5 = {(t, out), (td, in)},

R2 = R4 = {(t, in), (d, in)}.

First, the traveler brings n ≥ 1 copies of d from the environment (each of
them immediately enters membrane 2), and then the traveler goes to mem-
brane 2. Subsequently the traveler brings m ≤ n copies of d into membrane
3 (each of them immediately membrane 4), and then the traveler goes to
membrane 4 (at this moment, it is possible that some copies of d remain in
membrane 2). From membrane 4, all copies of d are carried into membrane
5; the computation stops with the traveler in membrane 4. Thus, for any
computation σ of this type, we have

trace(t, σ) = 1n+1(23)m(45)m4, for some n ≥ 1, m ≤ n.

The traveler can also end up in membrane 2, after introducing all copies
of d in membrane 3, and returning to membrane 2. In the case of such a
computation σ we have

trace(t, σ) = 1n+1(23)n2, for some n ≥ 1.

Finally, we can also have the trivial computation where t enters only mem-
brane 2, without any copy of d present in the system, and this leads to
trace(t, σ) = 12.

Consequently,

L(Π) = {an+1bmcm | n ≥ 1, m ≤ n} ∪ {an+1bn | n ≥ 1} ∪ {a}.

Clearly, this language is not a context-free one. Note that system Π only has
symport rules, and that the rules are freely applied (we use no promoter or
inhibitor).

4 Universality results - using P systems with
promoted/inhibited rules

4.1 Computational universality – the generative case

We present two universality results concerning P systems with promoters or
inhibitors at the level of rules. Both proofs are based on the simulations of

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 79

regularly controlled context-free grammars with appearance checking. Only
the sketch of the first proof is given here. The detailed proofs can be found
in [19].

As we presented in Subsection 2.1, the family of languages generated by
such grammars L(λrCac) is equal to the family of all recursively enumerable
languages L(RE). As a particular case, by NRE we denote the family of
Turing computable sets of numbers. This family is isomorphic to the family
of length sets of languages generated by regularly controlled context-free
grammars with appearance checking over one letter terminal alphabet.

Recall also, that, because P systems with symbol-objects operate with
multisets of objects (therefore we do not have the order given by strings)
at most we can study the equivalence with a family of vectors of natural
numbers.

We denote by PsPm(cat, proR), the family of sets of vectors of natural
numbers computed by systems with at most m membranes, 1 catalyst (say
c) and objects as promoters.

Theorem 1. PsPm(cat1, proR) = PsRE.

Proof. We will consider for this proof the implication NRE ⊆ PsP2(cat, proR);
the other way around is a straightforward construction based on the Church-
Turing thesis.

Let Greg = (Nreg, Treg, Preg, Sreg) be a regular grammar generating the
regular set Lreg. We denote by r the number of rules in Preg. The rules of
Preg are enumerated as i : (Mi → piQi) or i : (Mi → pi) with 1 ≤ i ≤ r,
where Mi ∈ Nreg and pi ∈ Treg ∀ 1 ≤ i ≤ r. For any such grammar Greg we
can construct an equivalent right–linear grammar G′ = (N′, T′, P′, S′) in the
following way:

T′ = Treg,
S′ = Sreg,
N′ = Nreg ∪ {M(i,1), M(i,2), M(i,3) | 1 ≤ i ≤ r}.

For any rule i : (Mi → piQi) ∈ Preg or i : (Mi → pi) ∈ Preg, 1 ≤ i ≤ r we
will have in P′ the sequence of rules:

Mi → M(i,1), M(i,1) → M(i,2), M(i,2) → M(i,3), M(i,3) → piQi,
Mi → M(i,1), M(i,1) → M(i,2), M(i,2) → M(i,3), M(i,3) → pi

respectively. Moreover, P′ does not contain other rules excepting the rules
considered above.

TRIANGLE 6 • December 2011

80 M. Ionescu

In other words, the only difference between the two grammars is that
a new terminal is produced in grammar G′ after every fourth step of a
derivation.

Now let us construct a P system which simulates the derivation process
of a regularly controlled grammar with appearance checking. The system
will use only two membranes, one catalyst and promoters. The innermost
membrane will contain the generative mechanism and the results of com-
putation will be sent out to the skin membrane which will be the output
membrane of the system (the reason is that the catalyst is used during the
computation to inhibit the parallelism and it cannot be removed, so we can-
not obtain the number 0 as the result of computation if we use only one
membrane). In what follows we will discuss only the rules in the innermost
membrane since the skin membrane does not execute any task (its role is
only to collect the objects obtained during computation).

The promoters will be generated by a mechanism like the one presented
above (promoters will be actually terminal symbols from T′ and, therefore,
they will be generated every fourth step). They will permit the execution
of “context-free" rules in the “right" order – the order given by the regular
mechanism.

In order to correctly simulate the appearance checking mechanism we
have to modify the rules in grammar G′ such that we replace each rule of
type M(i,3) → piQi by rules of type: M(i,3) → piQi f or M(i,3) → piQia
depending on how the object pi indicates a rule from F (in the regularly
controlled grammar definition, the set F ⊂ P represents the appearance
checking set of rules; we will use the object a to identify that a rule with
the corresponding label pi is in the appearance checking set; if not, we will
produce object f in the rule). We will also consider the same construction
for the rules in G′ of type M(i,3) → pi, i.e., M(i,3) → pi f or M(i,3) → pia.
This means that, in the definition of our P system, for the inner membrane,
we will have rules of the following types:

• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQi f if pi is
not a label in the appearance checking set;
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQia if pi is a
label in the appearance checking set;
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pi f if pi is not a
label in the appearance checking set;
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pia if pi is a
label in the appearance checking set.

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 81

For a context-free rule (p : (A → α)) ∈ GCF (GCF = (NCF, TCF, PCF, SCF))
we will have the following sequence of rules in our P system:

cA → cDα|p,
p → p′,
p′ → λ|D,
D → λ.

Here, without losing generality. We have considered that α ∈ (N ∪ Tout)∗

which means that if we apply the rule p : (A → α) we will send the termi-
nal symbols to the output region (recall that we are interested only in the
number of objects).

This sequence of rules stands for the case when the context-free rule
A → α can be applied and, therefore must be applied. In the case when the
rule mentioned cannot be applied we have to decide if the promoter present
indicates a rule with the label in the appearance checking set or not.

First, let us consider the case when the promoter is not a label in the
appearance checking set. In this case, recall that we deal with the following
sequences of productions (from the regular mechanism):
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQi f , or
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pi f .

As a result of applying these rules we will have in the inner region,
among others, the objects p and f . Let us consider that, for this case, we
have the rules:

f → f1,
f1 → f2,
p′ → #| f2

,
f2 → λ,
→ #′,
#′ → #.

The first two rules from this group are meant to delay the execution of
the third rule because we are not “sure" if the rule cA → cDα|p is or is not
applied.

With a construction similar to the one above we can solve the case when
we deal with rules that have labels in the appearance checking set. This
means that the rules to be applied are of the types:

• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → piQia , or
• Mi → M(i,1) , M(i,1) → M(i,2) , M(i,2) → M(i,3) , M(i,3) → pia.

TRIANGLE 6 • December 2011

82 M. Ionescu

Here the difference from the previous case is that the trap symbol # is not
generated if the rule cA → cDα|p cannot be applied. We only have to delete
the promoter p′. It may interfere in the next steps of computation if it is
not deleted. The rules below state the fact that if a rule is in the appearance
checking set and it can not be applied even if it is indicated by the regular
mechanism, then it can be skipped.

a → a1,
a1 → a2,
p′ → λ|a2 ,
a2 → λ.

Finally, the initial configuration of the P system is composed of the start-
ing symbol SReg of the regulating mechanism, the starting symbol SCF of
the context-free mechanism and the catalyst c. The system will evolve in a
maximally parallel manner and its behavior is controlled by the catalyst and
promoters.

It can be seen that the descriptional complexity in terms of number of
membranes, number of catalysts and promoters is the same as in the original
proof in [12], but simulating a different computational universal mechanism.
�

As a particular case we have the following result:

Corollary 4.1 NOP2(cat1, proR) = NRE.

As can be seen, the promoters combined with one catalyst are sufficient
to prove the computational universal capabilities of the P systems when
using only context-free object rewriting rules. Also, a similar result, but for
inhibitors not promoters, stands.

Theorem 2. PsP2(cat1, inhR) = PsRE.

As a particular case we have the following result:

Corollary 4.2 NOP2(cat1, inhR) = NRE.

4.2 Computational universality – the accepting case

The following theorems illustrate the computational universality (in their
accepting variants) of P systems with object rewriting non-cooperative rules
and promoters/inhibitors at the level of rules. The systems we propose sim-
ulate the moves of deterministic register machines. Moreover, the obtained

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 83

P systems are also deterministic. As in the previous subsection, we give here
only the proof sketch of the first theorem, for the details suggesting [19].

Theorem 3. PsIP2(cat1, proR) = PsRE.

Proof. In order to prove this assertion we will simulate a n–register machine
M = (n, P, i, h). At each time during the computation, the current contents
of register j is represented by the multiplicity of the object aj.

Formally, we define the P system

Π = (V, C, [1 [2]2]1, w1 = ∅, w2, R1 = ∅, R2, 1),

where:
V = {aj, Aj, Sj | 1 ≤ j ≤ n} ∪ {F, T} ∪ {e, e′ | (e : add(j), f) ∈ P}∪

{e, e′, e′′ | (e : sub(j), f , z) ∈ P},
C = {c},

w2 = {c, e, a
kj

j , 1 ≤ j ≤ n, k j ∈ N},

and R2 is defined as follows:

• for each instruction (e : add(j), f) ∈ P, we add to R2 the rules:
e → e′Aj

c → caj|Aj

Aj → λ

e′ → f
• for each instruction (e : sub(j), f , z) ∈ P, we add to R2 the rules:

e → e′TSj

caj → cF|Sj

Sj → λ

e′ → e′′

T → T′

e′′ → f |F
F → λ

T′ → T′′

e′′ → z|T′′

T′′ → λ

• for the instruction (h : halt) ∈ P, we add to R2 the rules:
aj → #|h, 1 ≤ j ≤ n
h → λ

• the rule # → # is added to R2,
• no other rules are added to R2.

TRIANGLE 6 • December 2011

84 M. Ionescu

The system works as following. Initially the P system starts the com-

putation whit the objects a
k1
1 , · · · , akn

n , the catalyst c and the label e of the
first instruction of the register machine we want to simulate in its input re-
gion (region 2). The vector (k1, · · · , kn) represents the vector that has to be
accepted by our P system. �

Theorem 4. PsIP2(cat1, inhR) = PsRE.

5 Universality results - using P systems with traces and
symport/antiport rules

The initial results presented in [20] (with which universality could be ob-
tained using antiport rules of an arbitrary weight, as well as promoters or
inhibitors), were significantly improved in [21].

Before presenting the latter we should mention that by lRE we mean
the family of recursively enumerable languages over alphabets of size l,
and that lLPm(symj, antik) denotes the family of languages over alphabets
of size l defined by traces of P systems with symport/antiport whit at most
m membranes, symport of weight at most j, and antiport of weight at most
k.

Here are the results presented in [21]:

lLPl+1(sym0, anti2) = lRE

lLPl+1(sym3, anti0) = lRE

lLPl+2(sym2, anti0) = lRE

For details regarding the proof, the reader is asked to consult the above
mentioned paper.

It can be seen that the number of membranes used to obtain universality
is strictly dependent on the size of the chosen alphabet, so an infinite hier-
archy is created. The question we try to answer in the next subsection (more
precisely we suggest some answers to it), is: Can lRE be obtained with P
systems in which the number of membranes does not depend on l?

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 85

5.1 Ways of obtaining lRE with the number of membranes not

depending on l

Several travelers

The firs way of decreasing the number of membranes is to consider several
travelers. Let us suppose that alphabet T (which was mentioned in section
2.3) has k components (travelers) and the considered P system contains m
membranes.

In this case V consists of k ∗ m symbols ai,j, where 1 ≤ i ≤ k, and 1 ≤
j ≤ m. Let σ = C1C2 . . . Ck, k ≥ 1, be a halting computation and let Ci(T) =
{aij| ti be in membrane j}.

We consider trace(T, σ) = {w1, w2, . . . , wk|wi ∈ V∗, ΨV(wi) = ΨV(Ci(T))},
i.e. wi is a linear arrangement of Ci(T) (more precisely, we allow here any
permutation). Hence, the language defined by a P system with several trav-
elers is given by: LT(Π) = {h(trace(T, σ))| σ is a halting computation in
Π}.

We should also mention that the language LT(Π) can be over k ∗ m sym-
bols (provided by the k travelers and m membranes considered).

Using an inverse morphism

The second idea (invitation) we propose is to consider an inverse morphism.
Let us suppose we have the following morphism h : V∗ → U∗. Then, the
inverse morphism of h is defined as h−1 : U∗ → 2V∗

, where h−1(y) = {x ∈
V∗| h(x) = y}, y ∈ U∗.

Now let us consider the following example: let us have two alphabets,
V = {a1, a2, . . . , ak}, U = {0, 1} and the mapping h defined as above,
where h(ai) = 0i1. It is obvious that this mapping is injective; hence,
card(h−1(y)) = 1. We choose now a recursively enumerable language
L ⊆ V∗ and we write it in the form L = h−1(h(L)). It it obvious (from
the way we defined h) that choosing L from kRE, h(L) ∈ 2RE.

Using now the results from [21] we conclude that:

h(L) ∈ 2LP3(sym0, anti2),

and
h(L) ∈ 2LP3(sym3, anti0).

TRIANGLE 6 • December 2011

86 M. Ionescu

Changing the labels of membranes

Our final proposed answer to the core question of this section is to consider
the change of the labels of the membranes. The idea is “borrowed" from the
P systems formalisms which deal with active membranes (details in [17]).

Our (symport) rules of the form (x, in), (x, out) can be rewritten as
x[]i → [x]i, and [x]i → []ix, respectively, while the rule (x, out; y, in) (the
case of antiport) can be rewritten as y[x]i → [y]ix. Generalizing, we can con-
sider that whenever an object enters or exits a membrane it can change its
label. Thus, our rules will become: x[]i → [x]j, [x]i → []jx, and y[x]i → [y]jx,
respectively.

Once this point has been reached another problem might arise: namely,
the conflict with other labels. To be more precise, when label i changes to j,
a different membrane may have the latter, which is of course, quite unwel-
come. For this reason, we thought of three ways of avoiding this conflict.
The first is the sequential use of rules. The second solution is to considera co-
herent set of rules of the form (i, j), all passing from i to j. And the last one is
to use at most one rule which changes the label and, in parallel, other rules
which do not change the label of the membranes. The reader is encouraged
to try them.

6 Final remarks and future work

We have put together some powerful results which arise from the mecha-
nisms of P systems with promoters/inhibitors, and symport/antiport con-
sidering the trace of a certain object through membranes.

We have also recalled here a new way of defining the result of a compu-
tation in a P system with symport and antiport rules: namely, taking into
consideration the trace of a specified object through membranes during a
computation. This idea is attractive because it leads to a string associated
with a computation rather than a number. We believe this last idea is worth
considering also for other classes of P systems. Of particular interest are sys-
tems whose computation is based entirely on communication, such as those
involving carriers [5] and various classes of systems with symport/antiport
rules. For instance, we can consider P systems with symport/antiport rules
with other control mechanisms on the use of rules or with other arrange-
ments of membranes – (e.g., P systems working on networks of elementary
membranes [8]).

TRIANGLE 6 • December 2011

Symport/Antiport and Traces in P Systems 87

In the last section we proposed three different ways of solving the infinite
hierarchy problem related to the direct relationship between the necessary
number of the membranes in a P system needed to generate a RE language.

We also want to propose here that the relationship of P systems with
traces and Gauss codes be studied. (Gauss codes are one of the oldest prob-
lems leading to a formal language). Here is how they are obtained: consider
a planar closed curve with simple crossing points (i.e. it is not a tangent
point and the curve crosses itself only once that point). Assign the numbers
1, 2, . . . , n to the n crossing points of a given curve c. A sequence x(c) con-
taining exactly two occurrences of each i (i between 1 and n) and describing
the passing of the curve through the crossing points is called a Gauss code.
More details about Gauss codes can be found in [22].) It seems natural, in a
way, to think that the traveler considered here will “jump" on a Gauss curve
and follow its path, but so far no work has been done in this direction.

References

1. B. Alberts et al., Essential Cell Biology. An Introduction to the Molecular Biology of

the Cell, Garland Publ. Inc., New York, London, 1998.

2. I.I. Ardelean, The relevance of cell membranes for P systems. General aspects,

Fundamenta Informaticae, 49, 1-3 (2002).

3. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-

Verlag, Berlin, 1989.

4. C. Martín-Vide, A. Păun, Gh. Păun, G. Rozenberg, Membrane systems with cou-

pled transport: Universality and normal forms, submitted, 2002.

5. C. Martín-Vide, Gh. Păun, G. Rozenberg, Membrane systems with carriers, The-

oretical Computer Sci., 270 (2002), 779–796.

6. A. Păun, Gh. Păun, The power of communication: P systems with sym-

port/antiport, New Generation Computers, to appear.

7. A. Păun, Gh. Păun, A. Rodriguez-Paton, Further remarks on P systems with

symport rules, Ann. Univ. Al.I. Cuza, Iaşi, to appear.

8. A. Păun, Gh. Păun, G. Rozenberg, Computing by communication in networks of

membranes, submitted, 2001.

9. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,

61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No 208,

1998 (www.tucs.fi).

10. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,

Springer-Verlag, Berlin, 1997.

11. A. Salomaa, Formal Languages, Academic Press, New York, 1973.

TRIANGLE 6 • December 2011

88 M. Ionescu

12. P. Bottoni, C. Martín-Vide, Gh. Păun, G. Rozenberg, Membrane Systems with

Promoters/ Inhibitors Acta Informatica, 38, 10 (2002), 695-720.

13. R. Ceterchi, D. Sburlan, Simulating Boolean Circuits with P Systems, Workshop

on Membrane Computing WMC-Tarragona 2003, (A. Alhazov, C. Martín-Vide, G.

Păun, eds), TR 28/03, URV Tarragona, 2003.

14. R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally Universal P Systems

without Priorities: Two Catalysts Are Sufficient; submitted 2003.

15. S. Khrisna, A. Păun, Three Universality Results on P Systems, Workshop on Mem-

brane Computing WMC-Tarragona 2003, (A. Alhazov, C. Martín-Vide, G. Păun,

eds), TR 28/03, URV Tarragona, 2003, 198-206.

16. M.L. Minsky, Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, 1967.

17. Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.

18. Gh. Păun, G. Rozenberg, A Guide to Membrane Computing, Theoretical Computer

Science, 287, 1 (2002), 73-100.

19. M. Ionescu, D. Sburlan, On P Systems with Symport/Antiport, Journal of Univer-

sal Computer Science, 10(5), 2004, 581-600.

20. M. Ionescu, C. Martín-Vide, G. Păun, P Systems with Symport/Antiport: The

Trace of Objects, Grammars, 5(2), 2002, 65-70.

21. P. Frisco, H.J. Hoogeboom, Simulating Counter Automata by P Systems with

Symport/Antiport, Lecture Notes in Computer Science, 2597, 2002, 288-301.

22. C. Martín-Vide, V. Mitrana, Gh. Păun (eds.), Formal Languages and Applications,

Springer-Verlag, 2004, 20-21.

TRIANGLE 6 • December 2011

